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Abstract—Android Application Framework is an integral and foundational part of the Android system. Each of the two billion (as of 2017)
Android devices relies on the system services of Android Framework to manage applications and system resources. Given its critical role,
a vulnerability in the framework can be exploited to launch large-scale cyber attacks and cause severe harms to user security and privacy.
Recently, many vulnerabilities in Android Framework were exposed, showing that it is indeed vulnerable and exploitable. While there is a
large body of studies on Android application analysis, research on Android Framework analysis is very limited. In particular, to our
knowledge, there is no prior work that investigates how to enable symbolic execution of the framework, an approach that has proven to be
very powerful for vulnerability discovery and exploit generation. We design and build the first system, CENTAUR, that enables symbolic
execution of Android Framework. Due to the middleware nature and technical peculiarities of the framework that impinge on the analysis,
many unique challenges arise and are addressed in CENTAUR. The system has been applied to discovering new vulnerability instances,
which can be exploited by recently uncovered attacks against the framework, and to generating PoC exploits.

Index Terms—Symbolic execution, concolic execution, vulnerability discovery, exploit generation, Android Framework.

F

1 INTRODUCTION

THE global smartphone market is booming and Android
dominates the market with a share of 87.6% [36]. As

of 2017, there were two billion active Android devices [45].
Each device relies on the Android Application Framework
(Android Framework, for short) to make it useful. E.g., all
the user interface designs and multi-tasking features would
not work without WMS (Window Manager Service) and
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This manuscript is an extension of the conference version published in
the Proceedings of the 15th ACM International Conference on Mobile Systems,
Applications, and Services (MobiSys’17) [44]. This manuscript presents a
more detailed description of the system design, implementation, and
evaluation. We extended CENTAUR to support symbolic execution of
multiple processes of Android Framework and evaluated the system.

AMS (Activity Manager Service) of Android Framework;
as another example, apps cannot obtain the GPS location
without LMS (Location Manager Service) of the framework.
Thus, Android Framework is an integral and foundational
part of the Android system; it runs on each Android device
for managing all applications and providing a generic abstrac-
tion for hardware access [29]. Recently, many vulnerabilities
in Android Framework were identified [17], [18], [19], [20]. A
vulnerability in the framework can lead to large-scale cyber
attacks and cause serious harms to user security and privacy;
e.g., malicious apps can exploit them to steal user passwords,
take pictures in the background, launch UI spoofing attacks,
and tamper with user data [54], [56], [57].

Despite the critical role of Android Framework and the
concern of vulnerabilities hidden in its multi-million lines
of code, most of the existing work has been focused on
analyzing Android applications [2], [11], [12], [13], [14], [24],
[25], [41], [42], [43], [48], [53], [62], [66], [67]. Very few systems
are available for analyzing Android Framework; they either
perform fuzzing [26] or simple static analysis, such as call
graph generation and its reachability analysis [3], [5], [6].

As a result, the insecurity analysis of the framework
has been largely imprecise and requires significant manual
effort [54], [56]. For example, Shao et al. [56] uncovered a
very interesting type of Android Framework vulnerabilities
that are due to inconsistent permission checking (detailed in
Section 8.3); however, due to the overwhelming amount of
manual effort needed to validate their findings, the process
of vulnerability discovery was tedious and error-prone;
moreover, the reported vulnerabilities were hard to verify
since no PoC exploits are generated. Plus, an increasing
number of vulnerabilities have been revealed [10], [17], [18],
[19], [20], [34], [57], [61], and many more yet discovered
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Fig. 1. The getProviders service interface method.

1 // Defined in the LocationManagerService class
2 List<String> getProviders(Criteria criteria,

boolean enabledOnly) {
3 int uid = Binder.getCallingUid();
4 int level = getAllowedResolutionLevel(uid);
5 ArrayList<String> out = new ArrayList<String>();
6 for (LocationProviderInterface p : mProviders) {
7 if(level >= p.requriedLevel) {
8 ...
9 out.add(p.name);

10 }
11 }
12 return out;
13 }
14 int getAllowedResolutionLevel(int uid) {
15 // Inside checkPermission(), the function

getUserIdLPr() is invoked
16 HashSet ps = mContext.checkPermission(uid);
17 if(ps.contains(ACCESS_FINE_LOCATION))
18 return 2;
19 else if (ps.contains(ACCESS_COARSE_LOCATION))
20 return 1;
21 else
22 return 0;
23 }
24

25 // Defined in the Settings class
26 static final int FIRST_APPLICATION_UID = 10000;
27 static final int PER_USER_RANGE = 100000;
28 ArrayList<Object> mUserIds;
29 Object getUserIdLPr(int uid) {
30 if (uid >= FIRST_APPLICATION_UID) {
31 uid %= PER_USER_RANGE;
32 int index = uid - FIRST_APPLICATION_UID;
33 return mUserIds.get(index);
34 }
35 }

from many custom system services and Google’s standard
ones. Thus, there is an urgent need for techniques and tools
for precise and automated insecurity analysis of Android
Framework. In particular, to our knowledge, there is no
tool that is able to analyze the framework through symbolic
execution, a precise and automated analysis approach that
has proven to be very powerful for vulnerability discovery
and exploit generation [4], [9], [28].

This work is to fill the gap, aiming to (1) study the unique
design features and technical peculiarities of the framework
that may impede symbolic execution analysis, (2) design
and build a system that enables symbolic execution of the
Android Framework, and (3) apply the system to precisely
and automatically finding zero-day vulnerability instances
and generating PoC exploits to validate the findings; such
exploits can also be fed into defense systems for automated
malware signature generation [4], [16].

While many symbolic execution systems have been
proposed for analyzing Windows programs [7], [27], [28], Unix
programs [4], [8], [9], and Android apps [1], [37], [46], [47],
[64], none has explored how to symbolically analyze such
complex middleware as Android Framework. Due to unique
characteristics of the framework, many new challenges arise.

Challenge 1. Unlike an independent program, Android
Framework is a large piece of middleware consisting of
many system services, atop which Android applications are
started and run. It is not surprising that Android Framework
has a complex initialization phase, which parses system

and application settings and then prepares all the system
services. Symbolic execution that starts from the main
entry of Android Framework, SystemServer.main, would
quickly cause state explosion and hence cannot reach deep
code paths. Meanwhile, Android Framework exports system
services to apps in the form of service interface methods (also
called entrypoint methods); e.g., in Android Framework 5.0,
there are 3,079 entrypoint methods exported. Our insight is
that, instead of analyzing Android Framework as a whole,
the capability of analyzing each entrypoint method separately is
the key to the scalability of the symbolic execution analysis.

Under-constrained symbolic execution can directly start
from an arbitrary function within a program [51]. However,
the context information, such as the type and value of
variables, for executing the target function is missing and
thus many problems may be caused. First, without the type
information, it is hard to precisely determine the dispatch
target of a virtual function call. For example, Figure 1 shows
the code for the service interface method getProviders,1

which returns the names of the GPS providers that the calling
app is allowed to access. Line 16 contains a virtual function
call to checkPermission through mContext, a reference
variable of the Context type; Context is an abstract
class extended by four classes, including ContextWrapper,
ContextImpl, BridgeContext, and MockContext, each
of which implements the function checkPermission and
is further inherited by other classes. Without the concrete
type information of the object pointed to by mContext, it is
hard to precisely determine the dispatch target of the call.
Such virtual function calls prevail in the framework code.
Consider a call s.iterator() as another example, where s
is a reference of the Set interface type; Set is implemented
by over 40 subclasses in Android Framework code, which
means that symbolic execution needs to try each possibility if
the type information of the object pointed to by s is missing,
causing many spurious paths to be explored.

Second, without the value information of variables, the
state explosion problem can be exacerbated. For example,
consider mProviders in Line 6 as an example, which is an
ArrayList that stores the currently installed GPS providers; if
the elements in the list are unknown, it is difficult to carry
out a loop that iterates through the list. One workaround is
to regard the list as a symbolic input and then handle it using
lazy initialization [39]; this way, however, the loop becomes
unbounded and elements of the list become symbolic, which
exacerbates the state explosion problem.

Therefore, while it increases the scalability of analysis by
directly starting symbolic execution from a system service
entrypoint method (i.e., API), how to deal with the situation of
the missing context information is a challenging problem (C1). To
resolve it, we employ an analysis scheme that bridges concrete
execution and symbolic execution, allowing analysis to start
from an arbitrary middleware API method (Section 3).

Challenge 2. Another uniqueness is the form of exploits. Existing
techniques typically generate PoC exploits as some simple
form of inputs of stand-alone executables, such as a com-
mand line argument, a format string, a network packet, etc.
In contrast, the exploit we consider here is a malicious app,

1. The code snippet has been modified slightly from the original to
ease the understanding.
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which comprises the app’s configuration (i.e., the manifest
file) and code that issues system service calls.

From the perspective of finding vulnerabilities exploitable
by a malicious app, any framework variables derived from
the malicious app are under the control of attackers, and thus
should be specified as symbolic inputs. However, Android
Framework contains a large number of data structures. Given
an app, the variables derived from it scatter in the form of
object fields and array elements in the many data structures.

In Figure 1, for example, mUserIds at Line 28 is an
ArrayList that stores the information of all the installed apps
with one element for each app. The object pointed to by ps
at Line 16 is an element of mUserIds (Line 33) derived from
the calling app and thus should be handled as a symbolic
input (as it is under the control of attackers), such that all the
branches in the function getAllowedResolutionLevel
can be explored by considering different values of the object.
How to automatically identify variables derived from the malicious
app, among the large number of data structures in the framework,
is an intriguing new problem as well as a challenge (C2).

Our intuition is that, as the framework stores information
for multiple clients (i.e., apps), there should exist certain
patterns used to access the client-specific information when
the framework services a client’s call. This intuition is verified
via our manual investigation. Based on the patterns how
client-specific variables are accessed upon a system service
call, a customized taint analysis approach, called slim tainting,
is designed to precisely and automatically pinpoint client-
specific variables (Section 4).

Challenge 3. A straightforward design is to place the
symbolic execution engine inside the Android system, such
that the analyzer can make use of the underlying system
conveniently (e.g., to invoke native libraries). However, the
Android system is designed for concrete execution, which
is very different from symbolic execution in terms of thread
management, garbage collection, object representation, in-
struction execution, etc. Thus, with the “inside-the-box”
design, the symbolic executor implementation has to take
care of the compatibility issues. This significantly complicates
the symbolic executor implementation. Moreover, whenever
the related Android components (e.g., the Android Runtime)
are changed, the implementation of symbolic executor has to
be updated and verified. To avoid the complicated implemen-
tation and endless maintenance, a decoupled architecture is
desired. However, how to design an architecture that can make
use of the Android execution environment without leading to a
complex coupled implementation is a challenge (C3).

