
22 2168-2356/21©2021 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Top Picks in Hardware and Embedded Security

Editor’s notes:
This article presents an end-to-end tool that, starting from a processor and
a set of security-critical invariants, automatically generates exploits to help
designers find security threats.

—Rosario Cammarota, Intel Labs
—Francesco Regazzoni, University of Amsterdam and

Università della Svizzera Italiana

 In recent years, we have seen reports of
exploitable vul nerabilities in major, commercially
available chips [1], [2]. A study of the advanced
micro devices (AMD) errata from 2007 to 2013 finds
that 28 of the 301 processor errata are security-crit-
ical [3]. The recent Spectre and Meltdown attacks,
and their variants [4], [5], further demonstrate the
severe consequences of flaws in hardware designs.
By using software-only attacks to exploit vulnerabil-
ities in off-the-shelf hardware products, an attacker
can gain control of the entire system, even if the sys-
tem is running only secure software.

The current state of the art for finding errors in
processor designs is to use formal static analysis or
simulation-based testing. However, neither method is
complete. We develop here a third option: software-style

End-to-End Automated
Exploit Generation for
Processor Security
Validation
Rui Zhang and Calvin Deutschbein
University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599 USA

Peng Huang
Johns Hopkins University, Baltimore, MD 21218 USA

symbolic execution for hardware designs.
It systematically explores paths in hard-
ware designs to uncover errors.

Uncovering a potential bug is only
the first step during a security valida
tion process. Hardware designers
must then assess the severity and
security implication of each found
bug. Our work takes an end-to-end

approach by automatically generating software
exploits to expose potential vulnerabilities. In
particular, for each found bug, the tool generates
a sequence of instructions that will trigger the bug
plus a program stub that carries an exploit pay-
load. The payload stub is generated based on the
violated security properties. Together, the trigger
and the payload stub form a complete exploit pro-
gram to demonstrate a possible, concrete attack.

Generating the exploits not only allows hard-
ware designers to uncover and reproduce vul-
nerabilities with concrete test cases but also
helps them contextualize, analyze and assess the
security implications of a potential vulnerability.
Furthermore, by using whether an exploit can be
generated as a criterion, hardware designers can
validate patches and refine assertions.

In this article, we present Coppelia, an end-to-end
exploit generation tool for use during the security valida-
tion of hardware designs. We evaluate Coppelia on three

Digital Object Identifier 10.1109/MDAT.2021.3063314
Date of publication: 3 March 2021; date of current version:
20 May 2021.

Cynthia Sturton
University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599 USA

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2021 at 17:20:57 UTC from IEEE Xplore. Restrictions apply.

23May/June 2021

reduced instruction set computer (RISC) processors of
different architectures. Coppelia is able to find and gen-
erate exploits for 29 of 31 known vulnerabilities in these
processors and finds four new vulnerabilities along with
exploits in these processors.

Hardware security validation

Validation approaches
Current practice in hardware security validation

at design-time often leverages assertion-based verifi-
cation (ABV) or information flow tracking (IFT).

ABV is the form of testing in which assertions added
to the design encode security critical properties. Once
assertions are added, simulation-based testing or for-
mal static analysis may then be used to search for vio-
lations of the assertions. In simulation-based testing,
test cases are used to find whether the assertions will
be triggered; but assertion violations that exist along
untested paths will not be discovered. In formal static
analysis, the design is unrolled some number of
cycles and the state space is methodically explored;
but the state space grows exponentially which limits
how far the design can be unrolled.

IFT uses dataflow tracking to track the flow of
untrusted network, file and user inputs through
memory. It requires tagging source variables with
the appropriate level (e.g., “high” or “low”) of infor-
mation, asserting the correct level is maintained for
sink variables, and deciding when to conditionally
disable the assert or under what circumstances to
allow declassification.

Security properties
The security properties for hardware security

validation are often written for use with a particular
verification method, and each method has an associ-
ated specification language in which the properties
can be expressed. The security proper ties and asser-
tions used in hardware security validation may be
manually or semiautomatically developed.

