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In recent years, increased attention is being given to software quality assurance and protection. With considerable verification and
protection schemes proposed and deployed, today’s software unfortunately still fails to be protected from cyberattacks, especially
in the presence of insecure organization of heap metadata. In this paper, we aim to explore whether heap metadata could be
corrupted and exploited by cyberattackers, in an attempt to assess the exploitability of vulnerabilities and ensure software quality.
To this end, we propose RELAY, a software testing framework to simulate human exploitation behavior for metadata corruption at
the machine level. RELAY employs the heap layout serialization method to construct exploit patterns from human expertise and
decomposes complex exploit-solving problems into a series of intermediate state-solving subproblems. With the heap layout
procedural method, RELAY makes use of the fewer resources consumed to solve a layout problem according to the exploit pattern,
activates the intermediate state, and generates the final exploit. Additionally, RELAY can be easily extended and can continuously
assimilate human knowledge to enhance its ability for exploitability evaluation. Using 20 CTF&RHG programs, we then
demonstrate that RELAY has the ability to evaluate the exploitability of metadata corruption vulnerabilities and works more
efficiently compared with other state-of-the-art automated tools.

1. Introduction

Since cyberattacks have severely damaged the quality of
software [1, 2], considerable defensive schemes have been
taken to protect software security [3, 4]. In recent years, due
to the deployment of mitigation mechanisms for stack-based
vulnerabilities and compiler-level inspections, stack exploits
have become increasingly more difficult to execute against
hardened programs [5, 6]. However, there are still a large
number of heap-based vulnerabilities in software written in
insecure programming languages such as C and C++ [7-9].
These heap vulnerabilities increase the possibility of mali-
cious attacks and pose a serious threat to software security
[10].

The threat from hacking mainly comes from heap
metadata corruption [11-13]. To improve performance, the
heap allocator usually places dynamically allocated user data
in the same memory area as the metadata that control the
behavior of the allocator [14]. These metadata are

unprotected, and vulnerabilities related to processing user
data may overwrite metadata, which causes subsequent
operations of the heap allocator to violate security as-
sumptions [15]. Since this is an inherent defect of the heap
allocator, it is not limited to any specific applications. Any
program that employs the heap allocator may trigger such
metadata attacks. Although developers have introduced
enhanced mechanisms to protect heap metadata [16, 17],
such as the 2017 patch, attackers can easily bypass the
protection by slightly modifying their behavior [18]. Because
of this adaptation, there have still been widespread attacks
on metadata [19].

AEG (automatic exploit generation) was introduced to
quickly generate exploits and improve the ability to assess
the exploitability of software vulnerabilities [20-23]. In
recent years, heap-based AEGs have improved, and some
simple exploitations for user-data corruption can be pro-
cessed [24, 25]. However, the exploitation of metadata re-
quires a high degree of skill, and so this process is usually
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combined with human expertise [26]. Existing AEGs do not
integrate the required high-level expertise well, making it
difficult to complete metadata attacks. Specifically, we can
subdivide the problems of AEGs in metadata attacks into the
following two aspects.

1.1. Coarse-Grained Heap Layout Arrangement. The existing
AEG methods lack the expertise of the intermediate ex-
ploitation process, and it uses a saltatory strategy to complete
the migration of memory state (MMS). For example, Revery
[24] jumps directly from the panic state to the memory state
including arbitrary address writing (AAW). However, in
most cases, the exploitation of heap vulnerabilities, espe-
cially metadata corruption, needs to be closely combined
with human expertise, and it is necessary to traverse in-
termediate memory states in a step-by-step strategy.

1.2. Blindness for Driving MMS. The exploitation in the
kernel [27] and the interpreter [28] can directly trigger a
specific heap operation through the exposed interface to
construct the target memory state. Heaphopper [29] and
Archeap [11] search for exploitation primitives by con-
necting the heap allocator to the driver program. They
analyze the exploitability of the metadata in the allocator,
without considering exploit generation of real programs
embedding in the allocator. However, driving the MMS for
user-level applications is still a nontrivial problem. It is
necessary to satisfy the constraints of both path and state
reachability and solve for the corresponding input. Existing
AEG drives MMS through a blind search, and it is difficult to
solve the above constraints.

To solve the above problems, we propose a new solution
called RELAY, a software testing framework that simulates
human exploitation behavior at the machine level to facil-
itate exploitability evaluation for software vulnerabilities.
RELAY employs exploit patterns converted from human
expertise to guide MMS, and it can generate exploits for
metadata corruption.

We propose a serialization method for heap layout,
which transforms the human expertise of exploitation into a
sequence of memory states that the machine can understand
and solve. The process of a metadata attack can be viewed as
a combination of memory states following in a specific order,
and the attack will fail even if there is only a slight change in
this order. These memory states and their sorting processes
are highly dependent on artificial knowledge such as Unlink
[30]/Hof [31] exploit methods. Based on this information,
RELAY employs a predicate-based memory characterization
method to depict the critical memory state of exploitation
and build a relationship chain of state migration called an
exploit pattern. Through building an exploit pattern, we can
refine the memory status of the heap layout, making the
fuzzy and disordered heap layout more ordered. At the same
time, it also converts a single difficult migration problem of
memory state into multiple simple problems, which reduce
the difficulty in solving constraints.

RELAY builds exploit pattern at the logical level and then
needs to construct a state migration path (pg,) at the
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machine level and drives programs to complete the MMS.
Based on the heap layout serialization method, we employ a
novel heap layout procedural method to drive the MMS.
Specifically, with the memory operation primitive (MOP)
graph and heap allocator model, RELAY first solves a set of
heap operation sequences, which satisfy numerical and
structural constraints to build a pg,,, and then approximates
the target memory state by exploring paths, generating fi-
nally corresponding inputs. With the heap layout procedural
method, RELAY can effectively drive the process of ex-
ploitation at a small cost.
In summary, this
contributions:

makes the following

paper

(i) We propose a new solution RELAY, a software
testing framework for simulating human exploita-
tion behavior at the machine level, which can
evaluate exploitability for metadata corruption
vulnerabilities. In particular, RELAY can be easily
extended and can continuously assimilate human
expertise to enhance its ability for exploitability
evaluation.

(if) We propose a serialization method of heap layout,
which transforms the high-level expertise of ex-
ploitation into an orderly memory state combina-
tion that the machine can understand and solve.

(iii) We propose a novel procedural method of heap
layout to achieve MMS driving and activate exploit
patterns at the machine level.

(iv) We implement a prototype of RELAY and dem-
onstrate its effectiveness with CTF (Capture the
Flag) and RHG (Robot Hacking Game) programs.

The rest of this paper is organized as follows: Section 2
describes research motivation and presents the overview of
RELAY; Section 3 proposes the heap layout serialization
method to construct exploit patterns; Section 4 proposes the
heap layout procedural method to manipulate the heap
layout according to the exploit patterns; in Section 5, we
explain the implementation of RELAY and give an experi-
mental evaluation of the system; Section 6 summarizes the
work that is most relevant to ours; finally, we summarize the
work and discuss the potential research orientation in the
future in Section 7.

2. Motivation Example

In this section, we display exploitation for a common vul-
nerability to illustrate the challenges faced by existing AEGs
and introduce our solution.

2.1. Metadata Exploitation Example. The heap allocator
usually maintains metadata (such as size, presize, fd, and bk
in ptmalloc [32]) to manage heap blocks and control heap
behavior. Since the heap allocator does not fully protect the
metadata, if developers do not pay attention to the safety
rules when programming and invoke the heap allocator
without due consideration, a hacker will be able to break the
software security by corrupting the metadata. Due to the
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above reasons, metadata attacks are widely used throughout
the real world.

Security analysts have further summarized some attack
methods against metadata corruption, such as FastBin attack
[33], Unlink, Hof, and chunk overlape+FastBin attack [34].
For FastBin attack, we need to modify the fd pointer of the
released heap block and fake a FastBin heap block and then
take down the forged heap block from the FastBin linked list
through multiple allocations, resulting in arbitrary address
writing (AAW). For Unlink, we need to modify the fd and bk
pointers of the freed chunk and trigger the unlink operation
by merging heap blocks for an AAW. For Hof, we need to
modify the size of TopChunk, calculate the distance between
target address and current TopChunk address, and trigger
the allocation with a larger size. Finally, the system will
return the target memory block to users as an allocated
chunk. For chunk overlapéFastBin attack, we need to reuse
the common memory between two heap blocks and thus
tamper with fd pointer to continue with FastBin attack
(more specific details will be described later).