To solve the challenge, an innovative component of the
system is designed to migrate information generated in
Android, such as the classes and objects, to the external
symbolic execution environment (Section 5).

We have overcome the challenges above and imple-
mented a system named CENTAUR for symbolic execution of
the bytecode of Android Framework (i.e., CENTAUR does not
need the source code of the framework to perform analysis),
and it is publicly available.2 We concretely demonstrate
how CENTAUR can be applied to vulnerability discovery.
In contrast to recent research that relies on laborious and

2. https://github.com/Android-Framework-Symbolic-Executor/
Centaur

error-prone manual work for finding framework vulner-
abilities [54], [56], we show that how it is automated
and guarantees zero-false positives. Finally, we make use of
CENTAUR to generate PoC exploits to validate the findings.
We make the following contributions.

• Many unique design features and technical internals
of the framework are studied and documented. We
have revealed how application-specific information is
retrieved (Section 4.3), categorized how calls among
system services are handled (Section 6), and explored
messaging and JNI calls (Section 7). As a result of the
efforts, we have established an in-depth knowledge base
that future analyses of the framework can leverage.

• Unlike previous symbolic execution techniques that
either start analysis from the main function or analyze a
non-main function without the context information, we
propose techniques that allow service interface methods
of middleware to be analyzed separately, for much
improved scalability, without harming the soundness of
the analysis results.

• A novel tainting analysis technique is proposed to
precisely identify the framework variables derived from
a given app. It is particularly suitable for vulnerability
discovery as it considers all possible values under the
control of a malicious app.

• An innovative architecture that builds the symbolic
executor out of the Android system is proposed. An
enabling algorithm that migrates the execution context
information from the Android system to the symbolic
executor is designed.

• We have implemented CENTAUR and demonstrated
its effectiveness and precision through applications of
vulnerability discovery and PoC exploit generation. To
our best knowledge, CENTAUR is the first system that
supports symbolic execution of Android Framework. It
exemplifies symbolic analysis of complex middleware, a
largely omitted but important research problem.

2 BACKGROUND

Android Framework. Android Framework provides a col-
lection of system services, which implements many fun-
damental functionalities, such as managing the life cycle
of all apps, organizing activities into tasks, and man-
aging app packages. Most of the system services run
as threads in the system_server process [29], while
some others run as threads in other processes, e.g.,
com.android.phone, com.android.keychain, and
com.android.inputmethod.latin, etc.

A system service exposes its service interface methods
invokable by apps, and a system service call is handled in the
form of a remote procedural call through the Binder IPC
mechanism, which dispatches the call to one of the threads
of the target system service. Android Framework is mainly
implemented in Java. For example, in Android Framework
5.0, there are 2.4 million lines of Java code and 880 thousand
lines of C/C++ code. Currently, CENTAUR can only perform
symbolic execution of the Java code.
Symbolic Execution. Symbolic execution provides a means
of efficiently exploring execution paths [40]. For example,
consider the function getAllowedResolutionLevel in

https://github.com/Android-Framework-Symbolic-Executor/Centaur
https://github.com/Android-Framework-Symbolic-Executor/Centaur
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Figure 1, by assigning a symbolic value to ps, symbolic
execution analysis can iterate every of the three paths and pre-
cisely provide the condition that the symbolic value should
satisfy for executing a given path; e.g., the symbolic execution
analysis can produce the path condition for reaching Line 18:
ps.contains(ACCESS_FINE_LOCATION).

Symbolic execution is particularly suitable for vulnera-
bility discovery. First, it performs an efficient and automatic
path exploration and ideally explores all possible paths, so
that it is able to discover as many vulnerability instances as
possible. Second, for each path explored, it records a path
condition, which is a symbolic expression describing the
condition that should be satisfied by the input values in
order that the path is taken. Consequently, by resolving the
path condition, one can obtain the concrete input values
that force the execution to follow the corresponding path;
the concrete input values can be used to construct exploits,
and can be fed into real program execution for verifying
the suspected vulnerability. This way, it guarantees zero
false-positives in vulnerability discovery.

One of the main challenges in applying symbolic ex-
ecution to large-sized programs is to cope with the path
explosion problem, as the number of distinct execution paths
is exponential in the number of branches that depend on
symbolic values. We mitigate the problem using multiple
ways, such as analyzing service interface methods separately
and precisely identifying variables as symbolic inputs.

3 OVERVIEW

3.1 Approach Overview

When a vulnerability is exploited, some security property
is violated. For example, a vulnerability is exploited if the
property that “some resource/service can only be accessed by
an app with proper permissions” is violated; a task-hijacking
attack succeeds when the security property that “the malicious
activity should not be placed onto the back stack hosting the victim
activity” is broken. In order to discover vulnerabilities that
can be exploited by a given type of attacks A that breaks
some security property P , we employ symbolic execution to
explore program paths. Specifically, first, the violation of P is
represented as a set of constraints C, called security-property
violation constraints, which is a quantifier-free first-order logic
formula in terms of Android Framework variables. Then,
during path exploration, C is added to each path condition,
wherever the variable scopes allow, before the path condition
is resolved. If the augmented path condition is resolvable,
a path that can be exploited by A is found. The resolved
variable values are used to construct PoC exploits.

3.2 System Overview

Our observation of Android Framework is that its execution
consists of the relatively stable initialization phase and the
ready-for-use phase; the initialization phase is fairly stable
when the system restarts, since the system boots mainly
according to the system configuration, which itself is stable.
Thus, to resolve the problem of the missing context informa-
tion (C1), we propose a phased concrete-to-symbolic execution
(PC2SE) for analyzing middleware software like Android
Framework; it runs the initialization phase as whole-system

Android 

system

RPC 

server JNI call handling

Symbolic execution engine

RPC 

client

Execution context 

query client

Symbolic 

inputs selector

Execution context 

query server

Fig. 2. Architecture of CENTAUR.

concrete execution and then performs symbolic execution
starting at one of the entrypoint methods under the execution
context provided by the concrete execution. It avoids the state
space explosion due to the complex initialization phase and
meanwhile provides the context for symbolic execution, such
that the type and value information of the input variables
(i.e., non-locally defined variables read during symbolic
execution) is available. Plus, the proper combination of
concrete and symbolic executions delivers analysis results
that are sensible and easy to interpret.

When starting the symbolic execution from an entrypoint
method, if only the parameters of the entrypoint method
are set as symbolic inputs [49], the path exploration will
be severely limited, leading to over-constrained symbolic
execution. In the framework, any variables derived from
the malicious app (such as its manifest file) are under the
control of attackers and can affect the execution of system
service calls; hence, these variables should be set as symbolic
inputs. To resolve C2 (i.e., identifying variables derived from
the malicious app as symbolic inputs), instead of tracking
how information is flowed from an app to the framework, we
investigate how the app-specific variables in the framework
are accessed, and propose slim tainting that recognizes such
accesses to identify those variables as symbolic inputs on the
fly during path exploration (Section 4). This way, the path
exploration considers all possible values of these variables.

To address C3 (i.e., to avoid complicated implementation
and endless maintenance due to the coupled design), we
propose a novel architecture that fits PC2SE, as shown
in Figure 2, where the symbolic execution engine is built
outside Android and makes use of the execution context
migrated from an Android system. As the symbolic execution
engine does not need to take care of the comparability
issues but is specialized for path exploration, its design
and implementation are largely simplified. Plus, since the
engine is decoupled from Android, it does not need to be
maintained when the Android system code is updated.

The whole-system concrete execution is performed in
the Android system. Between the Android system and the
symbolic execution engine is the execution context query
server, which migrates the context information from Android
to the symbolic execution engine. How to correctly interpret
the semantics of the bytes and bits in the heap captured at
Android and how to mitigate the information seamlessly
will be discussed in Section 5. Finally, an RPC server is
installed on the Android system, such that JNI calls during
path exploration are delegated to the RPC server, which will
be discussed in Section 7.

4 IDENTIFYING SYMBOLIC INPUTS

While phased concrete-to-symbolic execution (PC2SE) allows
analyzing each system service API separately, which signifi-
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cantly improves the analysis scalability, this strategy alone is
inadequate. Compared to standalone programs, a uniqueness
of Android Framework is that it contains not only variables
representing the statuses of the system services and the
underlying system, but also variables derived from the apps.
From the perspective of finding vulnerabilities exploitable
by a malicious app, (1) variables that are derived from
the malicious app are under control of attackers, and thus
should be specified as symbolic inputs, such that branches
depending on them are all explored during the analysis; and (2)
on the other hand, if variables that are not derived from the
malicious app are set as symbolic inputs, then spurious paths
will be explored, which will harm the scalability of symbolic
execution and cause the results to be difficult to interpret.

4.1 App-specific Variables
Our investigation on Android Framework reveals that there
are two distinct types of variables. The first type, called
non-app-specific variables, are allocated regardless of apps
in the system. Take the code in Listing 1 as an example.
The ArrayList LocationManagerService.mProviders
(Line 6) exists no matter what apps are running or installed.
It should not be regarded as a symbolic input, since it
is not under the control of the malicious app; otherwise,
symbolic execution of the loop at Line 6 will hurt the analysis
scalability, and also generate results difficult to interpret.

The second type, called app-specific variables, stores app-
specific information. For instance, mUserIds at Line 28 is
an ArrayList that stores the information of the installed
apps. with one element for each app. The object pointed
to by ps at Line 16 is an element of mUserIds (Line 33);
it is derived from the calling app and thus should be
handled as a symbolic input, such that all the branches in the
function getAllowedResolutionLevel will be explored
by considering different values of the object.

Unlike the Linux kernel, which stores most information of
a process in a centralized structure task_struct, the app-
specific information in Android is stored in many different
data structures organized by the system services. Given an
app, the framework variables derived from it scatter and
exist as objects fields and array elements among the many
data structures.

Therefore, the task of selecting variables as symbolic
inputs is not only to find data structures for storing app-
specific information but also to locate fields or elements
within the data structures that are derived from a given
malicious app. For instance, in addition to determining
mUserIds is an app-specific variable, we need to locate
which element in the array is derived from the malicious app.
Hence, the task is like looking for a needle in a large pile of
hay considering the many complex data structures.

4.2 Why not Use Traditional Tainting?
To determine which variables are derived from a given app, a
natural method is to use tainting to track how the information
flows from the app to the processes of Android Framework.
However, such information flow is very complex involving
multiple intricate steps, including app installation, system
boot, and starting the app. Given the complexity of these
steps and the huge amount of code involved, it is very

Fig. 3. Example of retrieving information from a hash-table-based variable
mPackages.

