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Editor’s notes:
This article presents an end-to-end tool that, starting from a processor and 
a set of security-critical invariants, automatically generates exploits to help 
designers find security threats.

—Rosario Cammarota, Intel Labs
—Francesco Regazzoni, University of Amsterdam and 

Università della Svizzera Italiana

 In recent years, we have seen reports of 
exploitable vul nerabilities in major, commercially 
available chips [1], [2]. A study of the advanced 
micro devices (AMD) errata from 2007 to 2013 finds 
that 28 of the 301 processor errata are security-crit-
ical [3]. The recent Spectre and Meltdown attacks, 
and their variants [4], [5], further demonstrate the 
severe consequences of flaws in hardware designs. 
By using software-only attacks to exploit vulnerabil-
ities in off-the-shelf hardware products, an attacker 
can gain control of the entire system, even if the sys-
tem is running only secure software.

The current state of the art for finding errors in 
processor designs is to use formal static analysis or 
simulation-based testing. However, neither method is 
complete. We develop here a third option: software-style 
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symbolic execution for hardware designs. 
It systematically explores paths in hard-
ware designs to uncover errors.

Uncovering a potential bug is only 
the first step during a security valida  
tion process. Hardware designers 
must then assess the severity and 
security implication of each found 
bug. Our work takes an end-to-end 

approach by automatically generating software 
exploits to expose potential vulnerabilities. In 
particular, for each found bug, the tool generates 
a sequence of instructions that will trigger the bug 
plus a program stub that carries an exploit pay-
load. The payload stub is generated based on the 
violated security properties. Together, the trigger 
and the payload stub form a complete exploit pro-
gram to demonstrate a possible, concrete attack.

Generating the exploits not only allows hard-
ware designers to uncover and reproduce vul-
nerabilities with concrete test cases but also 
helps them contextualize, analyze and assess the 
security implications of a potential vulnerability. 
Furthermore, by using whether an exploit can be 
generated as a criterion, hardware designers can 
validate patches and refine assertions.

In this article, we present Coppelia, an end-to-end 
exploit generation tool for use during the security valida-
tion of hardware designs. We evaluate Coppelia on three 
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reduced instruction set computer (RISC) processors of 
different architectures. Coppelia is able to find and gen-
erate exploits for 29 of 31 known vulnerabilities in these 
processors and finds four new vulnerabilities along with 
exploits in these processors.

Hardware security validation

Validation approaches
Current practice in hardware security validation 

at design-time often leverages assertion-based verifi-
cation (ABV) or information flow tracking (IFT).

ABV is the form of testing in which assertions added 
to the design encode security critical properties. Once 
assertions are added, simulation-based testing or for-
mal static analysis may then be used to search for vio-
lations of the assertions. In simulation-based testing, 
test cases are used to find whether the assertions will 
be triggered; but assertion violations that exist along 
untested paths will not be discovered. In formal static 
analysis, the design is unrolled some number of 
cycles and the state space is methodically explored; 
but the state space grows exponentially which limits 
how far the design can be unrolled.

IFT uses dataflow tracking to track the flow of 
untrusted network, file and user inputs through 
memory. It requires tagging source variables with 
the appropriate level (e.g., “high” or “low”) of infor-
mation, asserting the correct level is maintained for 
sink variables, and deciding when to conditionally 
disable the assert or under what circumstances to 
allow declassification.

Security properties
The security properties for hardware security 

validation are often written for use with a particular 
verification method, and each method has an associ-
ated specification language in which the properties 
can be expressed. The security proper ties and asser-
tions used in hardware security validation may be 
manually or semiautomatically developed.

The security properties that have been developed 
to date for ABV make use of existing industry stand-
ard libraries for expressing assertions [6] and are 
written in a fragment of linear temporal logic that 
includes the globally (G) and next (X) operators. The 
properties expressible in the temporal logic are trace 
properties: individual traces of execution either sat-
isfy or violate the given property. However, properties 

about how information flows through the processor 
are not immediately expressible as trace properties.