It is complicated to implement these exploitation
methods, including precise calculation and organized layout
arrangement. But as shown above, the metadata may be
damaged easily by heap overflow, Use-After-Free (UAF), off-
by-one [35], and other vulnerabilities due to inadequate
protection. So these exploitation methods are widely used
together with the frequent metadata attacks. Therefore, the
critical issue we need to solve is how to combine these
popular but complicated exploitation methods to strengthen
the ability of the machine to evaluate the exploitability of
vulnerabilities automatically and thus maintain the software
security.

Next, we will present the existing problems of AEG
through case analysis and explore the solutions. We use the
common off-by-one vulnerability as an example, which is a
vulnerability often used to destroy size metadata, combined
with the FastBin attack and unlink methods to cause arbi-
trary code execution. Figure 1 shows a typical exploitation
process of an off-by-one vulnerability. The memory opera-
tions are required at each step, and the corresponding
critical memory states are shown as follows:

(1) By overflowing one byte, the last byte of the size
metadata of allocated chunk 2 can be controllable.

(2) By freeing chunk 2 and then reoccupying the po-
sition, chunk 2 can be extended and overlapped with
chunk 3.

(3) By releasing chunk 3 and then controlling its con-
tents with the extended chunk 2, fd pointer of chunk
3 can be controllable.

(4) By allocating chunks multiple times, memory 4
(callable memory) pointed by the controlled fd
pointer can be allocated. We achieve an arbitrary
address allocation in this step.

(5) By writing data to chunk 4, this callable memory is
controllable.

(6) By invoking memory 4, the program reaches the state
of control-flow hijacking.

2.2. Challenge. The above process can represent most
metadata attacks, and they usually need to complete the
migration between multiple states by multiple steps. The
existing AEG method cannot refine these intermediate
memory states. It is difficult to directly search for primitives
such as control-flow hijacking and arbitrary address writing
(AAW) from the panic state. Besides, it can be seen that the
exploitation of metadata requires an in-depth understanding
of the internal mechanisms of the heap allocator; the defi-
nition and ordering of intermediate states during exploi-
tation is also based on human expertise. Existing AEGs do
not use human knowledge well, and it cannot simulate the
behavior of artificial exploitation at the machine level.

In addition, for each step, the program needs to trigger a
specific operation such as write, malloc, and free to enter an
intermediate state. After these operations are triggered, the
correction of the parameters or write content corresponds to
the solving of numerical constraints, which can be com-
pleted by the symbolic execution tool [36, 37]. How to
trigger these heap operations corresponds to the solving of
structural constraints. We need to drive the program to enter
a specific path branch at a specific time to solve these
structural constraints, which is usually done by exploring the
path with fuzzing tools [38, 39]. Obviously, it is not easy to
complete the oriented path coverage. However, the MMS
usually requires triggering these operations frequently. For
example, step 4 may require triggering malloc repeatedly to
remove chunk 4 from the free list, which often brings with it
greater complexity and consumption. Existing AEG
methods have a limited ability to solve such structural
constraints, and exploring paths blindly is usually inefficient.

2.3. Solution. Figure 2 shows RELAY’s framework. In the
serialization part of the heap layout, RELAY transforms
human expertise of exploitation into an exploit pattern li-
brary. The procedural part of the heap layout mainly consists
of two modules: the migration path construction (MPC)
module and the migration path drive (MPD) module. First,
this part takes PoC as input, analyzes the current memory
state, and obtains the corresponding state migration pair
(ryy) from the exploit pattern library. Then, the MPC builds
the p,,, that satisfies the structural constraints in rg,, and
then, the MPD is responsible for driving the p,, in the real
environment and generates the corresponding input. The
two iterate through the intermediate states, solve the con-
straints that satisfy path reachability and state reachability,
and generate control-flow hijacking inputs. Finally, the
exploit generation module outputs exploits to complete the
specific attack.

2.3.1. Heap Layout Serialization. First, this module employs
the predicate-based memory characterization method to
describe r,,. Then, by combining the advanced knowledge
observed in human exploitation behavior, it assembles the
r¢n to build an exploit pattern for a typical exploitation
process. This exploit pattern is a migration chain composed
of a series of intermediate states in the exploitation process.
For example, the migration from the state of controllable fd
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FIGURE 2: Overview of RELAY’s frame. PoC represents proof-of-concept.

pointer in step 3 to the state of arbitrary address allocation in
step 4 can form a section of the exploit pattern.

2.3.2. Migration Path Construction Module (MPC). First,
this part obtains a control-flow graph (CFG) through static
analysis and based on this builds a memory operation
primitive (MOP) graph from which the memory operation
groups are extracted (MOGs). Then, we establish a heap
allocator model to infer the memory state corresponding to
the MOG and build the p,, by comparing the target
memory states of the migration pair. Finally, we utilize the
triggering probability of the path to solve the pg, with the
smallest driving cost. For example, for a migration demand
from state 3 to state 4, the pg,, can be solved as MMM (M
represents malloc). This module can interact with an MPD.

2.3.3. Migration Path Driver Module (MPD). After receiving
the pg,, = A, A, A (A for allocation) from the MPC module,

the MPD drives the pg,, with fuzzing at the machine level
and attempts to activate state 4. If state 4 is not activated after
driving, the MPD will reselect the pg,, constructed by the
MPC and launch it again for the current migration pair. If
activated, the MPD will retain the input and switch to the
next migration pair 4-5. By repeatedly executing the MPC
and the MPD, RELAY will activate all the intermediate states
at the machine level.

2.3.4. Exploit Generation Modules. This module receives test
cases that can hijack PC (program counter) and perform
symbolic constraint solving on the PC and the related
controllable memory space to generate the final exploits. In
terms of AEG for EIP-hijacking vulnerabilities such as
Mayhem [23] and CRAX [40], the critical part of these
schemes is that, after hijacking EIP, the control flow will be
guided to the target position by symbolic execution, and
thus, the PoC input is transformed into EXP input. We reuse
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their work for our exploit generation module. Specifically, if
it is found that the EIP register contains a symbolic value,
and we will arrange the shellcode into memory with per-
mission W+ X and then add a symbol constraint to make the
symbol value point to the shellcode location, redirecting
control flow to that location and generating EXP for arbi-
trary code execution. Since this is a previous work, we will
not repeat it in this paper.

3. Serialization Method of Heap Layout

The existing AEGs perform badly in refining the heap layout
and often “jumps” during the processing of the heap layout.
For example, Revery [24] jumps directly from the state of
triggering a vulnerability to the state of hijacking the control
flow. The limitation is that they adopt a random exploration
strategy in the heap layout process, and they are not guided
sufficiently by human expertise. Therefore, we need to ex-
plore a method that can guide the heap layout process, apply
this expertise at the machine level, and make the machine
solve the complex problems of metadata attacks using the
way of human thinking.

To this end, we propose a serialization method of heap
layout, combined with the way humans think about crafting
exploits, to decompose the problem of solving the highly
complex process of the heap layout into multiple sub-
problems with low complexity. First of all, we employ a
machine-understandable memory descriptive language to
represent the memory attributes, the data, and structural
relationships between memory objects, to ensure accurate
characterization of intermediate states. Then, we refine the
“fragmented knowledge” of manual exploitation to model
the migration pair and orderly combine the migration pair
according to typical exploit methods. Finally, we can build
an exploit pattern that can be utilized to guide the heap
layout process.

3.1. Predicate-Based Memory Characterization Method.
This section employs a formal method of describing memory
states which can be easily translated into programming
languages and can be implemented at the machine level.
Specifically, this method characterizes the memory state
through three elements: memory objects, object attributes,
and relationships between objects. The relationships be-
tween objects include numerical and structural relations.
This section first clarifies the definition of memory objects.
Then, it describes the properties of these memory objects
and the numerical and structural relationships between
these objects based on predicates.

3.1.1. Extended Representation of Memory Objects.
Memory objects are usually represented by a tuple
Oy = a, w, where a is the address of the memory unit and w
is the width. For example, Oxdeadbeef,4 indicates the
memory unit of consecutive 4 bytes located in the address
Oxdeadbeef. We represent the structured memory objects

such as the heap block on the basis of the tuple. These
memory objects are discussed below in the 32bit
architecture.