// Defined in the PackageManagerService class
HashMap<String, PackageParser.Package> mPackages;
int checkPermission(String perm, String pkgNm){
PackageParser.Package p = mPackages.get(pkgNm);
...

}

difficult, if not impossible, to precisely track the information
flow. Note that existing Android taint analysis systems, such
as TaintDroid [24], FlowDroid [2], and TaintART [58], target
Android applications; e.g., they are able to track whether
the return value (e.g., GPS locations) of a system service
call flows, according to the app code, to specific sinks (e.g.,
Internet), but none is able to track how the whole app-level
information propagates within Android Framework.

4.3 Access Patterns

Instead of proposing a even more complex taint analysis
technique to track the information flow, we resolve the
challenge from a novel angle by looking at how the app-
specific variables are accessed. As the framework stores
information for multiple apps, when a system service call
from an app is handled, we suspected there should exist
specific ways to retrieve the information for the calling app.
We thus first manually analyzed part of the framework
code (related to vulnerabilities in Table 3). During the
manual investigation, for the code used to retrieve the calling
app’s information, we summarized the access patterns. We
then verified whether the summarized access patterns kept
by checking the code for over twenty other system calls.
Moreover, we further verified the access patterns backward
starting from the locations when elements of various data
structure instances were retrieved. Our investigation shows
that app-specific variables are stored in two categories of
data structures, array-based ones (built-in arrays, ArrayList,
SparseArray, etc.) and hash-table-based ones (HashMap,
HashSet, etc.), and the two categories are accessed in two
characteristic ways, respectively.

First, given an array-based variable, the framework
retrieves an app’s information in the array using an index
that is a function of the app’s unique UID (an app’s UID is
assigned upon installation and not changed). Our investiga-
tion shows that two formulas are used to calculate the index.
One is (uid%100, 000− 10, 000), converting the user app’s
UID into an index to retrieve the element for the app from a
built-in array or ArrayList; the other one is (uid%100, 000),
which is used to calculate the index into a SparseArray.3 For
example, as shown in Figure 1, the function getUserIdLpr
(Line 29) utilizes the first formula to calculate the index into
the ArrayList Settings.mUserIds (Lines 31 and 1).

Second, for hash-table-based variables, no matter it is
hash table or a set, the package name (or the package name
concatenated with a component name) is used as the key
to access elements. Figure 3 shows an example of retrieving
information from a hash-table-based variable.

3. Two magic numbers appear in the formulas and are worth interpre-
tation. 10, 000 means FIRST_APPLICATION_UID (Line 26 in Figure 1),
indicating the smallest UID a user app can have, while 100, 000 means
PER_USER_RANGE (Line 27), indicating the largest UID plus one.
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TABLE 1
Taint Propagation Logic. Register variables are referenced by vX .
τ(y)← τ(x) means setting the taint tag of y to the taint tag of x.

Inst. / Operation Taint
Function Semantics Propagation
isub vB ← vA − C if C == 10,000, τ(vB)← τ(vA)
irem vB ← vA % C if C == 100, 000, τ(vB)← τ(vA)
concat vC ← vA.concat(vB) τ(vC)← τ(vA)

In short, while there are a large variety of data structures
in the framework, our manual investigation on the frame-
work code shows that they commonly follow the two fixed
access patterns to retrieve the app-specific information when
servicing a system service call. This is verified on Android
Framework versions from 4.0 to the latest version 9.0 that
we have investigated.

4.4 Slim Tainting
Based on the insight, we propose slim taint analysis that tracks
and recognizes the characteristic access patterns on the fly
during path exploration and, when app-specific information
is accessed, sets those variables as symbolic inputs.

Slim taint analysis consists of the following three parts.
(1) Taint sources: the return values of getCallingUID()
and getPackageName() are set as taint sources; they are
unique identifications of an app involved in the characteristic
access patterns. (2) Taint propagation: as shown in Table 1,
the taint propagation logic is very concise, involving only two
instructions and one string concatenation function, which are
used in the access patterns aforementioned. (3) Taint sinks:
the taint sinks include the get functions of the collection
data structures as well as bytecode instructions for loading
elements from built-in arrays, such as iaload (loads from
an array of integers) and aaload (loads from an array of
references); they check whether the index or key is tainted,
and if so, the target element is flagged as a symbolic input.
Example: Let us take the code in Listing 1 as an example
to illustrate how slim tainting works. First, the return value
of getCallingUID() (Line 3) is the taint source. Second,
the taint propagates along Lines 31 and 1 according to the
taint propagation logic in Table 1. Finally, at Line 33, the get
function works as a sink to set the element (and only this
element) accessed via the tainted index as a symbolic input.

Slim tainting comprises very specific taint sources and a
simple but precise taint propagation logic; it thus avoids the
overtainting and undertainting issues. Section 7 includes its
implementation details. It works through interception of the
function calls and bytecode instructions aforementioned, so
it does not need to change any code of Android Framework
and does not need code annotation.

5 EXECUTION CONTEXT MIGRATION

The PC2SE involves both concrete execution and symbolic
execution. As described in Section 3, it would be very difficult
to modify the Android system (or its emulator) to support
both concrete execution and symbolic execution. To enable
the decoupled architectural design, however, two challenging
tasks should be resolved: (a) how to mitigate the execution
context from the host system to the symbolic executor, and
(b) how to handle function calls (e.g., JNI calls) that are not
interpreted by symbolic execution. This section discusses the

TABLE 2
Bytecode instructions (and function) used for migrating heap information.

Instruction Stack Description[before]→[after]
getfield objRef→ value get a field value of an object
getstatic →value get a static field value of a class

aaload
arrayRef, index load onto the stack
→ value a reference from an array

initClass N/A invoked for class initialization

solution to the first task, and the solution to the second one
will be discussed in Section 7.

5.1 Execution Context
In the execution context, the program counter, the register file,
and the stack all obtain proper fresh content when symbolic
execution starts at the analyzer; only the heap in the execu-
tion context, which is a collection of classes and objects, needs
to be migrated. The heap memory image in the execution
context is called a snapshot for short. Three problems have
to be resolved for migrating the heap information captured
in a snapshot: (1) how to obtain the semantics of the bits
and bytes in a snapshot? (Section 5.2) (2) how to conduct the
migration during symbolic execution? (Section 5.3) and (3)
how to bootstrap the migration? (Section 5.4)

5.2 Snapshot Parsing and Context Query Server
A snapshot is nothing but an array of bits. However, it would
not work if we simply copy the array of bits to the symbolic
executor, because the ART process in Android and the JVM
instance for symbolic execution differ significantly in terms of
the low-level representation of classes and objects. E.g., in our
symbolic executor implementation, each object needs extra
space for recording the taint and the symbolic expression;
plus, its heap memory management is different from the one
used in Android. Our insight is that, given an object, both
ART and the JVM instance should agree on the number of
the contained fields, according to the class definition file, and
their values. Therefore, given an object, the migration is not
to copy its bits but to copy the values of all its fields.

Thus, the parser analyzes the snapshot to obtain all the
active objects (and classes) and, for each object (and class),
records the values of its fields. The information is organized
in a two-tier data structure: the first tier maps an object (or
class) address to a second-tier data structure instance, which
maps field names of an object (or class) or element indexes
of an array to their values.

After the snapshot is parsed and its information is stored,
the execution context query server (in Figure 2) is used to
service requests from the symbolic executor by returning
the information about objects, classes and arrays. Multiple
query interfaces are provided: given a reference value, the
type of the corresponding object can be queried; given a
reference value of an object and the name of one of its
fields, the field value can be queried. Snapshot parsing
and information query provide the foundation for heap
information migration.

5.3 On-the-fly Migration
Given an object in the concrete execution world, for fields
of primitive types we can simply copy the field values
after allocating the space from the symbolic executor for
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Algorithm 1 Migration of heap information.
1: function GETFIELD(index)
2: objRef = peekStackTop()
3: fdInfo = getFdInfo(index) . Class-specific info.
4: fd = getFd(objRef, fdInfo) . objRef -specific info.
5: if !fd.getSnapshotRefAttribute() then
6: return super.getfield(index)
7: end if
8: concRef = fd.getValue()
9: symRef = conc2Sym.get(concRef)

10: if symRef == NULL then
11: fdType = fdInfo.getFdType()
12: if fdType == strRef then
13: str = snapshot.getStr(concRef)
14: symRef = searchConstantPool(str);
15: if symRef == NULL then
16: symRef = newString(str);
17: end if
18: else if fdType == arrayRef then
19: entryType = fdType.getEntryType()
20: len = snapshot.getArrayLen(concRef)
21: symRef = newArray(entryType, len)
22: snapshot.copyEntries(symRef, concRef)
23: else . Other reference types
24: symRef = newObj(fdType)
25: snapshot.copyFields(symRef, concRef)
26: end if
27: conc2Sym.addPair(concRef, symRef)
28: end if
29: fd.setValue(symRef)
30: fd.setSnapshotRefAttribute(false)
31: return super.getfield(index)
32: end function
33:
34: function INITCLASS(classInfo)
35: if snapshot.isInitialized(classInfo) then
36: snapshot.copyStaticFields(classInfo)
37: else
38: super.initClass(classInfo)
39: handleBootstrapField(classInfo)
40: end if
41: end function

the object. But the handling of reference-type fields needs
more consideration. A deep copy is inefficient while a simple
shallow copy of the reference value will not work as the
reference value only indicates the object location in the
concrete execution world. We choose a variant of the simple
shallow copy: when an object is migrated, we still simply copy
all the field values, but for each reference-typed field, we set a
flag indicating it is a reference value in the concrete execution
world (a boolean attribute snapshotRef is associated with
each reference-typed field to indicate whether the filed value
is a location in the concrete or symbolic execution world);
later, when one of such reference-typed fields is used to
access its target object, the target object is either migrated, or
(if it has been migrated) the field value is updated with the
reference value in the symbolic execution world.