The security properties that have been developed
to date for ABV make use of existing industry stand-
ard libraries for expressing assertions [6] and are
written in a fragment of linear temporal logic that
includes the globally (G) and next (X) operators. The
properties expressible in the temporal logic are trace
properties: individual traces of execution either sat-
isfy or violate the given property. However, properties

about how information flows through the processor
are not immediately expressible as trace properties.

The information flow properties can be handled
at the language level, using typed hardware descrip-
tion languages (HDLs). An alternative approach is
gate level IFT in which shadow state added to the
hardware design tracks how data flows. Standard
trace properties expressed over the shadow state
can then evaluate how information is allowed to
flow through the original design. This approach has
the advantage that existing designs, written in cur-
rent industry standard HDLs, can be validated.

Symbolic execution
Software symbolic execution explores a program

using symbolic inputs that represent the set of possi-
ble values in the domain of the function. The program
executes symbolically and when a branch statement
is reached, execution forks and explores both sub-
sequent paths. The symbolic exploration of a pro-
gram can be represented by a tree (Figure 3). Each
path through the tree represents a path of execution
through the code; each node represents a line of code
in the program. The symbolic execution engine will
determine whether any assertions fire in the course of
exploration. The engine also generates concrete test
vectors that will drive execution down a particular
path. The test vectors come from solving the accumu-
lated path constraints on each path. Symbolic execu-
tion is often used for automatic exploit generation in
software by searching the code base for buffer over-
flows, format string attacks, and memory corruption.

Applying symbolic execution to hardware designs
for verification and testing has also been studied.
STAR [7] is a functional input vector generation tool
combining symbolic and concrete simulation for
RTL designs over multiple time frames. It provides
high-range statements and branch cover age. PATH-
SYMEX is a forward symbolic execution engine that
takes in ANSI-C interpretation of the RTL code [8].

Coppelia overview
We design a tool, Coppelia, to provide an end-to-end

solution for validating the security of processor designs.
In Cop pelia, we develop a hardware-oriented back-
ward symbolic execution engine (BSEE) with a new
cycle stitching method and fast validation technique,
along with several optimizations for exploit generation.

Coppelia takes an HDL implementation of a hard-
ware design and a set of security-critical assertions as

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2021 at 17:20:57 UTC from IEEE Xplore. Restrictions apply.

24 IEEE Design&Test

Top Picks in Hardware and Embedded Security

inputs, searches for violations of the assertions, and, if
it finds any, generates complete exploit programs as
output. These security-critical assertions are developed
either by manually studying the specification or by
assertion mining techniques; and if violated, there are
vulnerabilities in the design. Figure 1 shows the work-
flow of Coppelia. There are three main steps in Coppelia:
1) preprocessing; 2) finding violations and building the
triggers; and 3) adding the payloads. We describe the
overview of each step in the following sections.

With the purpose of reproducing bug exploits,
Coppelia focuses more on the sequential depth of

the exploration with a backward symbolic execution
scheme and Coppelia can be easily integrated to the
current industrial verification flow at the design time
by leveraging software verification methods.

Vulnerability example
Before we describe an overview of each step of Cop-

pelia, we first give an example of a vulnerability in the
OR1200 processor. Listing 1 shows a security-critical
bug (b20) from the OR1200 processor Bugzilla data-
base (Bugzilla #51). The code snippet is from the ALU
module in the OR1200 processor. It shows the logic to
determine whether operand a is less than operand b.
The buggy implementation works fine in most cases,
but it fails for the l.sfgtu (set flag greater than equal)
instruction. According to the OpenRISC specification,
the instruction l.sfgtu rA, rB compares the contents of
general-purpose registers rA and rB as unsigned integers.
If the value of the first register is greater than the value of
the second register, the compare flag is set; otherwise,
the compare flag is cleared. However, with this bug, if
the highest-order bit in register rA is 1 the compare flag
will not be set, even if rA is greater than rB. An attacker
can exploit this bug to control which branch to execute.
The security bug violates the security-critical assertion:
the comparison flag should be set correctly.

An exploit program to such vulnerabilities typi-
cally include two parts: 1) a trigger and 2) a payload
(Figure 2). We use the security-critical assertions to
build the triggering part, i.e., make the compare flag
unset in the supervisor register; and we append a
program stub as the payload part, i.e., use a branch
instruction to redirect the program control flow.