Although the structure objects in the heap memory such
as heap blocks and free linked lists are complicated, the basic
processed objects are heap blocks. Therefore, the structured
description of heap memory is also based on heap blocks.
The heap block is divided into the allocated state and the
free-ed state, and so we utilize different data structures to
characterize them.

The heap block in the allocated state can be formalized as
€4 = Sy S D, A, M, P, where a represents the address of
the chunk; s, represents the size of the physical neigh-
bouring chunk at the low address; s, represents the size of
the chunk; D represents the data area of the chunk; and
A/M/P represents whether it is the main allocated area,
whether it is mapped memory, and whether the physical
neighbouring chunk at a low address is in the allocated state.
All of the elements in the formal representation of ¢, are
Opys-type memory objects (a can be regarded as a 4byte
memory block storing the chunk address). The heap block in
the free-ed state adds a forward pointer Py and a backward
pointer Py, (both are Oyg-type memory objects) on the basis
of ¢y, that is, ¢y = a,5p, 5., D, A, M, P, Py, Py

Furthermore, the free list can be defined as
L =r,d;,d;, ¢;,¢c,y, ... ¢y, Where ¢ is a free-ed chunk; N is
of numeric type and represents the length of the free list L; r
is of Boolean type and represents whether the linked list is
for random access; and d; and d; are only for nonrandom
access linked lists, and they are of numeric types, respec-
tively, representing the direction of inserting and deleting
nodes of the linked list (0 represents the direction from the
head of the linked list, and 1 represents the direction from
the tail of linked list). According to whether d; and d; are the
same, the free list for nonrandom access can be divided into
a one-way operation list (such as FastBin in ptmalloc) or a
two-way operation list (such as SmallBin).

Based on the heap block and free linked list, the heap
memory can be formally described as
H = A Lp, L, L;,U,T,R, where A = ¢;,c,, ... is the set of
allocated chunks in the entire memory space (A contains not
only the heap blocks allocated in the heap memory but also
the heap blocks that attackers may forge); Lp/L¢/L; stands for
FastBin, SmallBin, and LargeBin, respectively. U stands for
UnsortedBin; T stands for TopChunk; R stands for Last
Remainder (the structure of U/T/R is similar to a chunk in
the free-ed state, so we will not go into details).

With the representation method of structured heap
memory, we can complete the fine-grained description of the
heap memory state. For example, 3c; € #Z.A(C(c;.P)) de-
picts the situation where the P flag of allocated memory has
overflowed (we use C (obj) to indicate that obj are controlled
by external input, which is strictly defined later), and
C( .T.s.) depicts that the size field of the TopChunk has
overflowed. It can be seen from the former expression that
an accurate description of the memory state must be based
on the accurate definition of the attributes of the memory



objects (such as controllable C) and relationships between
memory objects (such as ¢; € #Z.A), so we will separately
introduce their definition in the following sections.

3.1.2. Attribute Predicate Definition. We have extended
conventional memory attributes to support complex attri-
bute descriptions of memory units. For each memory unit,
we introduced three additional attributes besides the
readable, writable, and executable attributes: controllable,
callable, and chunk association, as shown in Table 1.

The following three examples explain these three new
attributes. It can be expressed as C(#.T.s,) if TopChunk’s
size field is overflowed. I (Oxdeadbeef, 4) indicates that the
data stored in consecutive 4 bytes of memory unit located at
address Oxdeadbeef can be directly or indirectly migrated to
the PC register (for example, the data of the memory unit
where the return address is located will be written to the PC
register when the function returns, and the data in the GOT
table will be migrated to the PC if invoking the corre-
sponding function). CP (Oxdeadbeef,4) indicates that the
data stored in the 4 consecutive bytes of memory unit lo-
cated at address Oxdeadbeef can be used as a heap block
pointer for allocation, release, and writing operations.

3.1.3. Relation Predicate Definition. This section analyzes
the relationships between memory objects from two aspects:
the numerical relationship (y;) and the structural rela-
tionship (yp). The numerical relationship yg is used to
indicate the relationship of memory objects at the numerical
level. Common numerical relationships are shown in
Table 2. For example, it can be expressed as EQ (c;.s,, ¢,.s.) if
the size of the heap block ¢, is equal to that of the heap block
¢,. If the size of the heap block ¢ meets the requirement of the
free linked list #.Ly, it can be expressed as SZ(c.s., #.Lg).
Besides representing the numerical relationship between
objects, y, can also be used to express the relationship
between objects and values; for example, EQ(c,.s., 64) in-
dicates that the size of the chunk ¢, is 64 bytes.

The structural relationship yg is used to indicate the
relationship between memory objects at the structural level.
The 9 typical structural relationships are shown in Table 3.
For example, it can be expressed as IN (c;, #".Lp) if the free-
ed chunk c1 belongs to the FastBin list. For the unstructured
memory object mem that stores the pointer pointing to the
data area of chunk ¢, it can be expressed as PT (mem, 4, ¢.D).
An equivalence relation (IS) is used to indicate that the
elements that constitute two objects are the same and the
memory area occupied is completely the same; that is, the
two objects are essentially the same object. An above rela-
tionship (HT) and below relationship (BT) are used to
describe the positional relationship of memory objects in
physical space. The forward/backward relationship (FD/BK)
is similar to the HT/BT relationship. The only difference is
that the FD/BK is used to indicate that the adjacency re-
lationship is higher or lower in the current structured object
level. For example, FD (c;, ¢,) indicates that the chunk next
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to the chunk ¢, in the direction of high address is c,.
LAP (c,,c,, mem) is used to indicate that there is a common
memory object mem between ¢, and c,.

3.2. Exploit Pattern Construction. Exploitation can be
expressed as the migration process of a special memory
state in the program state space. Therefore, we employ
state-space notation to describe the exploit process. State-
space notation can be defined as quaternion S,b,0,G,
where S is the set of possible states, b € S is the initial state
of the program, O is the set of possible operators, and G is
the target state. This section describes the state migration
process at the model level by constructing the exploit
pattern. The definition of the operator and the realization of
the state migration at the machine level are described in the
next section.

The experience of artificial exploitation consists of a
series of pieces of “fragmented knowledge;” for example, an
“AAW” may result in “control-flow hijacking” and “con-
trollable format string” may result in “AAW?”. The process of
manual exploitation essentially organizes these pieces of
“fragmented knowledge” in a specific order. For example,
the process of implementing arbitrary code execution using
format string vulnerabilities can be expressed as “format
string controllable” — “AAW” — “control flow hijack-
ing”. How to represent this “fragmented knowledge” and
how to organize it is the key to applying human expertise to
the state migration process.

3.2.1. State Migration Pair. We employ state migration pairs
(r¢n) to represent “fragmented knowledge.” r, can be
expressed as S —P= §', where S and S are the memory
states portrayed by predicates and pg, =0;,0,, ...,
oy represents the migration path formed by the orderly
combination of several operations. Table 4 lists several
typical state migration pairs related to heap exploits under
32 bit systems, where val (x) represents the integer value at
address x, and add (o,, 0,/v) represents adding the objects o,
and o, (or numerical value v) on the numerical level.
Table 4 does not need to ensure the completeness of the
characterization. Firstly, the state migration pairs in this
table can be continuously updated according to human
experience; and secondly, the source and destination states
of the migration pair do not need to be fully characterized for
all memory and register objects but only focus on the critical
memory objects, structural relationships, and numerical
relationships based on the human experience.

3.2.2. Exploit Pattern. The artificial exploit methods can be
regarded as a combination of “fragmented knowledge” in a
specific order. We combine r, in the same order to build an
exploit pattern to simulate human exploit methods.

It should be noted that, before constructing the exploit
pattern, we need to backpropagate the constraints collected
in the migration pairs to ensure the effectiveness of the
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TaBLE 1: Attribute predicate definition.

Object attribute

Attribute predicate Description

Readable

Writable
Executable
Controllable
Callable

Chunk association

R(0) Can read from the memory of object o

W(o) Can write to the memory of object o

X(o) The data in the memory of object o can be executable
C(o) The data in the memory of object o can be controlled by input
I(0) The data in the memory of object o can migrate to PC
CP(0) The data in the memory of object o can be used as a pointer

TABLE 2: Numerical relationship between memory objects.