Therefore, a hash table, conc2Sym, is maintained to map
reference values in the concrete execution world to ones
in the symbolic execution world. Every time an object o is
migrated, a new pair 〈rc, rs〉 is added to conc2Sym, where rc
is the reference value of o in the concrete execution world and
rs symbolic. The hash table is maintained for two purposes.
First, it prevents duplicate migration of an object; that is, an

object pointed to by rc is migrated only if rc is not found
in the hash table. Second, the hash table is used to translate
reference values in the concrete execution world, if they exist
in the hash table, to ones in the symbolic execution world.4

Algorithm. We have designed an algorithm that migrates
classes and objects from the snapshot to the symbolic
executor. It runs by overriding the interpretation of specific in-
structions and function in the JVM for supporting migration.
Table 2 shows the list of bytecode instructions and function
whose interpretation is overridden; for each instruction, the
effect that the instruction has on the operand stack and the
description are included. (1) getfield and getstatic
are overridden in order that, whenever a reference-typed
field is accessed, if the object referenced by the field is not
migrated yet, the object gets migrated and the hash table
conc2Sym updated. (2) If a class has been initialized in
concrete execution and is used in the symbolic executor for
the first time, which automatically triggers the invocation of
initClass, that class is migrated. (3) aaload is overridden
to migrate multi-dimensional arrays. Algorithm 1 shows the
main migration procedures. It involves much complexity
due to the JVM specification, which is not familiar to many
readers, so it is interpreted in detail as follows.

5.3.1 Migrating Objects

A getfield instruction is used to access non-static fields of
an object. Given a reference objRef to an object (this object
must have been migrated; Section 5.4 explains how this is
ensured) on the stack (Line 2 in Algorithm 1) and the field
index (Line 1; the index value is part of the instruction), the
semantics of getfield is to pop objRef and push the field
value onto the stack. Assuming the field points to an object
that has not been migrated, we regard the access to the field
as a proper occasion to trigger the migration of the object.

If the field’s snapshotRef attribute is false (Line 5),
which means that either it is a primitive-typed field or it
has a reference value in the symbolic execution world, the
instruction’s interpretation is not changed (Line 6); i.e., the
filed value is simply pushed onto the stack. If snapshotRef
is true and the field value concRef is not found in
conc2Sym (Line 10), the object should be migrated (Lines 11–
26); after migration, the pair 〈concRef, symRef〉 is added
to conc2Sym (Line 27).

How to migrate an object is determined by its type
(Line 11). (Recall that, given the reference value, which is the
value of the field being accessed, the execution context query
server can locate and return the target object information,
i.e., its type and contained field values, from the concrete
execution world.) (1) If the object is a string, the algorithm
first searches for a string that has the same value within
the runtime constant pool in the VM for symbolic execution.
If not found, a new string with the same value is created
in the symbolic world (Lines 12–17). (2) If the object is an
array, an array is allocated and all the elements are copied
to the new array (Lines 18–22). This algorithm performs
a shallow copy. Thus, for a multi-dimensional array, e.g.,

4. The hash table conc2Sym is handled as part of the process state,
and gets stored and restored as the path exploration advances and
backtracks, respectively; this way, the migration status keeps consistent
during path exploration.
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Fig. 4. Example of a test driver.

1 public TestDriver() {
2 @fromSnapshot
3 private static com.android.server.

LocationManagerService mService;
4 public static void main() {
5 // The parameters are configured as symbolic

inputs, so their values do not matter
6 mService.getProviders(null, false);
7 }
8 }

A[5][10], only the five elements in the top-level array are
copied at this moment. Later, when any of the five elements
is accessed, the instruction aaload has to be invoked, which
is the reason the interpretation of aaload (not shown in
Algorithm 1) is also overridden, i.e., to migrate second-level
arrays. Due to the shallow copy, an array object is not copied
until a reference to the object is accessed. (3) A reference to
an ordinary object is handled by allocating a new object and
copying all its fields (Lines 23–25).

While non-static fields are accessed through getfield,
access to static fields is through getstatic. Thus, to migrate
objects pointed to by static fields, the interpretation of
getstatic has to be overridden, and the interpretation
is similar to that of getfield and is thus omitted.

5.3.2 Migrating Classes
When an operation (e.g., creating an object of a class, or
accessing a class’s static fields for the first time) triggers ini-
tialization of a class during symbolic execution, initClass
is invoked by the underlying VM for symbolic execution
automatically. For classes that have been initialized during
concrete execution, the symbolic executor has to make sure
that they are migrated instead of being initialized, consider-
ing that the static fields have obtained their values during
concrete execution. Thus, when initClass is invoked, the
symbolic executor first checks whether the class has been
initialized in the concrete execution world; if so, the enclosed
static fields in the class are copied from the snapshot to the
symbolic execution world (Line 36). In particular, when an
object of some class is created in the symbolic world for the
first time due to migration (Line 24), it triggers the invocation
of initClass first, which migrates the class.

5.4 Bootstrapping
An important invariant kept during migration is that, when-
ever a field of an object o (resp. an element of an array
A) is accessed, o (resp. A) must have been migrated to the
symbolic execution world. Assume f is the field whose access
triggers the migration of the first object; a natural question
is “where does f resides?”. We resolve this bootstrapping
problem by regarding the reference to the system service
class containing the entrypoint method under investigation
as the bootstrap field, and put it in the test driver class.
Figure 4 shows an example of a test driver. A custom
annotation fromSnapshot is used to specify the bootstrap
field, which is recognized and handled by the migration
algorithm; specifically, when a class (TestDriver in this
example) is initialized, it sets the bootstrap field value to
the reference value of the system service object (mService
at Line 3) in the concrete execution world (note that all the

system service classes adopt the singleton design pattern, so
there is no ambiguity when specifying the reference value).

5.4.1 Migration Tree

The migration of classes and objects forms a migration tree,
which grows as new classes and objects are migrated, rooted
at the class and object corresponding to the bootstrap field
type. We use the test driver in Figure 4 as an example to
illustrate how the migration tree is built.

getProviders in the LocationManagerService
class is the entrypoint method under investigation. When the
TestDriver class is initialized, the migration algorithm sets
the value of the bootstrap field to the reference to the Location
Manager service object in the snapshot; as a result, when
the bootstrap field is accessed, the service object is migrated
correctly. Figure 5 shows how the migration tree grows, due
to the execution of the code in Listing 4; here, the root node
is the class and object for LocationManagerService.

Part of the resulted migration tree is showed in Figure 6.
It also shows how the symbolic input is identified. Because
of slim tainting, the index 54 (in this example, the malicious
app’s UID is 10,054; 54 is due to the formula (uid%100, 000−
10, 000) presented in Section 4.3) is tainted; thus, the element
in the array mUserIds accessed through the tainted index is
identified as a symbolic input.

6 HANDLING SERVICE CALLS

Service calls are frequently used among system services.
Most system services of Android Framework run as
threads in the system_server process [29], but a few
run in other processes (e.g., com.android.keychain,
com.android.inputmethod.latin, etc.). Depending on
whether the caller service and the callee service are in the
same process, a service call is handled in two distinct ways.

6.1 Handling Intra-process Service Calls

When the caller service and the callee service are in the
same process, the service call is handled as an ordinary
function call. Fig. 7 shows an example, where the Location
Manager Service invokes getProfiles exposed by the User
Manager Service; both services belong to the system_server
process. The call at Line 4 invokes the function at Line 10,
which issues an intra-process service call at Line 11.

Note that UserManager.mService is a variable of the
IUserManager reference, and IUserManager is extended
by multiple classes (including the Proxy/Stub classes to be
introduced in Section 6.2 and the UserManagerService
class). Previous research relies on expert knowledge to
manually specify the dispatch target of the call at Line 11 to
facilitate their static analysis of the framework code [3], [11],
[56] (none performs symbolic execution), while CENTAUR
makes use of the runtime information provided by the execu-
tion context. Specifically, based on the heap snapshot of the
execution context, we can find that the object pointed to by
UserManager.mService is the UserManagerService
type, and thus the call is handled as an ordinary method call.
Thus, expert knowledge and manual effort are not needed.
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(1) Access to the bootstrap field 

TestDriver.mService first triggers the 

migration of the LocationManagerService 

class, which is performed in initClass().

(2) It also triggers the migration of the 

LocationManagerService object pointed, 

which is performed in getstatic().

(3) Access to the mService.mContext field triggers the 

migration of  the ContextImpl class, which is performed 

in initClass().

(4) Next, the object pointed to by mContext gets 

migrated; the migration is performed in getfield().
(5) Invocation of the static method getDefault() of the ActivityManagerNative class 

triggers the migration of this class; the migration is performed in initClass().

 mService 

<0x12D8F160, 1336>

LocationManagerService

<0x13068800, 1324>

 mService

<0x12D8F160, 1336>

LocationManagerService

<0x13068800, 1324>

ContextImpl

<0x6FCC52F0, 1355>

 mService

<0x12D8F160, 1336>

LocationManagerService

<0x13068800, 1324>

 mContext

<0x12D45480, 1361>

ContextImpl

<0x6FCC52F0, 1355>

ActivityManagerNative

<0x6FC89368, 1378>

 mService

<0x12D8F160, 1336>

LocationManagerService

<0x13068800, 1324>

 mContext

<0x12D45480, 1361>

ContextImpl

<0x6FCC52F0, 1355>

LocationManagerService

<0x13068800, 1324>

Fig. 5. An example of migrating the heap. Grey and white rectangles denote classes and objects, respectively. For each class and object, <conRef,
symRef> denotes the mapping between the reference value in the concrete execution world and that in the symbolic world, which is added to the
conc2Sym hash table. The migration of a class also triggers the migration of all its super classes, which are not shown for simplicity.

 mService

<0x12D8F160, 1336>

(LocationManagerService)

gDefault

<0x701FD898, 1382> 

(Singleton)

mInstance

<0x12C44800, 1384>

(ActivityManagerService)

sCallIdentity

<0x12D5A1D0, 1385>

(ThreadLocal)

ActivityManagerNative

<0x6FC89368, 1378>

AppGlobals

<0x6FCAA288, 1393>

ActivityManager

<0x6FC87140, 1390>

sPackageManager

<0x12D3D7A0, 1403>

(PackageManagerService)

ActivityThread

<0x6FCA2BB0, 1397>

mSettings

<0x12E91B80, 1410>

(Settings)

mUserIds

<0x12EA6580, 1415>

(ArrayList)

grantedPermissions

<0x12F079D0, 1422>

(HashSet)

backingMap

<0x12F28A30, 1429>

(HashMap)

array

<0x12D04000, 1416>

(Object[])

[54]

<0x12DEDD30, 1419>

(PackageSetting)

[0]

<0x12F2A540, 1432>

(HashMapEntry)

key

<0x70167D70, 1431>

(String)

next = 0

(HashMapEntry)

[0]

<0x12F67A10, 1452>

(PassiveProvider)

[1]

<0x12D3D8C0, 1460>

(GpsLocationProvider)

[2]

<0x1308B550, 1472>

(LocationProviderProxy)

array

<0x12F01AC0, 1449>

(Object[])

mProviders

<0x12E555A0, 1448>

(ArrayList)

PROPERTIES

<0x12F4EF70, 1456>

(ProviderProperties)

PROPERTIES

<0x12F4EFD0, 1464>

(ProviderProperties)

LocationManager

<0x1306D800, 1496>

PASSIVE_PROVIDER

<0x6FE6AE30, 1550>

(String)

GPS_PROVIDER

<0x6FC1FE90, 1551>

(String)

mContext

<0x12D45480, 1361>

(ContextImpl)

mProperties

<0x1315DCD0, 1477>

(ProviderProperties)

mName

<0x6FE62178, 1481>

(String)

getfield

getstatic

aaload

invokestatic

entryForNullKey = 0

(HashMapEntry)

table

<0x12F2A520, 1430>

(HashMapEntry[])

Criteria

<0x13069000, 1492>

Fig. 6. Part of a migration tree (with some classes omitted). Grey and white rectangles denote classes and objects, respectively. Rectangles with
diagonal stripes denote objects identified as symbolic inputs. Different arrows denote different instructions that have triggered the migration.