Preprocessing
To begin, Coppelia translates the RTL hardware

design from an HDL implementation to C++. We use
the Verilator tool [9] for this step and can translate
designs written in Verilog or SystemVerilog, although
the basic approach would apply to other HDLs as
well. Translating the RTL design to C++ allows us
to take advantage of KLEE [10], a mature symbolic
execution engine, and use it as the foundation of
Coppelia. After translation, Coppelia adds the secu-
rity-critical assertions to the generated testbench
and compiles the newly translated design to LLVM
bytecode using the Clang compiler. We assume that
the input signals remain stable during a single exe-
cution of one clock cycle and will only change at
clock cycle boundaries. Although this assumption

Figure 1. Workflow of Coppelia. The process
labeled BSEE is the BSEE.

Listing 1. Security bug from OR1200 processor
Bugzilla.

Figure 2. Illustration of components of an exploit
program.

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2021 at 17:20:57 UTC from IEEE Xplore. Restrictions apply.

25May/June 2021

can potentially lead to missing corner cases which
include input signals change between cycle bound-
aries, it ensures the circuit model converges and
improves the efficiency for the code analysis.

Building a trigger
The goal of this step is to find a vulnerability, a pro-

cessor state in which a security-critical assertion is
violated, and generate a sequence of inputs that take
the system from the initial state to the vulnerable state.

Coppelia achieves these two goals uses symbolic
execution. There are two challenges with applying
symbolic execution to hardware designs. First, the
symbolic execution of a hardware design represents
an exploration of the design for a single clock cycle.
However, hardware executes continuously, and secu-
rity vulnerabilities may only become apparent many
clock cycles after the initial state. Second, security
properties developed for hardware designs capture
the semantics of particular signals and their connect-
ing logic. Finding violations of these properties is akin
to finding a needle in a haystack.

We propose in Coppelia a strategy of backward
symbolic execution. We start from a random state and
symbolically execute the design searching for a path
from the random state to the point of an assert state-
ment. We then sym bolically execute the design mul-
tiple times, cycle-by-cycle, backwardly, searching for a
path from an assertion-violating state back to the initial
state. Within each iteration, we run the symbolic exe-
cution forwardly. Figure 3 shows our back ward sym-
bolic execution strategy. The key insight of our work
is that hardware is well suited to a backward search
strategy for symbolic execution. The specificity of secu-
rity assertions in hardware designs makes them amena-
ble to such a targeted search strategy, and the lack of
dynamically linked libraries, pointers, and complex
computation makes the backward strategy possible.

Adding the payload
To better analyze and assess the security conse-

quences of a found bug, Coppelia moves beyond the
mere triggering of the bug to the generation of com-
plete exploit programs that demonstrate a possible
concrete attack.

We observe that although the triggers may dif-
fer, the same payload is often used across multiple
exploits. Thus, we use similar stubs for similar exploit
situations. Coppelia generates these program stubs
according to the category of the security-critical

properties being violated. We classified the security
properties into five classes as in SCIFinder [11]: 1)
control flow-related properties; 2) exception-related
properties; 3) memory access-related properties; 4)
properties to ensure execution of the correct and
specified instructions; and 5) properties about cor-
rectly updating results.

Backward symbolic execution
We describe the workflow of our hardware-oriented

BSEE (see Figure 4). In the following sections, we
describe each step in detail.

Figure 3. Backward symbolic execution strategy:
we search for a path from the last cycle to the
first cycle (black arrows). Within each cycle,
we symbolically execute the hardware design
forwardly (green arrows).

Figure 4. Workflow of backward symbolic execution.

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2021 at 17:20:57 UTC from IEEE Xplore. Restrictions apply.