Object relation

Relation predicate Description

Equal

Unequal
Greater

Greater or equal
Less

Less or equal
Meet size

EQ(o1, 05/v)
NE(0,, 0,/v)
GT(0,, 0,/v)
GE(0,, 05/v)
LT(o0y, 05/v)
LE(o01, 05/v)
SZ(c, L)

0, equals o,/numeral v
0; unequals o,/numeral v
o0y is greater than o,/numeral v
0; is greater than or equal to o,/numeral v
0, is less than o,/numeral v
07 is less than or equal to o,/numeral v
The size of the chunk ¢ lets the requirements of the free list L into the chain

TaBLE 3: Structural relationship between memory objects.

Object relation

Relation predicate Description

Subordinate IN(o0y, 0,) o0; belongs to o0,
Pointer PT(o0,, 05) 0; pointer to o0,
Equivalence IS(0y, 05) 0, is same to 0,
Higher HT(0y, 05) 0; is higher than o,
Lower BT(o0;, 05) 0, is lower than o,
Forward FED(0;, 0,) 0, is front of 0,
Backward BK(oy, 05) 0, is behind o,
Overlap LAP(0,, 0,) 0; and o0, have the same memory mem
TaBLE 4: Typical state migration pairs for heap vulnerabilities.

Serial . .
number Fragmented knowledge Migration pair

If callable memory is controlled, P
#1 it may cause control-flow hijacking C<p4>)NI(<p:4>) — C(PC)

If size of top chunk is controlled, C(H.T.S¢) i IN(6, #.4) AC(c.a) AGE(c.a, %.T.a) A
#2 it may cause arbitrary chunk allocation o > ) e

in the high address direction

LE(c.a,add(%.T.a.9.T.S,))

The data area of the allocated chunk can be

PSm
#3 controlled by external input IN(¢c,#.A) ALE(p,add(c.a, c.s;)) AGE(p,c.D.a) — C(< p,4>)
If FastBin list has a controllable chunk, it may cause Py ) , )
#4 arbitrary chunk allocation IN(¢,7 .Lg) NC(c.a) NSZ(c.s, H Ly) —> IN(c', % .A) NC(c'.a) NEQ(c.a, ¢'.a)
#5 Pointer to low address —12 bytes can be C(<p:4>)NPT(<p,4>,<p-12,4>)N
controlled by external input W(<p,4>) = C(< p,4>)ACP(<p,4>)
If the heap block pointer is controlled, a Po
#6 chunk with a controllable address CP(<p,4>) NC(<p,4>) /\Sg((“’)ul/{*gg‘?)*'@ﬁ;;’;f .Lg) — IN(c, Z.Lg) N
can be obtained ca cavalp
IN(c, .L,) ABCS(c, c1, ¢2) ABCD(c,c;, ¢2) APT(<p,4>, ¢,.D) —
#7 Backward merge process of heap block PT(<p.d4>,<p-12,4>)
The writable area pointed by the heap pointer ' ' Py ,
#8 can be controlled by external input CP(<p, 42)NPT(<p, 4>,<p’, X)NW(<p', 4>) — Cl<p’, 4>)
If size of allocated chunk is controllable, P
#9 it may cause chunk overlap IN(c, #.A) NC(c.s.) — IN(cy, Z.A) NHT (¢, ¢) ALap(c, cpp, p)
#10 If chunks are overlapped, it may cause IN(cy, #.A) NHT(cy, ¢) ALap(c, cpp, p) Jom, IN(cp 7 .Lp) NC(cra)

chunk in FastBin list controllable

/\SZ(CESC, %LF)

Dot notation is used to indicate access to fields in an object, and comma is used to separate two objects in predication.



exploit pattern. For example, migration pair 17 requires that
the memory at p in the original state has a callable attribute,
so 3" — 17 combination requires backpropagation I (p, 4)
to the source state of 3" migration pairs, ie,
IN(c, Z.A) NLE(p,add(c.a,c.s.)) NGE(p, c.D.a) N1 (p,4).
In order to facilitate expression, we distinguish memory

Scientific Programming

objects in different states through the subscript (for instance,
p, and p, represent the same memory area p in different
states), so the 3¥ — 1% combination can be expressed as
the following formula after the constraint propagation is
completed:

IN(c,, #.A) ALE(p,,add(c,.a,c,.5,))

AGE({p;,c,.D.a)) AEQ(<py 1)),

(1)

Lo, C{pp ) AI(Kp,4))s

Psm
— C(PC).

We have established corresponding exploit patterns for
common exploit methods. FastBin attack can be expressed
as 4F — 3% — 1% and the exploit pattern is as follows:

fast_bin_exp,

IN(c3, #.Lp) AC(c3,a) ASZ(csy.5., #.Lp) AEQ(cs.a,cy.a),

Lo, IN (¢ Z.A) ALE(p,,add(c,.a,¢y.5.)) AGE(p,, c,.D.a) AEQ(p,, py)s

Lo, C({prD)AI(Kp1,4))s

P
— C(PQ).

Unlink can be expressed as VAR Ny L LY
and the exploit pattern is as follows:

Unlink_ exp,

(2)

IN (¢, %.Ls) ABCS(cyscy5¢y) ABCD(cyrcy5cq ) APT(pyr4,cy.D),

A EQ(ps p3)s

Psm
— CP({p3,4)) APT ({p3,4), {p5 = 12, 4)) AW ({p3,4>) AEQ(p5 - 12, p,),

L CP((pya)) APT((py,4), (pp4) AW ((pir4)) AEQ(p} p1),

ﬁ’ C{pp ) AI(Kp14))s

Psm
— C(PQ).

(3)
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Hof can be expressed as 2% — 3% 1%, and the
exploit pattern is as follows:
hof_exp,
C(#.T.s,),
PSYH
—5 IN(c,, #.A) AGE(cy.a, #.T.a) ALE(c,.a,add (#.T.a, Z.T.s.)),
4
ALE(pyadd (cy.a,¢,.5.)) AGE(py, cp.D.a) AEQ(py, ), (4)

Lon, C{pp ) AI(Kp1,4))s
L, c(PO).

The example in Section 2.1 shows a typical exploit
method for off-by-one vulnerabilities, and we can call it

overlap_exp,
IN(c, #Z.A) AC(c.s,),

chunk overlape>FastBin attack, which can be expressed as
o — 10 —4¥ —3* 1%

Lo IN (e F.A) AHT (g, ¢) ALap (c.cqpr p),

SN (c3» #.Lp) AC(c3,a) ASZ(cy.5.) AEQ(c5.a, ¢,.0),

(5)

Psm
—5 IN(c,, #.A) AC(p,,add(cy.a,¢,.5.)) AGE(p,,c,.D.a) AEQ(p,, p1)s

B C(pr ) AT((pyr4Y), 22 C(PC).

3.2.3. Guidance of Exploit Generation. It can be seen that the
exploit pattern can characterize the migration relationship of
the intermediate state during the exploitation process, in-
cluding the data relationship and structural relationship
between the memory objects. In order to further guide
exploit generation, we divide the predicates used to char-
acterize the memory state into two categories: numerically
dependent predicates and structurally dependent predicates.
The data dependency predicates refer to EQ, NEQ, SZ, and
other predicates that reflect the numerical relationship be-
tween memory objects; structure dependency predicates
mainly include the extended memory attribute predicate
(C,I,and CP) and IN, FD, and other predicates that reflect
the structural relationship between memory objects. These
two types of predicates correspond to form two different
types of constraints, namely, numerical constraints y, and
structural constraints yg. The exploit pattern can transform
the problem of automatic generation of heap exploits into
the problem of solving numerical constraints y, and
structural constraints .

We employed the fast_bin_exp exploit pattern as an
example to explain how to guide the exploit generation by
solving these two types of constraints. The exploit consists of
4 steps corresponding to 4 states in fast_bin_ exp:

(1) Now, the fd pointer of ¢; chunk in the FastBin list is
controllable, which has satisfied the following
structural constraints:

Vs = IN(c3, #Z.Lp) AC(c3, a). (6)

But, we have not made the c;.a and c,.a equal, which
means the following numerical constraints have not
been satisfied:

Vp = SZ(c5.5., #.Lp) NEQ(c5.a,¢,.0). (7)

In order to solve y,, we should calculate the address of
¢,. The data area of ¢, needs to cover p,, and p, needs to
be callable, such as malloc_hook. So, we can update the
numerical constraints as follows:

vp = SZ(c5.5., #.Ly) ALE (mallc_hook, add (c;.a, c5.5.))
A GE (malloc_hook, ¢;.D.a).
(8)

We solve it by using a constraint solver.