6.2 Handling Inter-process Service Calls
In the framework, when a system service invokes a method
of another running in a different process, the call is han-
dled via an inter-process communication mechanism called
Binder [23]. The system service interface is defined using
the Android Interface Definition Language (AIDL). From the
defined interface, the AIDL compiler automatically generates
Stub and Proxy classes that implement the interface-
specific Binder-based IPC protocol. A Stub is an abstract
class that implements the Binder interface and needs to
be extended by the actual service implementation, while a
Proxy is used by clients to invoke the service.

In order to perform an IPC service call, the client needs to
first invoke ServiceManager.getService(String) us-
ing a unique string associated with the requested system ser-
vice to obtain the Proxy of the service. For example, if a client
wants to call the Telecom Service, it needs to first invoke
ServiceManager.getService(TELECOM_SERVICE) to
obtain the Proxy of the Telecom Service (Line 23 in Figure 8),
and then perform the service call through this Proxy object
(Line 24). After that, the Binder marshalls parameters of

the service call, passes the data across process boundaries,
and finally reassembles the objects in the remote process, one
thread of which (the Telecom Service thread in this example)
then executes the corresponding service method.

The functionality of Binder is mainly implemented in na-
tive libraries and the kernel, which cannot be interpreted by
CENTAUR. To enable symbolic execution of such inter-process
service calls, we have designed an automated solution that
fits our decoupled design and migration algorithm. First,
from the heap snapshots of all the processes of the frame-
work, we build a database containing the type and value
information of all active objects and classes (Section 5.2).

Second, we take advantage of the fact that Android uses
AIDL to generate Stub/Proxy for all IPCs. By parsing the
AIDL files, we can get the list of Stub/Proxy class pairs.
Next, through a simple class hierarchy analysis, we can
determine the mapping between each Stub type and the
system service class that has extended the Stub. Based on
the list and the mappings, we automatically build a hash
table containing the mapping between each Proxy type and
the name of the corresponding service class (which extends
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Fig. 7. An intra-process service call example.

1 public class LocationManagerService {
2 private UserManager mUserManager;
3 void updateUserProfiles(int id) {
4 List<UserInfo> p = mUserManager.getProfiles(id);
5 ...
6 }
7 }
8 public class UserManager {
9 private final IUserManager mService;

10 public List<UserInfo> getProfiles(int uHandle) {
11 return mService.getProfiles(uHandle, false);
12 }
13 }

Fig. 8. An inter -process service call example.

14 class TelecomAccountRegistry {
15 private TelecomManager mTelecomManager;
16 void cleanupPhoneAccounts() {
17 hd = mTelecomManager.getAllPhoneAccountHandles();
18 ...
19 }
20 }
21 public class TelecomManager {
22 List<PhoneAccountHandle> getAllPhoneAccountHandles

() {
23 ITelecomService mService = ITelecomService.Stub.

asInterface(ServiceManager.getService(Context.
TELECOM_SERVICE));

24 return mService.getAllPhoneAccountHandles();
25 }
26 }

the Stub generated together with the Proxy type).
Third, during the symbolic execution analysis, CENTAUR

intercepts all the function calls I*.Stub.asInterface().
Using the Proxy type of the parameter of asInterface(),
it queries the hash table to obtain the corresponding system
service class name. Based on the system service type name,
CENTAUR searches in the migration database to locate
the snapshot that contains the system service and obtain
the reference value of the system service object. (Note
that to correctly distinguish references values of different
snapshots, each reference value is extended into the form
of pid:reference_value, where pid refers to the ID of
the process from which the snapshot is captured.) After that,
mService is assigned with the obtained reference value
and its snapshotRef attribute is set to true. Finally, when
mService is accessed, the corresponding system service
object is migrated from the concrete world to the symbolic
execution world, such that, the target service method can be
analyzed under a correct execution context.

Example. Figure 8 shows an inter-process system
service call example, where the Telecom Account
Registry (running in the com.android.phone
process) invokes getAllPhoneAccountHandles()
exposed by the Telecom Service (running in the
com.android.server.telecom process). The call at
Line 17 invokes the function at Line 22, which first obtains
the Proxy object (Line 23) and then issues an inter-process
service call through the proxy at Line 24. Our system
intercepts the asInterface call to return the reference
value that points to the Telecom Service object. When
mService is accessed (Line 24), the system service object is
migrated and the service call can be symbolically executed.

A small number of system services do not use AIDL
to generate their Stub/Proxy classes; instead, manually
implemented custom classes are provided. One example is
the ActivityManagerService (AMS), whose interface is
also called from the native code; thus, a manual implemen-
tation of its Stub/Proxy is provided. We then can add the
mapping between the Proxy and the corresponding system
service class name into the hash table aforementioned.

Through this, the intricate Binder mechanism that can-
not be analyzed by the symbolic executor can be successfully
handled without losing the execution context information.

7 OTHER IMPLEMENTATION DETAILS

7.1 Background on SPF
We built the symbolic executor based on Symbolic PathFinder
(SPF) [50], a symbolic execution framework on top of Java
PathFinder (JPF) [60]. SPF can be understood as a non-
standard Java bytecode interpreter, which enforces path
exploration when interpreting the code.

SPF can be extended by overriding methods that are used
to interpret bytecode instructions. It also supports the inter-
ception of arbitrary function calls for customized handling
during the analysis. Specifically, JPF provides a mechanism
called Model Java Interface (MJI) that intercepts method
invocations for custom handling. CENTAUR makes use of
MJI to intercept certain method calls (e.g., getCallingUid,
getPackageName, and the get functions of various col-
lection data structures), and redirects them to our custom
implementation of these functions. Finally, attributes can be
added to associate with each of the class/object fields on the
heap and variables on the stack to record and track states of
interest, such as taints and symbolic expressions.

We added 7, 419 lines of code for implementing CENTAUR
through extending SPF. Significant effort has been saved by
building upon SPF, thanks to the decoupled design.

7.2 Classpath
The Java source code in Android is compiled into .jar files,
which comprise standard .class files. The classpath below
shows the classes analyzed by the symbolic executor.

classpath=test_driver_dir;\
services_intermediates/classes-full-debug.jar;\
framework_intermeidates/classes-full-debug.jar;\
core-libart_intermediates/classes-full-debug.jar

The first line specifies the directory containing the test
driver, the next two lines specify the Android Framework
code, and the last line the core libraries of ART.

7.3 Slim Tainting
Slim tainting (Section 4.4) is built into the symbolic executor
by modifying the interpretation of instructions, such as isub
(subtraction), irem (modular), and *aload, and intercept-
ing functions, such as getPackageName, getCallingUID,
String.concat (string concatenation), and various get
functions of collection data structures. For each field, array
element, and call-stack variable, CENTAUR adds one attribute
indicating the taint and another indicating the symbolic
input property. Through interception of function calls and
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adding field attributes, our implementation does not need to
modify or annotate the framework code, which means that
no maintenance efforts are needed when new versions of
Android are released.

7.4 Capturing and Parsing Snapshots
After a heap memory snapshot of an Android Framework
process is captured (using the dumpheap utility), it is first
converted to a standard .hprof file using the hprof-conv
utility in the Android SDK. Next, the .hprof file is parsed
to extract the list of classes and objects stored using a hprof
file parser [33]. The extracted information is then organized
into the memory space of the execution context query server.

7.5 Dealing with Messaging
Two messaging mechanisms that are frequently used
by system services are Message Handlers and State
Machines. A Message Handler is associated with a
thread’s message queue, and is used to send messages to
the message queue and handle them as messages come
out of the queue [32]. Message Handlers are implemented
through Binder, so they cannot be interpreted by our
symbolic executor directly. To deal with them, we propose
to replace the call to sendMessage(message) with a call
to the destination handler’s handleMessage(message).
Our symbolic executor interposes the invokevirtual
instruction and enforces the replacement on the fly.

A State Machine can also be used to send and process
messages. It allows processing of messages depending on the
current state of the associated model. A State Machine sends
a message by invoking sendMessage, while the current
state’s processMessage is invoked when a message is
processed. Thus, it is critical to identify the current state.
The State Machine object contains a field that points to the
mSmHandler object, two fields of which, mStateStack and
mStateStackTopIndex, are used to find the current state
(= mStateStack[mStateStackTopIndex].state). To
handle State Machines, our symbolic executor replaces the
call to mSmHandler.sendMessage(message) with a call
to the current state’s processMessage(message). This
way, we connect the senders and receivers for messages sent
through State Machines.

7.6 Handling JNI Calls
The framework invokes native code through the Java Native
Interface (JNI) mechanism. Multiple ways are adopted to
handle JNI calls during symbolic execution. (1) Methods
that return the calling UID (getCallingUid) and the
package name (getPackageName) of the client app are
modeled to return the corresponding information of the
malicious app. Their return values are set as taint sources
(Section 4.4). (2) The return values of other native methods
that return app-specific information of the malicious app are
specified as symbolic inputs; e.g., native methods declared
in the package android.content.res return app-specific
information. (3) Other calls to native methods are delegated
back to Android through remote procedure calls (RPCs).
The RPC client in the symbolic executor is built similar
to jpf-nhandler [55]. While jpf-nhandler delegates

native calls to a host JVM, ours delegates them to an app
running as an RPC server in a remote Android system
(Figure 2), which issues native calls using reflection on
demand. The GSON library [31] is used for marshalling and
unmarshalling method parameters and return values, which
are transmitted between the RPC server and client via socket.