26 IEEE Design&Test

Top Picks in Hardware and Embedded Security

One instruction generation
Rather than start at the processor’s initial state

and search forward, Coppelia uses backward sym-
bolic execution to start at an error state and search
backward. In the first iteration, the BSEE starts the
search for a security property violation from an
unconstrained processor state. It sets both the input
and the internal signals to symbolic values and then
explores the processor design until it reaches a state
that violates the security property. If exploration com-
pletes and no assertion violation is found, Coppelia
returns with a result of no violation found. Otherwise,
the resulting exploration tree has a leaf node that
represents the vulnerable state of the processor. Asso-
ciated with that leaf node is the path condition that
describes the sufficient constraints on processor state
and input signals such that the processor will move
from the constrained state to the error state in a single
clock cycle. In addition to the constraints, the engine
returns a satisfying solution to the constraints over
input signals. These concrete input values will form
the last instruction in the trigger sequence.

In the next iteration, the engine again starts the
search from an unconstrained processor state. This
time the engine is looking for a state that satisfies the
constraints returned in the prior iteration. If such a
state is found, the engine returns a path condition
and a satisfying solution to the constraints over the
input signals. These concrete input values will form
the penultimate instruction.

Iterations continue in this way, searching back-
ward through trees (searching forward within trees)
until we reach the initial processor state. In the fol-
lowing sections, we discuss the heuristics and opti-
mizations we introduce to help the search converge
toward an initial state.

Stateful signals
A naive implementation of hardware-oriented

symbolic execution might make all variables of
type reg symbolic because these internal signals
can store state. However, the resulting exploration
tree is too large. Using this set-up, we ran Coppelia
for one clock cycle. After 24 h it had generated over
1 million test cases—each is a different leaf node in
the tree—but had not triggered any assertions.

We identify those signals that can be safely left
concrete without affecting the completeness of the
search. First, reg signals are used in one of two ways
in a hardware design: as part of sequential logic in

which case they store state from a previous clock
cycle, or as part of combinational logic in which
case their value depends only on input signals in the
current clock cycle. Using static analysis, we identify
those signals which depend entirely (albeit, possibly
indirectly) on input signals and do not make those
symbolic in each iteration of exploration. Second,
not all reg signals are relevant for a particular secu-
rity property. Only those signals in the property’s
cone of influence are made symbolic.

Fast validation
At the end of each successful iteration, the BSEE

checks the following: are the constraints given in
path condition satisfied by the initial state? If so, Cop-
pelia has found a successful trigger and moves on to
the next phase, appending the payload.

If not, to steer the search toward the initial state,
we introduce two rules to eliminate those interme-
diate states that are less likely to quickly lead back
to the initial state. These rules form the fast valida-
tion step.

The first rule is to steer the search toward the
reset state. Empirically, we found that if the number
of variables whose values are different from the ini-
tial state is small, we are more likely to be able to
backtrack to an initial state. We define the empirical
distance between two states as a count of stateful
registers whose valuations differ in the two states.
At each iteration, we set a threshold. If the empir-
ical distance is above the threshold, we abort the
current iteration. Otherwise, we continue with our
backward search.

The second rule targets loops that are preventing
backward progress toward the initial state. At each
new iteration, the set of processor states may include
states found in previous iterations, in which case the
search may have entered a loop. Thus, we define a
set to keep track of the states found in previous iter-
ations. In subsequent iterations, if the state is in this
set, we continue the symbolic execution until we
find a new state. Otherwise, we update the set with
the current state.

Bound checking
As a final heuristic, Coppelia uses bounded

checking to counter the fact that the sequence of
trees may never converge toward the initial state.
We set a bound for the exploit length. If the trace of
inputs generated so far exceeds the bound, Coppelia

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2021 at 17:20:57 UTC from IEEE Xplore. Restrictions apply.

27May/June 2021

will exit with a message that it did not find an exploit
within the bound.

Stitching cycles
If the length of the sequence is within the bound,

we stitch the current clock cycle to the previous
clock cycle and continue with the next iteration. The
sequence of trees must be stitched together appro-
priately, making sure a leaf node of one tree cor-
rectly aligns with the root node of a tree previously
generated.