(2) The following numerical constraints have been
satisfied:



10

yp = LE(p,,add(c,.a,¢,.5.))

(9)
NGE(p2 ¢2.D.a) NEQ(pys p1)-
The following structural constraints require making c,
become an allocated chunk:

s = IN(cy, Z.A). (10)

If ¢, is located in the Nth position from the head end
of FastBin linked list (namely, there are N-1 heap
blocks before c,), we need, according to the FIFO
(first in last out) mechanism of FastBin, to trigger the
allocation for consecutive N times to take out c,, and
the size of the allocation needs to satisty the re-
quirements of the FastBin list.

(3) Now that numerical constraints have been satisfied, we
only need to solve the following structural constraints:

vs= C({p ) NI ({p,,4). (11)

p,is malloc_hook, which satisfies I ({p;,4)), so we
just need to cover the malloc_hook to satisty
CKpp).

(4) After controlling the malloc_hook, we need to invoke
malloc to transfer the data stored in the malloc_hook
to the PC register, which implements C(PC).

4. Procedural Method of Heap Layout

The serialization method of heap layout divides the ex-
ploitation process into an ordered set of multiple inter-
mediate states at the logical level by constructing the exploit
pattern and indicates the direction for the heap layout.

We also need to activate the intermediate state at the
machine level and implement the migration process of the
heap layout.

4.1. Framework. With the exploit pattern, we reduce the
complexity of traversing the state space of the program, but
the extremely large path space also places a significant
burden on exploitation. It is often inefficient to drive the
program to the target state by randomly exploring the
program path. Taking the exploitation process for off-by-one
as an example, in moving from state 3 to state 4, a certain
number of heap allocation operations are required and the
size of the allocated heap block must meet the requirements
of the linked list. Blindly traversing the program path will
result in a random combination of memory operations and
their parameters, which is very inefficient.

Therefore, we divide the heap layout process into two
stages: migration path construction (MPC) and migration
path driving (MPD). The MPC phase constructs a set of state
migration paths P, according to the exploit pattern, and the
MPD phase attempts to drive the program along the pg . By
building the p,, to guide the state migration of the program,
we can reduce the complexity of traversing the path space
and improve the driving efficiency.

Scientific Programming

The overall design of the procedural method of heap
layout is shown in Figure 3. Through the heap layout
serialization module, we build the exploit pattern. The
program state analysis module analyzes the current
program state and finds r,,, which source state matches
with it. We can decompose r,, into numerical constraints
yp and structural constraint yg (as explained in the
previous section). In each round of processing an r,, the
numerical constraint solving module first corrects the
input related to y,. Next, the MPC generates a P set
according to the structural constraint yg. Then, the MPD
performs searches according to the p,,, and drives the
state migration of the program. In the loop, we first adopt
an optimization strategy. For the migration path set P,
we give priority to the one with the smallest driving cost
and reduce the complexity of the driving migration path as
much as possible. Secondly, we add a feedback mecha-
nism. If the new state is not matched with the target state
after the path is driven (the matching method will be
explained later), we give up the intermediate test case and
restore to the original state of the program, remove the
current migration path from the set, and then start a new
round of retrying to drive. If matched, the program state
analysis will pass the next ry, to the MPC and the MPD. By
repeatedly solving v, and yg, RELAY can complete the
whole MSM, activate all intermediate states, and finally
generate the hijacking PC input.

Since the existing symbolic execution technology can
solve the numerical constraints in the exploit pattern [41],
we will not repeat the process of solving ¥, but explain how
to automatically solve the structural constraints in the ex-
ploit pattern.

4.2. Migration Path Construction (MPC). The MPC con-
structs migration paths according to structural constraints.
First, the MPC constructs the memory operation primitive
(MOP) graph through static analysis and extracts the
memory operation groups (MOGs) from it. Then, it em-
ploys the heap allocator model to solve the p,, from the
MOG according to the structural constraints and selects the
k paths with the smallest driving cost (the relevant defi-
nition will be described later) to build the optimized set
P . In the MOP graph section, we give a formal definition
of p,, and explain why structural constraints can be solved
by using an ordered set of MOPs. Based on this, we
construct a MOP graph and introduce a method to extract
the heap operation groups from it. The heap allocator
model is relatively independent and easy to expand to
support different heap allocators. It establishes a mapping
relationship between heap operations and memory states,
and it is used to examine the effect of heap operations. In
order to find the solution, it takes the structural constraints
as input and employs the MOP graph to obtain all possible
groups of heap operations. Then, it utilizes the heap al-
locator model to solve the group of heap operations that
can meet the structural constraints as pg, and finally takes
the k paths with the smallest driving cost to form a output
set P .
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FIGURE 3: Design of the procedural part for RELAY.

4.2.1. MOP Graph. The structural constraint cannot be
solved by calculation tools such as constraint solvers [42]
and can only be solved by effectively combining basic op-
erations on the heap memory structure. We abstract the
typical heap memory structure operations into five basic
memory operation primitives: allocation (A), deallocation
(F), memory write (W), memory read (R), and memory call
(V), which will be explained separately below.

The allocation primitives are built on the granularity of
functions, such as malloc and realloc in ptmalloc, where
realloc can be regarded as an allocation or a deallocation. The
deallocation primitive is also built on function granularity,
typically free in ptmalloc. Writing and reading primitives can
be completed by an instruction (such as mov [addr] and val),
basic block, or external function (such as read function). In
order to reduce the analysis complexity, we define the
memory write/read built on basic block granularity. The
calling primitive is built on the calling method. For a
memory unit with callable attributes, if the target calling
method is empty, it means that the data for the memory unit
(such as the return address when the function returns) can
be automatically transferred to the PC register implicitly; if
the target calling method is not empty, the calling primitive
is generally triggered by invoking the data in the memory
unit in the form of a function pointer (such as invoking
malloc_hook when executing malloc).

Based on the above MOPs, we can formally define the
Ppsm and convert the problem of solving structural con-
straints into a problem of solving an ordered set of MOPs.
The migration path between states refers to an ordered set of
several MOPs expressed as pg, =€01,05...,05),
(0; € (A,F,W,R,V)). In the case of satisfying the numerical
constraint v, after program G executes these operations,
the memory state satisfies the structural constraint rela-
tionship yg; that is, ¥ (G (pgy,)) = true.

In order to construct the p,,, we need to select a group of
MOPs that can satisfy the structural constraints from the
program path. We must first establish an understanding of
the program path from which to obtain all possible groups of
MOPs, so we proposed the concept of MOP graph. The MOP
graph represents all of the MOPs that may be traversed

during the execution of a program. It represents all possible
types and sequences of all MOPs in the form of a graph. As
shown in Figure 4(b), each node in the figure represents a
MOP, and the directed edge indicates the possible transfer
direction of the MOP.

The trigger of a MOP is bound to the program path, and
the program path can be reflected by CFG, so we employ
CFG to extract the MOP graph. The extraction process is
shown in Figure 4(a). First, we utilize a static analysis tool to
obtain a complete CFG which includes the basic block
address, instruction information, and the jump relationship
between the basic blocks. Next, we mark the location of the
MOP on the CFG as a new node. For the MOP of function
granularity, we mark them in the basic block according to
the function invocation address. For the MOP of basic block
granularity, we mark the corresponding first address of the
basic block. We use the tuple n = (T, A,) to represent the
node, where T, indicates the type of MOP (5 types in total,
A, F, W, R, V) and A, represents the marked address.

After marking the new node, we establish a new directed
edge according to the connection relationship of the new node
in the CFG. Specifically, if there is a connectivity path
. between the basic blocks where the two new nodes (r; and ;)
are located and there are no other new nodes in p,, then we can
build a directed edge e;; = {n;,n;). For example, the basic
blocks where #,, 1, are located have a connection relationship
shown in Figure 4(a), and therefore, a directed edge
e, = {n;,n,) can be established. The directed edge indicates
that the program may perform the o, operation after the o,
operation, so we can append the o, operation after the o,
operation when extracting the MOG.