8 EVALUATION

8.1 Experiment Overview
We first compare CENTAUR against under-constrained sym-
bolic execution (UCSE) in Section 8.2. Both can start symbolic
execution from system interface methods to reach the code
deep in a program, but CENTAUR makes use of the execution
context provided by concrete execution. We should also
compare CENTAUR against symbolic execution that starts
directly from the main entry of Android Framework (i.e.,
SystemServer.main), but note that our symbolic executor
runs outside Android, and it is unlikely to initialize the
framework outside the Android environment, since the
initialization phase of the framework heavily relies on the
Android environment, such as the file systems and other
supporting processes. Concolic execution also makes use of
concrete execution to assist symbolic execution. Specifically,
it uses some input to run a program in order to collect
the symbolic constraints along the concrete execution and
then negates the constraints to explore other paths. Ideally,
we should also compare CENTAUR with concolic execution.
However, we are not aware of any tools that support concolic
execution of Android Framework. Enormous effort would
be required to enable it, as the concolic execution tool has to
be able to track the very complex framework initialization
phase to precisely collect the symbolic constraints. We thus
compare CENTAUR with UCSE only.

Second, CENTAUR provides strong support for vulnerabil-
ity discovery and exploit generation. To demonstrate this, we
investigate two distinct types of recently uncovered attacks
that exploit Android Framework vulnerabilities and show
the results in Sections 8.3 and 8.4.

Finally, the reliability of the approach is investigated.
We present exploit generation experiments based on heap
memory snapshots captured at different times, and analyze
the consistency of the results in Section 8.5.

The experiments were performed on a machine with an
Intel Core i7 4.0Ghz Quad Core processor and 32GB RAM
running the Linux kernel 3.13. Exploits were verified on
different versions of Android systems from 4.0 to 9.0.

8.2 Comparison with Under-constrained Symbolic Exe-
cution (UCSE)
The first issue of applying UCSE to Android Framework
is that virtual function calls are frequently used in the
framework code, but the runtime types of the receiver objects
are unknown. UCSE constructs the receiver objects based
on the type hierarchy or manual specifications, which either
explores spurious paths or requires much manual effort.

The second issues is that input variables which are treated
as concrete inputs in CENTAUR are treated as symbolic inputs
in UCSE. E.g., LocationManagerService.mProviders
in Figure 1 is an ArrayList instance that stores the geographi-
cal location providers. It is a non-app-specific variable, and
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is treated as a concrete input in CENTAUR by migrating
its value from the heap snapshot. But UCSE treats such
variables as symbolic inputs and handles them using lazy
initialization, which causes the following problems: (1) loops
that iterate through collection data structures are unbounded,
and (2) the generated concrete values of such variables may
be unrealistic and difficult to interpret.

We tried to perform UCSE of Android Framework using
Symbolic PathFinder, which kept crashing when it was ap-
plied directly. We spent a lot of time and effort modifying
the framework code (e.g., adding the type information
about objects pointed to by references to assist dynamic
dispatching) to make UCSE possible. We thus only modified
the code with respect to the getProviders API and
startActivityUncheckedLocked API (related to task
hijacking attacks described in Section 8.4). UCSE spent 138m
when analyzing getProviders and ran out of memory
in the case of startActivityUncheckedLocked, while
CENTAUR finished them within 26s and 42m37s, respectively.

Thus, path exploration without precise information of the
execution context causes many problems. CENTAUR resolves
the problems by migrating the execution context from the
concrete execution world to the symbolic execution world.

8.3 Investigating Inconsistent Security Policy Enforce-
ment (ISPE)
8.3.1 Background
Android Framework utilizes a permission-based security
model, which provides controlled access to various system
resources. However, a sensitive operation may be reached
from different paths, which may enforce security checks
inconsistently. As a result, an attacker with insufficient
privilege may perform sensitive operations by taking paths
that lack security checks. Recently, static analysis combined
with manual code inspection has been applied to finding
such inconsistent security enforcement cases in Android
Framework [56]. The system, called Kratos, first builds a call
graph based on the framework code. With the call graph, it
finds all the paths that can reach sensitive operations, and
then compares these paths to identify paths that reach the
same sensitive operation with inconsistent security checks
enforced, and reports them as suspect ISPE vulnerabilities.

8.3.2 Combined Approach for Bug Finding
While static analysis is very scalable, it is well known that the
analysis results may be imprecise. In the case of finding ISPE
bugs, static analysis based on the reachability analysis may
report false positives, as some paths are infeasible in real
executions. Currently, manual effort is used to scrutinize the
code, which is laborious and tedious; moreover, it is difficult
to verify the correctness of the manual inspection results.

We propose to combine static analysis and symbolic
execution to find ISPE bugs. For each suspect vulnerability
reported by static analysis, CENTAUR (1) finds all feasible
paths that reach the sensitive operation, (2) gives permissions
needed for each feasible path (the needed permissions are
included in each path condition), (3) verifies permission
consistency among the feasible paths, and (4) generates
inputs that exercise the feasible paths to verify suspect
vulnerabilities. All the steps are performed automatically,

in contrast with the previous work that relies on tedious and
error-prone manual inspection. Plus, zero false positives are
guaranteed as all suspect vulnerabilities are validated.

Skeleton App. We use a skeleton app to act as the malicious
app; it contains all the aspects of a regular app, including the
manifest file, activities, and services, but does not implement
specific functionalities. Specifically, the skeleton app borrows
the manifest file from the Android developer website, which
has “every element that it can contain” [30]. In practice, the
analyst can instead choose any app as the malicious app.

Result Summary. Table 3 summarizes the experiment results
for Android Framework 5.0 (the vulnerability shown in
the last row is discussed in Section 8.4). We also examined
each vulnerability on Android Framework 9.0; due to space
limit, we omit the table showing the results. In Android
Framework 9.0, all the vulnerabilities, except the third one,
still exist. Android 9.0 has fixed the third vulnerability: the
same permission, MODIFY_PHONE_STATE, is required by
the two entrypoints. For each vulnerability, the table lists
the vulnerability description, entrypoint(s), the min/max
number of migrated classes among different paths, the
min/max number of migrated objects among different paths,
the number of sets of concrete values generated (“—” means
it can be exploited unconditionally; note that we generate
one set of concrete values for each unique path explored),
the number of sets that can be used to generate exploits, the
symbolic execution time, and the code coverage.

Given an entrypoint method, there may be multiple paths
that can reach the sensitive operation, and the classes and
objects involved in the paths may vary, as illustrated by
the min/max number of migrated classes and objects. Note
that when migrating a class, all its super classes are also
migrated, which is the reason the number of migrated classes
is larger than that of objects. For most cases, the symbolic
execution of an entrypoint method is finished within less
one minute. Note that in some cases we have a relatively
low code coverage, e.g., in WSI.addOrUpdateNetwork(); it
is mainly because branches that rely on non-app-specific
variables are not explored, as we consider those variables
as concrete inputs. We are only interested in branches that
can be affected by the variables derived from the malicious
app. We regard this (i.e., lower code coverage due to only
exploring branches depending on app-specific variables) as
an advantage for improving the analysis scalability and
speed, but also discuss its limitation in Section 10.

New Findings. It is notable that some of our results are
inconsistent with those of Kratos. First, for the fifth vulner-
ability in Table 3, Kratos reports that it does not exist in
Android Framework 5.0, while CENTAUR shows that it still
exist in the version 5.0 and 9.0 (i.e., different permissions are
required by the two system interface methods for reaching
the sensitive resource) and the result is verified by the
log. Second, for the sixth vulnerability in Table 3, Kratos
reports only one permission CONNECTIVITY_INTERNAL
for invoking NsdService.setEnabled, while CENTAUR
reports two permissions, CONNECTIVITY_INTERNAL and
WRITE_SETTINGS. The more thorough and accurate results
demonstrate the advantages of the hybrid approach.
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TABLE 3
List of vulnerabilities and analysis statistics. (LMS, TSI, PIM, WMS, AMS, WSI, NS, and ASS represent LocationManagerService,

TelecomServiceImpl, PhoneInterfaceManager, WindowManagerService, ActivityManagerService, WifiServiceImpl, NsdService, and
ActivityStackSupervisor, respectively.)

No. Vulnerability Entrypoint(s)
# of # of # of # of Analysis Code

description migrated classes migrated objects all legal time coverage (%)min max min max sets sets

1
Access LMS.getAllProviders() 55 55 4 4 — — 19s 92.3installed providers LMS.getProviders(Criteria,boolean) 77 93 14 42 66 66 26s 45.8with insuf. privilege

2
Read TSI.getCallState() 48 48 3 3 — — 14s 72.4phone state TSI.isInCall() 62 69 17 20 1 1 32s 83.5with insuf. privilege TSI.isRinging() 60 65 16 18 1 1 35s

3
End TSI.endCall() 81 83 21 24 1 1 29s 91.3phone calls PIM.endCall() 80 85 23 26 1 1 38s 89.4with insuf. privilege

4
Close WMS.closeSystemDialogs(String) 57 57 6 6 — — 17s 69.1system dialogs AMS.closeSystemDialogs(String) 63 67 11 15 2 2 29s 56.0with insuf. privilege

5
Set up HTTP proxy WSI.addOrUpdateNetwork() 67 122 23 52 16 16 26s 30.4working in PAC mode WSI.getWifiServiceMessenger() 65 84 21 24 1 1 18s 57.3with insuf. privilege

6
Enable/Disable NS.setEnabled(boolean) 75 114 28 53 1 1 44s 47.2mDNS daemon NS.getMessenger() 80 81 11 14 1 1 18s 62.4with insuf. privilege

7 Task hijacking ASS.startActivityUncheckedLocked() 324 387 136 182 2,020 810 42m 37s 58.3

1. LMS.getProviders
2. LMS.getCallerAllowedsolutionLevel
3. Binder.getCallingPid 
4. Binder.getCallingUid 
5. LMS.getAllowedResolutionLevel
6. ContextImpl.checkPermission
7. AMS.checkPermission
8. AMS.checkComponentPermission
9. AM.checkComponentPermission
10. PMS.checkUidPermission
11. Settings.getUserIdLPr
12. LMS.getMinimumResolutionLevelForProviderUse
13. LMS.isAllowedByUserSettingsLocked
14. LMS.isCurrentProfile
15. LMS.isUidALocationProvider
16. LMS.doesUidHavaPackage
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17. PMS.getPackagesForUid
18. LMS.isAllowedByCurrentUserSettingsLocked
19. Settings.isLocationProviderEnabledForUser
20. Settings.Secure.getStringForUser
21. Settings.Global.getStringForUser
22. Settings.NameValueCache.getStringForUser
23. UserHandle.myUserId
24. Process.myUid
25. Os.getuid
26. Libcore.os.getuid
27. libcore.io.Posix.getuid
28. SystemProperties.getLong
29. SystemProperties.native_get_long
30. TextUtils.delimitedStringContains
31. LMS.propertiesMeetCriteria
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Fig. 9. Sub-call graph rooted at getProviders(). (LMS, AM, AMS,
and PMS represent LocationManagerService, ActivityManager,
ActivityManagerService, and PackageManagerService, re-
spectively. The grey nodes denote native methods.)