The information flow properties can be handled 
at the language level, using typed hardware descrip-
tion languages (HDLs). An alternative approach is 
gate level IFT in which shadow state added to the 
hardware design tracks how data flows. Standard 
trace properties expressed over the shadow state 
can then evaluate how information is allowed to 
flow through the original design. This approach has 
the advantage that existing designs, written in cur-
rent industry standard HDLs, can be validated.

Symbolic execution
Software symbolic execution explores a program 

using symbolic inputs that represent the set of possi-
ble values in the domain of the function. The program 
executes symbolically and when a branch statement 
is reached, execution forks and explores both sub-
sequent paths. The symbolic exploration of a pro-
gram can be represented by a tree (Figure 3). Each 
path through the tree represents a path of execution 
through the code; each node represents a line of code 
in the program. The symbolic execution engine will 
determine whether any assertions fire in the course of 
exploration. The engine also generates concrete test 
vectors that will drive execution down a particular 
path. The test vectors come from solving the accumu-
lated path constraints on each path. Symbolic execu-
tion is often used for automatic exploit generation in 
software by searching the code base for buffer over-
flows, format string attacks, and memory corruption.

Applying symbolic execution to hardware designs 
for verification and testing has also been studied. 
STAR [7] is a functional input vector generation tool 
combining symbolic and concrete simulation for 
RTL designs over multiple time frames. It provides 
high-range statements and branch cover age. PATH-
SYMEX is a forward symbolic execution engine that 
takes in ANSI-C interpretation of the RTL code [8].

Coppelia overview
We design a tool, Coppelia, to provide an end-to-end 

solution for validating the security of processor designs. 
In Cop pelia, we develop a hardware-oriented back-
ward symbolic execution engine (BSEE) with a new 
cycle stitching method and fast validation technique, 
along with several optimizations for exploit generation.

Coppelia takes an HDL implementation of a hard-
ware design and a set of security-critical assertions as 
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inputs, searches for violations of the assertions, and, if 
it finds any, generates complete exploit programs as 
output. These security-critical assertions are developed 
either by manually studying the specification or by 
assertion mining techniques; and if violated, there are 
vulnerabilities in the design. Figure 1 shows the work-
flow of Coppelia. There are three main steps in Coppelia: 
1) preprocessing; 2) finding violations and building the 
triggers; and 3) adding the payloads. We describe the 
overview of each step in the following sections.

With the purpose of reproducing bug exploits, 
Coppelia focuses more on the sequential depth of 

the exploration with a backward symbolic execution 
scheme and Coppelia can be easily integrated to the 
current industrial verification flow at the design time 
by leveraging software verification methods.

Vulnerability example
Before we describe an overview of each step of Cop-

pelia, we first give an example of a vulnerability in the 
OR1200 processor. Listing 1 shows a security-critical 
bug (b20) from the OR1200 processor Bugzilla data-
base (Bugzilla #51). The code snippet is from the ALU 
module in the OR1200 processor. It shows the logic to 
determine whether operand a is less than operand b. 
The buggy implementation works fine in most cases, 
but it fails for the l.sfgtu (set flag greater than equal) 
instruction. According to the OpenRISC specification, 
the instruction l.sfgtu rA, rB compares the contents of 
general-purpose registers rA and rB as unsigned integers. 
If the value of the first register is greater than the value of 
the second register, the compare flag is set; otherwise, 
the compare flag is cleared. However, with this bug, if 
the highest-order bit in register rA is 1 the compare flag 
will not be set, even if rA is greater than rB. An attacker 
can exploit this bug to control which branch to execute. 
The security bug violates the security-critical assertion: 
the comparison flag should be set correctly.

An exploit program to such vulnerabilities typi-
cally include two parts: 1) a trigger and 2) a payload 
(Figure 2). We use the security-critical assertions to 
build the triggering part, i.e., make the compare flag 
unset in the supervisor register; and we append a 
program stub as the payload part, i.e., use a branch 
instruction to redirect the program control flow.