In particular, for the directed edges e;; = {n;,n;), if n; has
only one new successor node n; and any path in CFG from n;
passes through the n;node, we call e =<(n,n;) a
strengthened directed edge. For example, since there is a
n, n, connection relationship in Figure 4(a), satisfying the
above relationship, a strengthened directed edge
ey, = (ns,n,) can be established. The strengthened directed
edge means that the program will inevitably invoke the o,
operation after the o, operation, so we must append the o,
operation after the o; operation when extracting the MOG.
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FIGURE 4: Constructing the MOP graph and extracting the MOG from it. The circles and lines represent the nodes and edges of the MOP
graph, respectively. The blue line represents the strengthened edge. The dotted line represents the traversal path p,. The number represents
the weight of the edge called driving cost (explained later). (a) Mark nodes and edges in CFG; (b) build MOP graph; (c) extract MOG from

MOP graph.

After traversing all of the marked new nodes, we keep the
new nodes and the new directed edges, remove the irrelevant
basic blocks, and jump relationships, to complete building
the MOP graph, as shown in Figure 4(b).

From the MOP graph, we can explore the path with the
graph traversal algorithm and extract all possible MOGs
from it. The traversal method is as follows: first, we must
determine the starting point of the traversal. Since the p,, is
a stitching of the paths in the test case, we need to ensure that
the selected MOG can be appended to the original operation.
This requires us to determine the starting point for the
traversal according to the corresponding program state
point in the test case. We record the memory operation
execution trace O,y =<0,,0,,...,0y), (0;€ (AF,W,
R,V)) of the program in the test case and select the last
memory operation oy. We then find the node #; in the MOP
graph whose address matches with oy’s, which means we
find out the current program memory operation in the
graph. So, we use this node as the starting point for exploring
to ensure that the constructed p,, can be spliced into the
current program path. After this, we need to determine the
traversal method. Since we need to solve p,,, while exploring
(explained later), which requires improving the efficiency of
exploring shallow paths, we adopt a breadth-first traversal
method along the directional edge (consider repeatedly
traversing nodes in the ring).

As shown in Figure 4(c), we collect MOPs corresponding
to the nodes on each traversed path p, as a group O (py). It
should be noted that if a traversed node »; has a strengthened
directed edgee;; = (n;,n;), the node n; cannot be used as the
endpoint of the traversal path p,. The path p, must be
extended backward to add s successor node n; to the
group O( p,). Because some memory operations are ac-
companied by noise, when program triggers these opera-
tions, it will inevitably trigger additional memory
operations. It is reflected in the MOP graph that these
operations have a strengthened edge. We can take the noise
problem into consideration by adding special treatment of

the strengthened edge, and so the operation group extracted
is more reasonable. On the contrary, for general directed
edges, there is not such a strong correlation between the
front and back operations, so they can be randomly com-
bined without special treatment.

4.2.2. Heap Allocator Model. We have already explained
above that, on blindly driving the program, traversing the
path space to meet structural constraints is often inefficient.
We hope to find a specific path in advance and then drive the
program along with it. By reducing the complexity of the
path space, we can improve the efliciency of the drive. In
order to find the p,, we first extracted a series of combi-
nations of operations from the MOP graph, and then, we
needed to find a group that satisfied the structural con-
straints. To this end, we established a heap allocator model to
infer memory operations, observed the memory state after
performing memory operations, and selected an operation
group that allows the memory state to satisty structural
constraints.

It should be noted that the model is not only meant to
replace the work of the heap allocator, such as managing the
heap memory to store data, but only to imitate the char-
acteristics of the heap allocator and analyze the relationship
between memory operation and memory state. So we only
established the mapping relationship between memory
operations and memory state at the logical level and did not
actually allocate or deallocate memory at the machine level.
In addition, because we only focus on the critical objects
associated with structural constraints in the heap memory,
there is no need to fully characterize all heap memory.

The essence of the heap allocator is to input the memory
operation o and output a memory state #,, so the key to
building a heap allocator model is to build a mapping re-
lationship between the memory operation and the memory
state. After the program invokes a memory operation, the
memory changes can be expressed as the relationship
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H; —° X ,. The output state #, is determined by the
operation o and input state ;. Therefore, a binary func-
tional relationship #, = f (0, #;) can be established, and
our goal is to parse this binary function. In order to express
binary functions in an enumerable form, we need to employ
finite symbolic expressions to represent infinite specific
values of memory states and memory operations. To this
end, we use the extended representation of the memory
object to express the memory state and then use the unified
operation symbol to express the memory operation to
convert the binary function into an exhaustible segmented
form.

Taking ptmalloc as an example, we show how to build a
heap allocator model and express it as a binary mapping
relationship. For convenience, the size represents the aligned
parameter of allocation, ¢ represents the newly allocated
chunk, and cj represents the released chunk. SK(size, L)
indicates that the size is within the range of the linked listL.
MinGT (c;, L, size’) represents that c; is the smallest of all
chunks in the linked list L whose size is larger than size'.
Split(c;cj,ci) represents the split of ¢; into ¢; and ¢;.
Merge (c;, ¢;) indicates the merge of c; into ¢;. ChBins(L)
represents moving chunks into the linked list L from
UnsortedBins, and ChSpl(c;) represents moving the split
chunk ¢;into UnsortedBins. MinSize represents the lower
limit of size for UnsortedBins. First, we list 10 critical ex-
pressions for #’; as conditions for the piecewise function:

Cy: I8(,.Lg,€0,0,0,¢1,C,, .. scy)) ASK(size, 7. Ly, ),
,cnY) ASK(size, L),
,cn ) ANEQ(cy, size),

C,: IS
Cs: IS
C,: IS
Cs: IS

—

Z.Ls,<0,0,1,¢1,¢,. ..
Z;.U,{1,0,1,¢;,¢5, . ..
Z,.U,{1,0,1,¢;,¢5, . ..
Ly, <1,0,1,¢p ...

P

,CN>)/\SK(size, %i'LL,)
A MinGT(ck, Ly, size),
Ce: GT(# . T.s,cp .5.),
Cy: SZ(cp ), # ;. Ly,
Cs: EQ(cp .P,0) AFD (¢, cp),
Cy: BK(T, cp),
Cio: EQ(c;.P,0) ABK (cpy, cp) ABK(cppp cpp).
(12)

Then, we can build the mapping relations listed in
Table 5. It should be noted that we only built the mapping
relationship for the changed heap memory in the structural
dimension rather than across the entire area. In order to
construct a pg, in a unified form, we count the W/R/O
primitives as part of solving the structural constraints.
However, strictly speaking, these primitives will not directly
bring changes in the heap memory structure, so we have not
listed them in Table 5, but only built a numerical mapping in
the related memory region for them (e.g., marking the target
address of the writing primitive as controllable). In addition,
we do not consider the influence of mmap [43] and

,cn») AGT (cy, size + MinSize),

13

reasonably assume that the allocated memory will not exceed
the size of TopChunk (avoid triggering system calls to reduce
speed).

For example, an allocator model gets input
o = malloc (16), and the current program state is
#;.Lp =<0,0,0,c;,c,), which satisfies C,. So according to
the mapping relationship of f (0, #;), the model will output
a new state #,, where the linked list changes to
Lp =<0,0,0,c;) and returns an allocated chunk ¢, = c,.

If entering a memory operation group O(py) =
01,0,,. .. ,0y, first of all, we will mutate their parameters.
For a memory allocation primitive, we will mutate its size.
For memory deallocation primitive, the mutation space of its
parameter addr contains the addresses of all the allocated
and deallocated chunks in the current state. For the writing
primitive, the mutation space of its parameter addr contains
the addresses to be controlled in the target state (the defi-
nition of target state will be given later), and the mutation
space of width is the set [1, 2, 4, 8, 16, 32, 64, 128]. Then, we
input these mutated MOPs into the heap allocator model
one by one and process them according to the mapping
relationship to obtain the final new program state.

With the help of the heap allocator model, after entering
the MOG and the initial state of the program, we can infer
the new state and match the new state with the target state
(this matching method will be introduced later), and we can
know whether the current MOG can make the memory state
satisfy the structural constraint.