8.3.3 Symbolic Execution within a Single Process

As an example, we describe how the combined approach
was applied to investigating the first vulnerability in Ta-
ble 3. All involved method calls are performed in the
system_server process. (1) First, the static analysis based
on path reachability and pairwise path comparison finds
that both getProviders() and getAllProviders() (in
the LocationManagerService class) have paths reaching
the same sensitive operation that returns the names of
the installed GPS providers, and the two paths can be
executed with inconsistent permissions; thus, it is a suspect
vulnerability. (2) Next, CENTAUR is applied to automatically
checking whether there exist feasible paths that can reach the
sensitive operation from the two service interface methods.

Entrypoint 1: getProviders(). Figure 9 shows the sub-
call graph rooted at this entrypoint with collection and string
operations omitted. It leads to invocation of multiple meth-
ods of other services, e.g., ActivityManagerService and

Fig. 10. Examples of concrete input values generated for the first
vulnerability Table 3.

(mUserIds.array[54].grantedPermissions.backingMap.
table[836059052 & (length_SYM - 1].key_SYM ==
permission.ACCESS_FINE_LOCATION) &&

(criteria != null) && (enabledOnly = false)
(criteria.mHorizontalAccuracy == 2) &&
(criteria.mPowerRequirement == 0) &&
(criteria.mAltitudeRequired == false) &&
(criteria.mSpeedRequired == false) &&
(criteria.mBearingRequired == false) &&
(criteria.mCostAllowed == false)
//output: ["gps"]

(mUserIds.array[54].grantedPermissions.backingMap.
table[836059052 & (length_SYM - 1].key_SYM ==
permission.ACCESS_FINE_LOCATION) &&

(criteria == null) && (enabledOnly = true)
//output: ["gps", "passive"]

PackageManagerService. These services run in the same
process, so are handled as ordinary method calls using the
runtime type information in the execution context.

Four native methods are involved: getCallingUid(),
getCallingPid(), native_get_long(), and
getuid(). Calls to the methods are intercepted using MJI
and are redirected to our handlers of these methods. The first
two return the UID and PID of the client app, respectively,
and getuid() returns UID = 1000, which is the UID of the
system_server process. The call to native_get_long
is delegated back to the Android system through RPC.

Figure 10 shows two sets of generated concrete values.
The variable mUserIds.array[54] is identified as a sym-
bolic input through slim tainting during symbolic execution
(in this example, the app’s UID is 10,054; 54 is due to the
formula (uid%100, 000− 10, 000) presented in Section 4.3).
Take the first set as an example; it provides clear information
for building an app in terms of how to configure the app
(i.e., requiring the ACCESS_FINE_LOCATION permission)
and prepare the parameter values (i.e., criteria and
enabledOnly) for invoking the entrypoint method in order
to exercise the path that reaches the sensitive operation.
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1. TSI.isInCall
2. TSI.enforceReadPermission
3. TSI.enforcePermission
4. ContextImpl.enforceCallingOrSelfPermission
5. Binder.getCallingUid 
6. ContextImpl.checkCallingOrSelfPermission
7. ContextImpl.checkPermission
8. AMN.getDefault
9. Singleton.get

1

2

17

6 73 4
10

16
11 12 13 14

18

10. AMP.checkPermission
11. AMS.checkPermission
12. AMS.checkComponentPermission
13. AM.checkComponentPermission
14. PMS.checkUidPermission
15. Settings.getUserIdLPr
16. ContextImpl.enforce
17. CallsManager.getCallState
18. PhoneStateBroadcaster.getCallState
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15

Fig. 11. Sub-call graph rooted at isInCall(). (TSI, AMN, AMP, AMS, and
PMS represent TelecomServiceImpl, ActivityManagerNative,
ActivityManagerProxy, ActivityManagerService, and
PackageManagerService, respectively. The blue area denotes
an IPC service call made through Binder.)

Entrypoint 2: getAllProviders(). The generated
path condition is constantly true, which means this method
can be invoked with no permissions needed.

As the needed permissions required by the two entry-
points differ, it is identified as an ISPE vulnerability.

8.3.4 Symbolic Execution Involving Multiple Processes
We now describe how CENTAUR was applied to analyzing
multiple processes, using the second vulnerability in Table 3
as an example.5 Starting from Android 4.4, the Telecom
service runs in the com.android.server.telecom pro-
cess, rather than the system_server process. Again, the
combined approach is applied in two steps. (1) First, the
static analysis based on path reachability and pairwise path
comparison finds that getCallState(), isInCall(),
and isRinging() (in the TelecomServiceImpl class)
have paths reaching the sensitive operation that returns
the current phone state. (2) Second, CENTAUR is applied to
automatically checking whether there exist feasible paths that
can reach the sensitive operation from the three methods.

Entrypoint 1: isInCall(). Figure 11 shows the sub-
call graph rooted at isInCall() with collection and
string operations omitted. It invokes a service method
(nodes 10 and 11) of ActivityManagerService run-
ning in the system_server process; thus, the invocation
is made via Binder. To avoid interpreting the Binder
mechanism (see Section 6.2), CENTAUR handles the inter-
process service call as follows. First, the reference variable
that points to a Proxy object, which is used to invoke
ActivityManagerService, is set to a reference value
that points to ActivityManagerService. Second, when
the reference variable is used, ActivityManagerService
object is migrated to the symbolic execution world;
after that, the service method checkPermission of
ActivityManagerService is handled as an ordinary
function call. In effect, the call on the Proxy object (node 10)
is skipped, and node 7 is directly connected to node 11.

The generated concrete value is showed below. It provides
information on how to configure the app, i.e., requiring the
READ_PHONE_STATE permission.

(mUserIds.array[54].grantedPermissions.backingMap.
table[1].key == permission.READ_PHONE_STATE)

//output: false

5. In [44], we used much manual effort to handle multiple processes.

Fig. 12. startActivityUncheckedLocked().

final int startActivityUncheckedLocked(
ActivityRecord r, ActivityRecord sourceRecord,
IVoiceInteractionSession voiceSession,
IVoiceInteractor voiceInteractor, int
startFlags, boolean doResume, Bundle options,
TaskRecord inTask) {...}

Entrypoint 2: isRinging(). The result of analyzing
isRinging() is the same as that of isInCall().

Entrypoint 3: getCallState(). The generated path
condition is constantly true, which means this method can
be invoked with no permissions needed.

As the needed permissions required by the three entry-
points differ, it is identified as an ISPE vulnerability.
Summary. Compared to previous work that relies on tedious
and error-prone manual inspection, the approach combining
call graph reachability analysis and symbolic execution
eliminates the need for manual work and guarantees zero
false positives. It is potential to apply this approach to finding
other types of vulnerabilities in Android Framework.

8.4 Investigating Task Hijacking Attacks
8.4.1 Background
The Activity Manager Service (AMS) allows activities of
different apps to reside in the same task, which is a collection
of activities that users interact with when performing a
certain job. The activities in a given task are arranged in
a back stack, pushed in the order they were opened; users can
navigate back using the “Back” button. This feature can be
exploited by a malicious app if its activities are manipulated
to reside side by side with the victim apps in the same task
and hijack the user sessions of the victim apps.

This is a design flaw rather than a program bug, but can
be exploited to implement UI spoofing, denial-of-service, and
user monitoring attacks [54]. E.g., a malicious app may start
a malicious activity that impersonates the victim activity, and
the UI spoofing attack succeeds if the fake activity resides
in the same back stack as the victim activity, and the user
may mistake the fake malicious activity for the victim one.
This case illustrates unique characteristics of exploits that
take advantage of Android Framework vulnerabilities: the
malicious “input” is not some single input (e.g., a command
parameter, a network packet, etc.), but a whole app.

8.4.2 Vulnerability Discovery
We use the EditEventActivity activity of the calendar
app as an example victim activity. In the skeleton app, the
main activity starts the malicious activity, denoted as M . The
goal of the attack is that M , when it is started, will reside
in the same task as the victim activity. A bug is identified if
such attacks against the victim activity is feasible. We capture
the heap memory snapshots when the victim app and the
skeleton app are started and the main activity of the skeleton
app is to start the malicious activity.

While the method for starting an activity is
startActivity, the task selection is done in
startActivityUncheckedLocked, which is invoked
by startActivity. We thus performed the symbolic
execution of startActivityUncheckedLocked to
simplify the path exploration; it has eight parameters
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Fig. 13. An example set of concrete input values for task hijacking.

(r.intent.mFlags == 0x10080000) &&
(r.launchMode == LAUNCH_SINGLE_TASK) &&
(r.mLaunchTaskBehind == true) &&
(options == null) && (r.resultTo == null) &&
(r.info.documentLaunchMode == 0) &&
(r.info.targetActivity == null) &&
(r.taskAffinity == "android.task.calendar")

Fig. 14. Task hijacking exploit example.

// Snippet of AndroidManifest.xml
<activity android:name=".maliciousActivity"

android:launchMode="singleTask"
android:taskAffinity="android.task.calendar"
android:documentLaunchMode="none" />

// The main activity starts the malicious activity
public void onCreate(Bundle savedInstanceState) {
Intent i= new Intent(this,maliciousActivity.class);
intent.setFlags(0x10080000);
// null is due to "options == null"
startActivity(i, null);

}

TABLE 4
Effectiveness of the generated exploits on different Android versions.

Android version 4.0 4.1 4.2 4.3 4.4 5.0 9.0
# of effective exploits 434 674 674 674 702 810 734

as shown in Figure 12. The first parameter r is an
ActivityRecord instance storing the information of M ,
while the second storing that of the caller activity. The
description of other parameters is omitted. They are set
to symbolic inputs. The constraint indicating that the task
selected for M is exactly the one hosting the victim activity
is added to each of the path conditions when it is to be
resolved; that is, 〈m.task.taskId == v.task.taskId〉, where
m and v represent the activityRecords of the malicious
activity and the victim activity, respectively. A feasible path
is found if the path condition is resolvable.