Ideally, in order for the results of the current
cycle and the previous cycle to align, we need to
replace the values of internal signals in the node
in the previous cycle with the path constraint
obtained in the node in the current cycle. This
ensures completeness—we will not miss a possible
test case. However, the complexity of this method
is similar to forward symbolic execution. The
more cycles we symbolically execute, the longer
the path constraints will be and the more compli-
cated the queries will be to the Satisfiability Mod-
ulo Theories (SMT) solver. In Coppelia, we adopt
a light-weight approach. The insight is that while
each clock cycle is explored symbolically, the
individual cycles can be stitched together using
only concrete values. This sacrifices completeness
for speed: after each iteration, we find satisfying
solutions to a subset of the internal signals and
use these concrete values to partially define the
state to search for in the next iteration. This will
no doubt lead us to miss some possible violating
paths. In practice, we can iterate, incrementally
replacing concrete values with constrained sym-
bols if no assertion violations are found.

Feedback generation
If the engine finishes exploring all paths and no

violations are found and this is not the first iteration
(Figure 4), it means a violation was found in previ-
ous runs but the engine chose a wrong path, either
because of the fast validation, the light-weight stitch-
ing, or because it stopped exploring after finding one
violation. In this case, Coppelia will go back to the
previous runs and continue the exploration. Coppelia
generates feedback to the engine including which
instruction causes the violation and what test cases
have been explored. When rerunning that instruc-
tion generation, Coppelia only explores the specific
instruction and skips the test cases already explored.

Evaluation
We evaluate Coppelia across multiple CPU

designs to study its efficacy and its practicality. We
collected 31 security-critical bugs of the OR1200
processor from two prior articles: 1) SPECS [3] and
2) SCIFinder [11]. We collected 35 security-critical
assertions from SPECS [3], Security Checkers [6],
and SCIFinder [11]. We translated 30 assertions
for the Mor1kx processor and 26 assertions for the
PULPino processor. The experiments are performed
on a machine with Intel Xeon E5-2620 V3 12-core
CPU (2.40 GHz, a dual-socket server) and 62 GB of
available RAM.

Generating exploits for known bugs
To evaluate the efficacy of our tool against

ground truth, we test whether it can find and gener-
ate exploits for the known bugs we collected. These
security-critical bugs are implemented in the OR1200
processor and we test Coppelia on the core of the
processor. We run Coppelia by making both input
signals and internal signals symbolic and executing
backward toward the reset state.

Figure 5 summarizes the results. Coppelia fails
to generate exploits for two cases. For one of them,
we did not have an assertion; for the other one, it
is a bug outside of the OR1200 core. In the remain-
ing 29 cases, Coppelia is able to automatically gen-
erate exploits to expose the known bug for all of
them. Overall, the generated exploits are concise,
frequently only one or two instructions (excluding
the size of the stubs). We can also see that for bugs
that involve multiple cycles, Coppelia can indeed
generate a series of instructions to exercise these
deep error states.

For each generated exploit, we verify its abil-
ity to expose a vulnerability by running it on an
FPGA board (DE0Nano). Each exploit contains a

Figure 5. Generating exploits of collected bugs.

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2021 at 17:20:57 UTC from IEEE Xplore. Restrictions apply.

28 IEEE Design&Test

Top Picks in Hardware and Embedded Security

generated stub according to the type of security
assertion triggered by the bug. Listing 2 shows the
generated exploit for the vulnerability described
in the “Vulnerability example” section. The total
CPU time required for generating this exploit is
9 min 40 s.

Comparison with model checking
A current standard for hardware verification

is model checking. In this section, we compare
Coppelia against the commercial hardware model
checking tool, Cadence’s incisive formal veri-
fier (IFV), and against a research tool, enhanced
bounded model checker (EBMC) [12]. We use
each tool to look for the known bugs from the “Gen-
erating exploits for known bugs” section and com-
pare the results with Coppelia. We add the same
constraints in both Cadence IFV and EBMC. The
results are shown in Figure 1.

We found that Cadence fails to find or gen-
erate triggers for 11 bugs and EBMC fails for 13
bugs. All of them are found by Coppelia. Among
these bugs, eight of them are related to excep-
tion handling for managing privilege levels in
the processor. Although we could not determine
the exact reason why Cadence and EBMC fail to
find these bugs, we note that the relevant prop-
erties for these bugs all include the condition
(wb—insn = = syscall). However, both Cadence
and EBMC can find bug b14, which also relies
on that same condition.