4.2.3. Solving the Migration Path. Our goal is to extract a
MOG that satisfies the structural constraints from the
program path to build pg, . To achieve this goal, we should
complete the following three processes: extract the MOG,
solve p.., and consider the difficulty in driving p,... The
method of extracting MOGs from the MOP graph was
introduced earlier. Below, we first introduce the calculation
method of the degree of state difference and explain how to
find the sections that satisfy the structural constraints from
MOGs by the degree of difference. Then, we introduce the
concept of driving cost and explain how to use driving cost
to reduce the difficulty of driving p,, . Finally, we summarize
the whole process for building p,..
(1) Degree of State Difference. We introduce the concept of
state difference degree (dj) to measure the distance of
memory structures between different states. Since there are
different data structures in memory regions such as linked
lists and the set of allocated chunks, we must define the
distance of these typical data structures involved in detail.
The operation for the random access linked list is un-
directed, and chunks can be inserted and removed from any
position on the linked list. Typical random access-linked lists
include ptmalloc’s LargeBin linked list and UnsortedBin. For
the two random access linked lists A and B, the degree of
difference between the structures is defined in the following
equation, where LCS (A, B) refers to the longest common
subsequence distance (a special kind of the edit distance [44]
which only considers insertion and deletion):
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TaBLE 5: Typical mapping relation for a heap allocator. AFC; C;
0 H; x,
C, H . Lri=<0,0,0,c1,C5, - . 5CN-1>CA=CN
-CiAC, K ,.Lsi=<0,0,1,c5, .. ,CN>Ca=C;
_|C1/\_|C2/\C3 ChBins(%o.LL, %G.Ls), %O.UzNul, Ca=Cg
A =C;ARCLA-C3AC, Split(cy,cic)) Aci.s. = size, ca =c;, ChBins( ,.Ly,.Ls), #,.U=Nul
“CACLNACACLNACs Split(ci.circ;) Nci.sc = size, cy = c; ChSpl(c;)
_‘CIA_‘Cz/\ﬂC3/\_‘C4/\_|C5/\C2* %D.LS,'=<0,0,1,C2, L. LCN>CA=C
CIACACACA-CA-CS ACT Split(cy,cic)) Nci.sc = size, ca=c;, ChBins(# ,.L;, # ,.Ls), I ,.-U=Nul
~CiACACACA-CsA-CS ARC) ACg Split(T,cic;) Neisc=size, ca=cpT.5.=cj.5c
C7 %G.Lpi:<0,0,0,C1,C2, c el CE>
F _‘C7/\C8 MErge(CL;CF)) %O.U:<1,0,1,C1,C2, .. HCNCL>
—C,ACgNCy Merge(T,cg)
AC,ACgACoACy Merge(CF,CH), %O.U:<1,0,1,C1,C2, .. »CNCE>

A, allocation; F, deallocation; reallocation can be regarded as one of these.
conditions.

1

dr (A, B) = LCS(A,B) + 1

(13)

The direction of operation of the one-way access linked
list is fixed, so insertion and deletion can only start from one
end of the linked list. For example, insertion and deletion are
performed in the same direction (FILO) for the FastBin list
in ptmalloc and, however, in different directions (FIFO) for
the SmallBin list. The definition of the distance between the
two types of linked list structures can be expressed in the
following equation, where L, and Ly represent the length of
the linked lists of A and B, respectively; for FILO-type linked
lists, L , 5 represents the longest matching lengthof B — A
after Aand B are aligned backward in the direction of de-
letion. For FIFO-type linked lists, L, represents the length
of the part that can completely match the subsequence of A
after the first same node of B and A from the insertion
direction:

dg (A,B) =Ly +Ly—2%Lyp (14)

The degree of difference between unordered sets is de-
fined in the following equation, where diff (B, A) represents
the number of elements which are located in B but not in A.
For example, assuming that the target state requires 4
memory units to be controllable and only one of the memory
units is currently controlled, the degree of difference be-
tween the current state and the target state is 3:

d., (A, B) = diff (B, A). (15)

We total the degree of difference between the different
data structures involved in the two states to obtain the total
dp between the states.

From the structural constraints, we can acquire the
initial state and corresponding target state (we can link them
as a state migration demand (d,) expressed as
dgn = #; — ;). By inputting the extracted MOG and
the initial state 7; into the heap allocator model, we can
infer the new state %, and calculate the d, between the new
state and the target state. If dp, is 0, it indicates to the MOG
that it satisfies the structural constraints. For example, there
is a structural constraint for IN (c,, #.A). First, we use the
current program state as the initial state 7, and the c,

The allocator needs to check C; and C; again after checking the previous 5

chunk in the linked list is expressed as #.Lp = <0,0,0,
€1, €y, C30. Next, we ensure the target state 7, , Z; . A = c,.
After receiving the operation group O(p;) = A, A, from the
heap allocator, the output state is % ,, where the linked list
changes to Ly, = €0,0,0,c,) and returns the chunk ¢, = c,.
The d, between the new state #, and the target state #; is
0, indicating that we have found a p,, = (A, A).

(2) Path Driving Cost. The complexity of branch constraints
for program paths is different, so the difficulty in exploring
these branches for a driver is also different. In order to
improve the efficiency of exploration, we hope to find those
parts with low driving difficulty from the set of p,,,. We put
forward the concept of driving cost (di) to measure the
difficulty in driving the p,,,. Because it is difficult to directly
measure the complexity of path branch constraints by static
analysis, we employ a dynamic method of path exploration
to evaluate the difficulty in driving the path.

While exploring the path using fuzzer, we record the
number of times it hit the directed edges in the MOP graph
by hooking function and positioning the basic block. While
receiving many test cases, we also have a large number of
records on the directed edge e;; in the MOP graph. We
count the total number of test cases w, and divide the total
number of hitting (w,) by the number of hitting the edge
(w;;). Then, we mark the weight of the directed edge ¢;; as
wy/w;;(if w;jis 0 then it is marked as infinity), and a MOP
graph with weights is established, which can reflect the
difficulty in driving different paths. If the weight of the edge
is higher, it means that it is more difficult to drive along the
corresponding path. By totaling the weight of the edges
included in the pg, on the graph, we can evaluate the
difficulty in driving p.,.

So far, we can formally define the driving cost of
Psm = 01,05, -,05 0, (0; € (A, F,R,W,V)):

N-1
wy

dc = (16)

i=1 wi(i+1)

w; ;1) represents the weight of the directed edge
€1y = MM,y ), and ny,n,, corresponds to the o;,0;,,
respectively. As shown in Figure 4(c), the driving cost of the
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path p; = (A, F, A, F) is 88. It is important to note if thep,,
includes an edge with an infinite weight, it means that such a
path cannot be triggered during the running of the program,
and so this path will be removed from group P, .

(3) MPC Workflow. Finally, we sort out the entire process of
constructing p,.,, and the entire MPC workflow is shown in
Figure 5. For a structural constraint, we first construct a
MOP graph for the program and extract a group of memory
operations O(p;) from the graph. Then, we mutate their
parameters and input operations into the heap allocator
model for inference and observe whether the structural
constraint requirements are satisfied. If satisfying these
structural constraints, the group of operations will be added
to the set of preliminary migration paths. In this process, we
adopt a synchronous strategy of inferring while extracting to
improve efficiency, and we set a time threshold for mutation.
For each group of operations extracted, we continuously
perform mutations for them and then infer the results until
the threshold is exceeded. Then, we extract the next group of
operations and repeat the process. For the preliminary
migration path set P, , we select the kpaths with the smallest
driving cost, arrange them in the optimized set P in order,
and pass the set to the MPD.

4.3. Migration Path Driving (MPD). The problem of driving
the p., is essentially a reachability problem, and our purpose
is to generate an input that can drive the program to reach
the target point (the call location of target memory oper-
ation). The problem of the reachability of the target point can
be decomposed into two problems: control-flow arrival
(CFA) and data flow arrival (DFA). For example, for the F
operation in the pg, the generated test cases not only need
to trigger deallocation functions but also need to accurately
set the function parameters as the chunk address is expected
to be deallocated.

Currently, there are many fuzzing tools that have the
ability to drive program reaching specific locations [45-47].
For example, AFLGo [48] uses a guided gray-box fuzz to
generate test cases that can reach the target program point.
We have made modifications on the basis of AFLGo to
generate test cases satisfying both CFA and DFA.