Preprocessing
To begin, Coppelia translates the RTL hardware 

design from an HDL implementation to C++. We use 
the Verilator tool [9] for this step and can translate 
designs written in Verilog or SystemVerilog, although 
the basic approach would apply to other HDLs as 
well. Translating the RTL design to C++ allows us 
to take advantage of KLEE [10], a mature symbolic 
execution engine, and use it as the foundation of 
Coppelia. After translation, Coppelia adds the secu-
rity-critical assertions to the generated testbench 
and compiles the newly translated design to LLVM 
bytecode using the Clang compiler. We assume that 
the input signals remain stable during a single exe-
cution of one clock cycle and will only change at 
clock cycle boundaries. Although this assumption 

Figure 1. Workflow of Coppelia. The process 
labeled BSEE is the BSEE.

Listing 1. Security bug from OR1200 processor 
Bugzilla.

Figure 2. Illustration of components of an exploit 
program.
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can potentially lead to missing corner cases which 
include input signals change between cycle bound-
aries, it ensures the circuit model converges and 
improves the efficiency for the code analysis.

Building a trigger
The goal of this step is to find a vulnerability, a pro-

cessor state in which a security-critical assertion is 
violated, and generate a sequence of inputs that take 
the system from the initial state to the vulnerable state.

Coppelia achieves these two goals uses symbolic 
execution. There are two challenges with applying 
symbolic execution to hardware designs. First, the 
symbolic execution of a hardware design represents 
an exploration of the design for a single clock cycle. 
However, hardware executes continuously, and secu-
rity vulnerabilities may only become apparent many 
clock cycles after the initial state. Second, security 
properties developed for hardware designs capture 
the semantics of particular signals and their connect-
ing logic. Finding violations of these properties is akin 
to finding a needle in a haystack.

We propose in Coppelia a strategy of backward 
symbolic execution. We start from a random state and 
symbolically execute the design searching for a path 
from the random state to the point of an assert state-
ment. We then sym bolically execute the design mul-
tiple times, cycle-by-cycle, backwardly, searching for a 
path from an assertion-violating state back to the initial 
state. Within each iteration, we run the symbolic exe-
cution forwardly. Figure 3 shows our back ward sym-
bolic execution strategy. The key insight of our work 
is that hardware is well suited to a backward search 
strategy for symbolic execution. The specificity of secu-
rity assertions in hardware designs makes them amena-
ble to such a targeted search strategy, and the lack of 
dynamically linked libraries, pointers, and complex 
computation makes the backward strategy possible.

Adding the payload
To better analyze and assess the security conse-

quences of a found bug, Coppelia moves beyond the 
mere triggering of the bug to the generation of com-
plete exploit programs that demonstrate a possible 
concrete attack.

We observe that although the triggers may dif-
fer, the same payload is often used across multiple 
exploits. Thus, we use similar stubs for similar exploit 
situations. Coppelia generates these program stubs 
according to the category of the security-critical 

properties being violated. We classified the security 
properties into five classes as in SCIFinder [11]: 1) 
control flow-related properties; 2) exception-related 
properties; 3) memory access-related properties; 4) 
properties to ensure execution of the correct and 
specified instructions; and 5) properties about cor-
rectly updating results.

Backward symbolic execution
We describe the workflow of our hardware-oriented 

BSEE (see Figure 4). In the following sections, we 
describe each step in detail.

Figure 3. Backward symbolic execution strategy: 
we search for a path from the last cycle to the 
first cycle (black arrows). Within each cycle, 
we symbolically execute the hardware design 
forwardly (green arrows).

Figure 4. Workflow of backward symbolic execution.
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One instruction generation
Rather than start at the processor’s initial state 

and search forward, Coppelia uses backward sym-
bolic execution to start at an error state and search 
backward. In the first iteration, the BSEE starts the 
search for a security property violation from an 
unconstrained processor state. It sets both the input 
and the internal signals to symbolic values and then 
explores the processor design until it reaches a state 
that violates the security property. If exploration com-
pletes and no assertion violation is found, Coppelia 
returns with a result of no violation found. Otherwise, 
the resulting exploration tree has a leaf node that 
represents the vulnerable state of the processor. Asso-
ciated with that leaf node is the path condition that 
describes the sufficient constraints on processor state 
and input signals such that the processor will move 
from the constrained state to the error state in a single 
clock cycle. In addition to the constraints, the engine 
returns a satisfying solution to the constraints over 
input signals. These concrete input values will form 
the last instruction in the trigger sequence.