The remaining three bugs are related to accessing
register files. The OR1200 processor uses two dual-
port RAMs for implementing register files. These two
RAMs are written and read at the same time so that
the processor can read two registers within a single

clock cycle. However, we find that (operand—b = =
θ) is always true when running both model checking
tools. This means data reading from ram—b is always
0, which is incorrect. We suspect that Cadence and
EBMC build an incorrect model for the two RAMs.

EBMC fails to find two additional bugs because it
fails to parse assertions with deep hierarchies.

As a tool designed for assertion verification
rather than exploit generation, Cadence IFV only
generates intermediate results when a property is
invalidated. By contrast, the complete trigger is
generated in Coppelia. For example, there is one
bug that allows users to assign nonzero values
to the general-purpose register R0. Cadence gen-
erates the single instruction l.addi rθ, r1, θ. This
instruction will only trigger the bug if r1 already
holds a nonzero value, which is not the case for
the reset state (r1 is set to 0 at reset). In the traces
Cadence generates, a number of signals are not
in the reset state. It is nontrivial for designers to
set the processor to a particular state to trigger
the assertion. We found that 12 exploits are not
directly replayable from the reset state. For EBMC,
we have similar results. Although EBMC returns
multiple instructions, they are not always directly
replayable from the reset state.

We currently remove the memory from the
processor and only run these tools on the proces-
sor core. When adding the memory back, it took
Cadence several hours to build the model. It is nec-
essary to rerun formal builds every time the verilog
is changed so this would be a significant impedi-
ment to rapid development of bug fixes. Coppelia
does not require long model building time but it
fails to handle the memory because the queries to
the solver are too long. We have not done optimiza-
tions for memory models but research on optimiz-
ing symbolic execution for arrays is ongoing and
could be incorporated in the future.

Performance
For the 29 bugs for which Coppelia successfully

generates exploits, 18 (62%) out of 29 of the exploits
are generated within 15 min, demonstrating that
Coppelia can be a practical quality control tool for
hardware vendors. However, 2 (7%) of the exploits
took over 2 h to be generated. We find two reasons
for the longer time: 1) Coppelia takes longer to reach
the target instruction either because making internal
signals symbolic increases the symbolic execution

Listing 2. Exploit program generated by
Coppelia.

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2021 at 17:20:57 UTC from IEEE Xplore. Restrictions apply.

29May/June 2021

states to explore or because the instruction is near
the end of the queue of all instructions to explore
and 2) the bug is deep in the pipeline (in the fourth
or fifth stage) and increasing the pipeline stages can
dramatically increase the number of symbolic exe-
cution states. If we run Coppelia for the target instruc-
tion [instead of all the instructions in the instruction
set architecture (ISA)], the time for generating the
exploits can be reduced to a few minutes.

Finding new bugs
In this section, we examine Coppelia’s efficacy

in finding unknown bugs on new platforms and
architectures. We run Coppelia on two new pro-
cessors: Mor1kx-Espresso and PULPino-RI5CY. The
Mor1kx is the most recent implementation of the
OR1k architecture. We evaluate our tool on the
Espresso core which is a 32-bit implementation
with two-stage integer pipeline and delay slot. The
PULPino is an open-source single-core 32-bit low-
power processor based on the RISC-V architecture.
We evaluate our tool on the RI5CY core, which is an
in-order, RV32-ICM implementation with four-stage
integer pipeline and digital signal processing (DSP)
extensions. Table 1 shows the new security bugs
and their exploits we found in Mor1kx-Espresso
processor and PULPino-RI5CY processor.

Future work
Future work will target scalability and expressive-

ness. Scaling to larger and more complex processor
designs will require new optimization approaches.
Moving beyond assertions to hyperproperties, for
example, would allow Coppelia to find property vio-
lations related to information flow.

We have presented Coppelia, an end-to-end tool
for analyzing and contextualizing the security threats
of hardware. Given a processor design and a set of
security properties, Coppelia generates C programs
with an inline assembly that exploits bugs within
the design. Coppelia is able to generate exploits for
29 known bugs on the OR1200 processor and dis-
covered and generated exploit programs for four
unknown bugs across two different processors and
architectures.� 

Acknowledgments
We thank the reviewers for their insightful com-

ments and suggestions. This work was supported

in part by the National Science Foundation under
Grant CNS-1651276 and Grant CNS-1816637, and in
part by a Google Faculty Research Award.