8.4.3 Exploit Generation
The symbolic execution generated 2,020 sets of concrete
input values (each set corresponds to a unique path), among
which some contain illegal concrete values, e.g., due to
requiring the malicious activity’s package name and activity
name to be equal to those of the victim activity. Simple
scripts were written to filter out illegal concrete values
(1,210 sets totally). Figure 13 shows an example of legal
concrete values. In this example, r.intent.mFlags and options
(whose type is Bundle) guide how to set the two parameters
of startActivity(Intent, Bundle), respectively, and
others instruct how to configure the malicious activity; e.g.,
r.launchMode is mapped to the android:launchMode
in the manifest file. Figure 14 shows the exploit generated
according to the set of concrete values, and it has verified that
the exploit can be used to launch task hijacking successfully.

We then examined whether the exploits generated on An-
droid 5.0 were effective on other versions of Android systems.
Table 4 lists the results, which show that the effectiveness of
the exploits are affected by the versions of Android systems.
Further investigation has revealed that the difference is
mainly caused by code changes. For example, the new
exploiting condition FLAG_ACTIVITY_NEW_DOCUMENT is
not introduced until Android 5.0 (discussed below); the
startActivity(Intent, Bundle) API is not included

in version 4.0, and thus only exploits with options ==
null can be used for invoking startActivity(Intent).
For Android 9.0, a new variable matchedByRootAffinity
is introduced to control whether or not the vulnerability can
be exploited, causing some exploits generated in Android
5.0 ineffective in Android 9.0.

Newly Discovered Exploiting Condition. The path con-
ditions generated from symbolic execution reveal an extra
exploiting condition (requiring a specific bit in the bitflags
r.intent.mFlags to be 0) that was not reported in previous
work [54]. Compared to previous work that relies on ad
hoc manual effort for discovering the exploiting conditions,
CENTAUR finds them in a systematic and automatic way.

8.5 Consistency of Exploits with Different Snapshots
We then investigated whether snapshots captured at different
times affected exploit generation. After the system was ini-
tialized, 20 snapshots were captured at intervals of 5 minutes
on Android 5.0 with random user interactions during the
intervals. For each vulnerability listed in Table 3, symbolic
execution was performed with each of the 20 snapshots
providing the execution context. The results show that, for
each vulnerability, the same sets of path conditions were
generated with different snapshots, which means that the
resulting exploits with the different snapshots are consistent.

There are several reasons that explain the consistency of
exploits. First, if a malicious app does not rely on other apps
to exploit a vulnerability (e.g., inconsistent security policy
enforcement), access control is enforced in the framework
to make sure the information of other apps is not accessed.
Thus, the configurations and statuses of other apps do not
affect the path exploration. On the other hand, for exploits
that rely on the statuses of other apps (e.g., the victim app in
task hijacking attacks), the path exploration may depend on
the statuses of other apps; hence, during symbolic execution,
reasonable setting up is established consistently; e.g., in the
task hijacking case, the victim activity should already be
started prior to capturing snapshots. The results show that
an attack succeeds as long as the same statuses recur.

Finally, recently revealed attacks that exploit the frame-
work do not rely on system-specific configurations. Take the
ISPF vulnerability that accesses the names of installed GPS
providers as an example; the exploit does not depend on
the concrete values of the related non-app-specific variable
(i.e., LocationManagerService.mProviders), although
different provider names may be returned by the service calls
when different providers are installed.

9 RELATED WORK

Concrete-Execution-Assisted Symbolic Analysis. DART is
the first concolic testing tool that uses symbolic analysis
in concert with concrete execution to improve code cov-
erage [27]. It runs the tested unit code on random inputs
and symbolically gathers constraints at decision points that
use input values; then, it negates one of these symbolic
constraints to generate the next test case. DART [27], EXE [9],
and S2E [15] all use concrete execution to handle uninterpreted
functions (e.g., system calls). In CENTAUR, concrete execution
is not only used for handling uninterpreted functions (i.e.,
JNI calls), but also for the initialization of Android Framework in
order to obtain the execution context for symbolic execution.
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Switching Concrete Execution to Symbolic Execution.
Symbolic PathFinder (SPF) begins with concrete execution
and can switch to symbolic execution at any point in the
program [49]. S2E can also start with concrete execution and
then selectively analyze a function of interest; compared to
SPF, it allows specifying the symbolic inputs initially and
then gathers constraints during concrete execution. Due to
the complexity of Android Framework, it is difficult to track
the symbolic data derived from the target app throughout
its initialization phase. We propose slim tainting to identify
variables derived from the target app as symbolic inputs on the fly
during symbolic execution. It is a novel symbolic analysis approach
to handling such complex middleware as Android Framework.

Vulnerability Discovery and Exploit Generation via Sym-
bolic Execution. Many systems demonstrate that symbolic
execution is useful for finding vulnerabilities from Windows
programs [27], Linux/Unix programs [8], [9], [15], Java pro-
grams [50], firmware [22], [65], while CENTAUR demonstrates
it on a large piece of middleware. Many challenges such
as handling analysis scalability and complex features of
the framework code arise and are overcome in CENTAUR.
AEG performs exploit generation given vulnerable Unix
programs [4]. APEG generates exploits based on information
in patches [7]. Instead of generating an exploit as a network
packet, a string, or a parameter value, in our case we consider
an exploit as a whole malicious application consisting of not
only the exploit code but also its configuration file.

Symbolic Execution of Android Apps. There has been a lot
of work that performs symbolic execution of Android apps
for test input generation or security purposes [1], [37], [46],
[47], [52], [63], [64], [68]. E.g., Anand et al. proposed a system
based on concolic testing for generating screen tap events
to exercise Android apps [1]. Jensen et al. proposed to use
concolic execution to build summaries of event handlers and
generate event sequences backward, to find event sequences
that reach a given target line of code in an Android app [37].
SIG-Droid combines program analysis techniques with sym-
bolic execution to generate event sequences [46]. Compared
to analyzing applications, the analysis of the framework code
raises many unique challenges, which require new insights,
ideas and techniques. To our knowledge, CENTAUR is the first
that supports symbolic execution of Android Framework.

Analysis of Android Framework. Analysis of Android
Framework has been very limited. Prior work has performed
fuzzing [10], [26], [35] and some static analyses of the
framework code [3], [5], [6]. They are used for applications
such as inferring the Android permission specification and
probing system services; however, more powerful analysis
capabilities, such as symbolic execution, are absent. There is
also work that generates summaries/syntheses of Android
Framework APIs for the purpose of, e.g., taint analysis
or symbolic execution of Android apps [2], [24], [59], or
investigation of ICC based attacks [14], [21], [42]. None is able
to perform symbolic analysis of Android Framework. Indeed,
the literature has recognized the prominent challenges for
symbolically executing Android Framework; e.g., Jeon et
al. pointed out that “Frameworks are large, complicated” and
turned to synthesize the framework behavior to facilitate
symbolic execution of apps [38]. CENTAUR takes a big step
towards more in-depth analysis of Android Framework.

10 DISCUSSION

CENTAUR is shown to be effective for discovering two
distinct types of vulnerabilities in Android Framework and
generating PoC exploits. The reason we chose ISPE and
task-hijacking vulnerabilities as the examples is that they
are both due to high-level logic errors and design flaws,
which have been less explored by the research community.
Besides, it is potential to apply CENTAUR to discovering
other common bugs, such as BufferOverflowException
and NullPointerException. Moreover, CENTAUR can be
used to generate test inputs (e.g., unusual apps) for testing
the system services.

A lot of work performs symbolic execution of Android
apps for test input generation or security purposes [1], [37],
[46], [47], [52], [63], [64], [68]. As apps frequently interact
with the framework, one challenge for such tasks is to deal
with the complex framework code. To handle this, existing
work either models the framework APIs by synthesizing
the framework behavior, which is time consuming and error
prone, or simply sets the return values of a framework API as
symbolic variables, which introduces significant imprecision.
Thus, an interesting solution may be cross-layer symbolic
execution that integrates our technique and these systems
for more precise analysis.

CENTAUR performs symbolic execution of bytecode, and
does not rely on the availability of source code. Its migration
algorithm is not to simply copy raw data (i.e., the bytes) from
the heap snapshot to the symbolic executor; instead, it has an
anatomical view of the heap when copying the objects and
their fields, and properly updates the reference fields. Thus,
the migration algorithm works for all versions of Android.

Limitations. CENTAUR uses the concrete values of the non-
app-specific variables during path exploration. This avoids
exploring many paths unnecessarily, such that it could attain
a high scalability. But it may introduce false negatives,
as other values of those non-app-specific variable are not
considered. In some attack scenarios, attackers may exploit
certain system settings, which lead to different values for
non-app-specific variables. To investigate such attacks, we
suggest researchers capture multiple heap snapshots under
different settings for multiple rounds of analysis or consider
related non-app-specific variables as symbolic.

The access patterns were found via manual code review
(Section 4.3). We did not analyze all the framework code, and
consider the access patterns as incomplete heuristic. We plan
to explore a systematic way of analyzing all the framework
code to verify the found access patterns as future work.

The creative combination of concrete execution and sym-
bolic execution allows the analysis to start from any of the
framework APIs, rather than tackling the millions of lines of
code as a whole; thus, the path explosion problem is greatly
mitigated. A follow-up question is how to find the APIs
that can reach the target of the attack under investigation.
This can be done either by static program analysis (e.g.,
ISPE vulnerability) or based on expert knowledge (e.g.,
task-hijacking vulnerability). Like our work, other symbolic
execution methods that begin with concrete execution and
then switch to symbolic execution when a function of interest
is triggered also assume the function is known by the security
analysts [15], [49].
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11 CONCLUSIONS

We have introduced the first system, called CENTAUR, for
symbolic execution of Android Framework. To improve the
analysis scalability, instead of analyzing the framework as a
whole, we propose to analyze the system service interface
methods separately; moreover, a proper execution context
is provided to avoid under-constrained symbolic execution.
Among the large number of variables in the execution context,
slim tainting is proposed to precisely identify variables
derived from the malicious app as symbolic inputs, which
benefit the analysis completeness and scalability. In order to
decouple the implementation of CENTAUR from Android, the
execution context provided by concrete execution is migrated
from the Android system to the symbolic executor. Moreover,
CENTAUR is able to handle many unique features of the
framework for precise symbolic execution, such as inter-
process service calls and messaging. We have implemented
the system and evaluated it. The evaluation shows that
CENTAUR is very effective in both vulnerability discovery
and exploit generation. Given that symbolic execution has
proven to be a very useful technique, CENTAUR can also
be applied to automatic API specification generation, fine-
grained malware analysis, and testing.
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