In the next iteration, the engine again starts the 
search from an unconstrained processor state. This 
time the engine is looking for a state that satisfies the 
constraints returned in the prior iteration. If such a 
state is found, the engine returns a path condition 
and a satisfying solution to the constraints over the 
input signals. These concrete input values will form 
the penultimate instruction.

Iterations continue in this way, searching back-
ward through trees (searching forward within trees) 
until we reach the initial processor state. In the fol-
lowing sections, we discuss the heuristics and opti-
mizations we introduce to help the search converge 
toward an initial state.

Stateful signals
A naive implementation of hardware-oriented 

symbolic execution might make all variables of 
type reg symbolic because these internal signals 
can store state. However, the resulting exploration 
tree is too large. Using this set-up, we ran Coppelia 
for one clock cycle. After 24 h it had generated over 
1 million test cases—each is a different leaf node in 
the tree—but had not triggered any assertions.

We identify those signals that can be safely left 
concrete without affecting the completeness of the 
search. First, reg signals are used in one of two ways 
in a hardware design: as part of sequential logic in 

which case they store state from a previous clock 
cycle, or as part of combinational logic in which 
case their value depends only on input signals in the 
current clock cycle. Using static analysis, we identify 
those signals which depend entirely (albeit, possibly 
indirectly) on input signals and do not make those 
symbolic in each iteration of exploration. Second, 
not all reg signals are relevant for a particular secu-
rity property. Only those signals in the property’s 
cone of influence are made symbolic.

Fast validation
At the end of each successful iteration, the BSEE 

checks the following: are the constraints given in 
path condition satisfied by the initial state? If so, Cop-
pelia has found a successful trigger and moves on to 
the next phase, appending the payload.

If not, to steer the search toward the initial state, 
we introduce two rules to eliminate those interme-
diate states that are less likely to quickly lead back 
to the initial state. These rules form the fast valida-
tion step.

The first rule is to steer the search toward the 
reset state. Empirically, we found that if the number 
of variables whose values are different from the ini-
tial state is small, we are more likely to be able to 
backtrack to an initial state. We define the empirical 
distance between two states as a count of stateful 
registers whose valuations differ in the two states. 
At each iteration, we set a threshold. If the empir-
ical distance is above the threshold, we abort the 
current iteration. Otherwise, we continue with our 
backward search.

The second rule targets loops that are preventing 
backward progress toward the initial state. At each 
new iteration, the set of processor states may include 
states found in previous iterations, in which case the 
search may have entered a loop. Thus, we define a 
set to keep track of the states found in previous iter-
ations. In subsequent iterations, if the state is in this 
set, we continue the symbolic execution until we 
find a new state. Otherwise, we update the set with 
the current state.

Bound checking
As a final heuristic, Coppelia uses bounded 

checking to counter the fact that the sequence of 
trees may never converge toward the initial state. 
We set a bound for the exploit length. If the trace of 
inputs generated so far exceeds the bound, Coppelia 
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will exit with a message that it did not find an exploit 
within the bound.

Stitching cycles
If the length of the sequence is within the bound, 

we stitch the current clock cycle to the previous 
clock cycle and continue with the next iteration. The 
sequence of trees must be stitched together appro-
priately, making sure a leaf node of one tree cor-
rectly aligns with the root node of a tree previously 
generated.

Ideally, in order for the results of the current 
cycle and the previous cycle to align, we need to 
replace the values of internal signals in the node 
in the previous cycle with the path constraint 
obtained in the node in the current cycle. This 
ensures completeness—we will not miss a possible 
test case. However, the complexity of this method 
is similar to forward symbolic execution. The 
more cycles we symbolically execute, the longer 
the path constraints will be and the more compli-
cated the queries will be to the Satisfiability Mod-
ulo Theories (SMT) solver. In Coppelia, we adopt 
a light-weight approach. The insight is that while 
each clock cycle is explored symbolically, the 
individual cycles can be stitched together using 
only concrete values. This sacrifices completeness 
for speed: after each iteration, we find satisfying 
solutions to a subset of the internal signals and 
use these concrete values to partially define the 
state to search for in the next iteration. This will 
no doubt lead us to miss some possible violating 
paths. In practice, we can iterate, incrementally 
replacing concrete values with constrained sym-
bols if no assertion violations are found.