 References
	 [1]	 (Mar. 2016). AMD Processor Microcode Security

Update. [Online]. Available: https://lists.debian.org/

debian-security/2016/03/msg00084.html

	 [2]	 (Jun. 2017). Intel Skylake/Kaby Lake Processors:

Broken Hyper-Threading. [Online]. Available:

https://lists.debian.org/debian-devel/2017/06/

msg00308.html

	 [3]	 M. Hicks et al., “SPECS: A lightweight runtime

mechanism for protecting software from security-

critical processor bugs,” in Proc. 12th Int. Conf. Archit.

Support Program. Lang. Operating Syst., 2015,

pp. 517–529.

	 [4]	 M. Lipp et al., “Meltdown: Reading kernel memory

from user space,” in Proc. 27th USENIX Secur. Symp.

(USENIX Secur.), 2018, pp. 973–990.

	 [5]	 P. Kocher et al., “Spectre attacks: Exploiting

speculative execution,” in Proc. IEEE Symp. Secur.

Privacy (S&P), May 2019, pp. 1–9.

	 [6]	 M. Bilzor et al., “Security checkers: Detecting

processor malicious inclusions at runtime,” in Proc.

IEEE Int. Symp. Hardw.-Oriented Secur. Trust,

Jun. 2011, pp. 34–39.

	 [7]	 L. Liu and S. Vasudevan, “STAR: Generating input

vectors for design validation by static analysis of RTL,”

in Proc. IEEE Int. High Level Design Validation Test

Workshop, Nov. 2009, pp. 32–37.

	 [8]	 R. Mukherjee, D. Kroening, and T. Melham, “Hardware

verification using software analyzers,” in Proc. IEEE

Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2015,

pp. 7–12.

	 [9]	 Verilator. Accessed: 2021. [Online]. Available: https://

www.veripool.org/wiki/verilator

	[10]	 C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted

and automatic generation of high-coverage

 
Table 1. New security-critical bugs and exploits found in
Mor1kx-Espresso and PULPino-RI5CY processor.

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2021 at 17:20:57 UTC from IEEE Xplore. Restrictions apply.

https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator

30 IEEE Design&Test

Top Picks in Hardware and Embedded Security

 Direct questions and comments about this article
to Cynthia Sturton, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599 USA; csturton@
cs.unc.edu.

tests for complex systems programs,” in Proc.

USENIX Symp. Oper. Syst. Design Implement.

(OSDI), 2008, pp. 209–224. [Online]. Available: http://

klee.github.io/

	[11]	 R. Zhang et al., “Identifying security critical properties

for the dynamic verification of a processor,” in Proc.

22nd Int. Conf. Archit. Support Program. Lang.

Operating Syst., 2017, pp. 541–554.

	[12]	 D. Kroening and M. Purandare. EBMC: The Enhanced

Bounded Model Checker. Accessed: 2021. [Online].

Available: http://www.cprover.org/ebmc/

Rui Zhang is interested in developing tools and
systems for security validation of hardware designs.
Zhang has a PhD from the University of North Carolina
Chapel Hill, Chapel Hill, NC, USA.

Calvin Deutschbein is a doctoral student
at the University of North Carolina Chapel Hill,
Chapel Hill, NC, USA, studying specification mining,
hardware security, and assertion-based verification.
Deutschbein has an MS in computer science (2017).

Peng Huang is an Assistant Professor with
Johns Hopkins University, Baltimore, MD, USA. His
research focuses on the reliability and fault tolerance
of computer systems. Huang has a PhD from the
University of California San Diego, La Jolla, CA, USA.

Cynthia Sturton is an Associate Professor
with the University of North Carolina Chapel Hill,
Chapel Hill, NC, USA. Her research interests lie at
the intersection of hardware design, security, and
formal methods. Sturton has an MS and a PhD in
computer science from the University of California
Berkeley, Berkeley, CA, USA. She is a member of
IEEE and ACM.

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2021 at 17:20:57 UTC from IEEE Xplore. Restrictions apply.