Feedback generation
If the engine finishes exploring all paths and no 

violations are found and this is not the first iteration 
(Figure 4), it means a violation was found in previ-
ous runs but the engine chose a wrong path, either 
because of the fast validation, the light-weight stitch-
ing, or because it stopped exploring after finding one 
violation. In this case, Coppelia will go back to the 
previous runs and continue the exploration. Coppelia 
generates feedback to the engine including which 
instruction causes the violation and what test cases 
have been explored. When rerunning that instruc-
tion generation, Coppelia only explores the specific 
instruction and skips the test cases already explored.

Evaluation
We evaluate Coppelia across multiple CPU 

designs to study its efficacy and its practicality. We 
collected 31 security-critical bugs of the OR1200 
processor from two prior articles: 1) SPECS [3] and 
2) SCIFinder [11]. We collected 35 security-critical 
assertions from SPECS [3], Security Checkers [6], 
and SCIFinder [11]. We translated 30 assertions 
for the Mor1kx processor and 26 assertions for the 
PULPino processor. The experiments are performed 
on a machine with Intel Xeon E5-2620 V3 12-core 
CPU (2.40 GHz, a dual-socket server) and 62 GB of 
available RAM.

Generating exploits for known bugs
To evaluate the efficacy of our tool against 

ground truth, we test whether it can find and gener-
ate exploits for the known bugs we collected. These 
security-critical bugs are implemented in the OR1200 
processor and we test Coppelia on the core of the 
processor. We run Coppelia by making both input 
signals and internal signals symbolic and executing 
backward toward the reset state.

Figure 5 summarizes the results. Coppelia fails 
to generate exploits for two cases. For one of them, 
we did not have an assertion; for the other one, it 
is a bug outside of the OR1200 core. In the remain-
ing 29 cases, Coppelia is able to automatically gen-
erate exploits to expose the known bug for all of 
them. Overall, the generated exploits are concise, 
frequently only one or two instructions (excluding 
the size of the stubs). We can also see that for bugs 
that involve multiple cycles, Coppelia can indeed 
generate a series of instructions to exercise these 
deep error states.

For each generated exploit, we verify its abil-
ity to expose a vulnerability by running it on an 
FPGA board (DE0Nano). Each exploit contains a 

Figure 5. Generating exploits of collected bugs.
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generated stub according to the type of security 
assertion triggered by the bug. Listing 2 shows the 
generated exploit for the vulnerability described 
in the “Vulnerability example” section. The total 
CPU time required for generating this exploit is 
9 min 40 s.

Comparison with model checking
A current standard for hardware verification 

is model checking. In this section, we compare 
Coppelia against the commercial hardware model 
checking tool, Cadence’s incisive formal veri-
fier (IFV), and against a research tool, enhanced 
bounded model checker (EBMC) [12]. We use 
each tool to look for the known bugs from the “Gen-
erating exploits for known bugs” section and com-
pare the results with Coppelia. We add the same 
constraints in both Cadence IFV and EBMC. The 
results are shown in Figure 1.

We found that Cadence fails to find or gen-
erate triggers for 11 bugs and EBMC fails for 13 
bugs. All of them are found by Coppelia. Among 
these bugs, eight of them are related to excep-
tion handling for managing privilege levels in 
the processor. Although we could not determine 
the exact reason why Cadence and EBMC fail to 
find these bugs, we note that the relevant prop-
erties for these bugs all include the condition 
(wb—insn = = syscall). However, both Cadence 
and EBMC can find bug b14, which also relies 
on that same condition.

The remaining three bugs are related to accessing 
register files. The OR1200 processor uses two dual-
port RAMs for implementing register files. These two 
RAMs are written and read at the same time so that 
the processor can read two registers within a single 

clock cycle. However, we find that (operand—b = = 
θ) is always true when running both model checking 
tools. This means data reading from ram—b is always 
0, which is incorrect. We suspect that Cadence and 
EBMC build an incorrect model for the two RAMs.

EBMC fails to find two additional bugs because it 
fails to parse assertions with deep hierarchies.

As a tool designed for assertion verification 
rather than exploit generation, Cadence IFV only 
generates intermediate results when a property is 
invalidated. By contrast, the complete trigger is 
generated in Coppelia. For example, there is one 
bug that allows users to assign nonzero values 
to the general-purpose register R0. Cadence gen-
erates the single instruction l.addi rθ, r1, θ. This 
instruction will only trigger the bug if r1 already 
holds a nonzero value, which is not the case for 
the reset state (r1 is set to 0 at reset). In the traces 
Cadence generates, a number of signals are not 
in the reset state. It is nontrivial for designers to 
set the processor to a particular state to trigger 
the assertion. We found that 12 exploits are not 
directly replayable from the reset state. For EBMC, 
we have similar results. Although EBMC returns 
multiple instructions, they are not always directly 
replayable from the reset state.

We currently remove the memory from the 
processor and only run these tools on the proces-
sor core. When adding the memory back, it took 
Cadence several hours to build the model. It is nec-
essary to rerun formal builds every time the verilog 
is changed so this would be a significant impedi-
ment to rapid development of bug fixes. Coppelia 
does not require long model building time but it 
fails to handle the memory because the queries to 
the solver are too long. We have not done optimiza-
tions for memory models but research on optimiz-
ing symbolic execution for arrays is ongoing and 
could be incorporated in the future.

Performance
For the 29 bugs for which Coppelia successfully 

generates exploits, 18 (62%) out of 29 of the exploits 
are generated within 15 min, demonstrating that 
Coppelia can be a practical quality control tool for 
hardware vendors. However, 2 (7%) of the exploits 
took over 2 h to be generated. We find two reasons 
for the longer time: 1) Coppelia takes longer to reach 
the target instruction either because making internal 
signals symbolic increases the symbolic execution 

Listing 2. Exploit program generated by 
Coppelia.
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states to explore or because the instruction is near 
the end of the queue of all instructions to explore 
and 2) the bug is deep in the pipeline (in the fourth 
or fifth stage) and increasing the pipeline stages can 
dramatically increase the number of symbolic exe-
cution states. If we run Coppelia for the target instruc-
tion [instead of all the instructions in the instruction 
set architecture (ISA)], the time for generating the 
exploits can be reduced to a few minutes.

Finding new bugs
In this section, we examine Coppelia’s efficacy 

in finding unknown bugs on new platforms and 
architectures. We run Coppelia on two new pro-
cessors: Mor1kx-Espresso and PULPino-RI5CY. The 
Mor1kx is the most recent implementation of the 
OR1k architecture. We evaluate our tool on the 
Espresso core which is a 32-bit implementation 
with two-stage integer pipeline and delay slot. The 
PULPino is an open-source single-core 32-bit low-
power processor based on the RISC-V architecture. 
We evaluate our tool on the RI5CY core, which is an 
in-order, RV32-ICM implementation with four-stage 
integer pipeline and digital signal processing (DSP) 
extensions. Table 1 shows the new security bugs 
and their exploits we found in Mor1kx-Espresso 
processor and PULPino-RI5CY processor.

Future work
Future work will target scalability and expressive-

ness. Scaling to larger and more complex processor 
designs will require new optimization approaches. 
Moving beyond assertions to hyperproperties, for 
example, would allow Coppelia to find property vio-
lations related to information flow.

We have presented Coppelia, an end-to-end tool 
for analyzing and contextualizing the security threats 
of hardware. Given a processor design and a set of 
security properties, Coppelia generates C programs 
with an inline assembly that exploits bugs within 
the design. Coppelia is able to generate exploits for 
29 known bugs on the OR1200 processor and dis-
covered and generated exploit programs for four 
unknown bugs across two different processors and 
architectures.� 
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