The modification method is as follows: by constantly
optimizing the test cases with higher path weights (ones which
include a target memory operation), we output test cases that
can reach the target program point and achieve control-flow
arrival. Taking test cases with CFA as seeds, we continuously
approach test cases with higher data weights (ones associated
with target parameters) and finally output target test cases.

5. Implementation and Evaluation

We implemented the prototype of Relay on top of the
framework mentioned previously. On the selective symbolic
execution engine S2E [49], we defined four exploit patterns
including FastBin, Unlink, Hof, and Overlap and imple-
mented the program state analysis module. The function of
solving numerical constraints and arranging shellcode is also
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Input: Program P, CurrentState s;, NewState s,
MopPath p;, MopGroup O(py),
StructuralConstraint g

Output: OptimizedMigrationPath Py,

1 MopGraph < BuildMopGraph(P)

2 for p; € TraverseMopGraph(s;, MopGraph) do

3 O(py) < ExtractMopGraph(p;)

4 | forie MutateThreshold do

5 O'(p) « Mutate(O(py))

6 s, < AllocateModel(s;, O’ (py))

7 dp < CalcDifferDegree(s,, ys)

8

if dp < 0 then
9 Psm « aPPend(Ol(Pk))
10 end
11 end
12 end

13 P}, < SelectMinDriveCost(p,,)

Ficure 5: MPC workflow.

built on top of S2E. MOP construction and MOG extraction
are implemented on top of IDA Python [50]. Also, we
implemented a heap allocator model by building function
mapping relationships in Python. And the MPD module was
built on top of the fuzzing engine AFL [51]. RELAY contains
a total of 8.5K lines of C/C++ and 4.6 K lines of Python. It
should be noted that although we only implement four
exploit patterns currently, RELAY is an extensible frame-
work that will include more types of vulnerabilities and
exploit methods in the future. The experimental part mainly
explores the following two problems:

(i) RQl:does RELAY has the ability to evaluate
exploitability for metadata corruption
vulnerabilities?

(ii) RQ2:what factors mainly affect the efliciency of
RELAY?

5.1. Benchmark Selection. Affected by program scale, run-
ning environment, and interaction mode, the testing process
for real software is cumbersome and easily interfered by
irrelevant factors. The CTF and RHG programs are specif-
ically designed to test the ability of humans and machines to
deal with vulnerabilities. They can be regarded as a set of
programs that reduce the scale of real software and irrelevant
factors but retain their vulnerability characteristics. They
focus on human expertise for exploitation and usually re-
quire high-level skill to solve problems. We have selected 17
CTF programs and 3 RHG programs from the recent public
events. The reason for choosing more CTF programs is that
CTF is mainly used to evaluate the application ability of
high-level knowledge than the machine’s computation ca-
pability and can better test whether our system can effec-
tively deal with the vulnerability in combination with
artificial knowledge.

The exploitability evaluation for these target programs
covers four common exploitation methods (FastBin attack,
Unlink, Hof, and chunk overlapeFastBin attack), to verify
whether our system can use the corresponding four exploit
patterns to complete assessing the vulnerability. Each target
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program represents some type of programs bounded to the
specific exploitation method and the capability in dealing
with one of the target programs indicating the capability in
evaluating this type of program. Certainly, the capability of
our system is not limited to these 20 selected programs; for
instance, our system also completed the exploitation for two
heap vulnerabilities on the spot in the open event of
DEFCON China [52].

In a word, the target programs we selected have the
following features:

(i) The program comes from the public event, and it is
believed to reflect the vulnerability feature of real
software.

(ii) The program does not contain source code and
debug symbols, which can fully restore the
exploitability evaluation in the real environment.

(iii) Each program contains
vulnerabilities.

metadata corruption

(iv) Each program represents some types of program
bounded to the specific exploitation method.

5.2. Experimental Setup. All experiments were run on a
Linux Ubuntu Server 18.04 LTS AMD64, equipped with an
Intel(R) Core(TM) i9-9980XE CPU@3.00GHz and 64 GB
RAM. Our experiments enabled DEP [53], but disabled
ASLR [54], since RELAY does not support automatically
bypassing ASLR.

5.3. Exploitsby RELAY (RQ1). Inthis section, we first display
the experimental results and then analyze the specific cases
and demonstrate the strengths of RELAY compared to other
AEG solutions.

5.3.1. Overall Results. As shown in Table 6, we tested a total
of 20 programs, of which 16 successfully generated the
exploits and 4 failed. The table details the program name,
event name, and vulnerability type, respectively. In addition,
it shows the exploit pattern corresponding to the initial state
of the program detected by the program state analysis
module after inputting the PoC (the correct exploit pattern is
marked with an * after manual verification), and it also
records the total number of nodes N,, contained in the MOP
graph.

We also recorded the total path length L, of the mi-
gration path corresponding to the final exploit (by adding
the number of memory operations included in each mi-
gration round) and the total driving cost D, (by adding the
driving cost corresponding to each migration round). For
equality, we use the same number of test cases w, generated
by fuzzing to solve driving costs for all programs. In ad-
dition, we recorded the elapsed time T, from inputting PoC
to outputting EXP.

Finally, we compared it to other state-of-the-art AEG
solutions. As far as we know, the current AEG solution for
user-level application vulnerabilities is the only Revery. We
got the experimental data from the Revery paper (programs
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without data are marked as “~”). To draw a more objective
compare conclusion, we also chose another open-source
AEG solution, Rex [55], as an experimental comparison.
Developed by the shellphish team, Rex won the first place in
the Cyber Grand Challenge (CGC) [56] contest although it is
not specifically designed to deal with heap vulnerabilities.
It can be seen that the time to complete exploitation is
ranging from 10 to 50 minutes. This suggests that RELAY is
an efficient AEG tool, and as we know, other AEG tools that
deal with heap vulnerabilities, such as Revery, often need
over 50 minutes, or even hundreds of minutes to work out.
The RELAY’s speed is even accepted by the professional
security analyst (it usually takes tens of minutes to complete
the exploitation of the heap vulnerability manually), so
RELAY can be put into practice to deal with heap vulner-
ability for replacing the manual evaluation to some extent.
We can also see that both N,, and L, have an ap-
proximately positive correlation trend with the elapsed time.
This is because N,, is positively correlated to the program
scale, and there is a positive correlation trend between L,
and the complexity of driving migration path to some extent.
And D, has a stronger relationship with T,,, and the two are
generally positively correlated, which proves that we can
improve efficiency for exploitation by choosing migration
paths with a low driving cost (detailed in Section 5.2).

5.3.2. Case Study. In this section, we investigated these
programs in detail and analyzed why our solution was
successful or not.

(1). Successful Cases. RELAY successfully generated ex-
ploits for 16 programs, covering multiple types of vulnera-
bilities and the four defined exploit patterns, which shows
RELAY has the ability to process metadata corruption vul-
nerabilities. In contrast to Rex, it cannot generate an exploit
for any programs listed. Rex only works under the circum-
stance that the control flow has been hijacked, but the above
programs did not enter the state of control-flow hijacking
after running PoC. So we conclude that Rex does not have the
capability in dealing with common heap vulnerabilities.
Likewise, Revery cannot solve any listed program (for pro-
grams without data, we reasonably conclude that Revery fails
on them). Below we employ specific programs to analyze the
reasons why RELAY succeeds and Revery fails.

First, RELAY can solve numerical constraints on specific
locations and time. For example, bcloud stipulates that the
chunk can only be overflowed by four bytes. It is necessary to
modify the size of TopChunk to a large specific value at the
beginning. For simple note, it needs to point fd and bk to a
specific position in the heap table to construct an AAW. By
analyzing the numerical constraints in the exploit pattern,
RELAY can modify the target value before the heap block
structure changes. However, Revery cannot perceive these
constraint relationships. And if we fail to complete the
memory value modification within an effective time period,
such as modifying fd and bk before the heap block merges or
modifying the size before splitting TopChunk, it will make
the memory allocation and deallocation meaningless or even
prevent exploitation.
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TaBLE 6: Overall results of RELAY.
Name CTF Vul type Exp. pattern Ny, L, D. Ty/s Revery
BRHG-13 BRHG UAF fast_bin_exp 6 5 38 1283 —
pwnl4 DEFCON China&BCTF  Heap overflow hof_exp 8 4 32 927 —
pwn40 DEFCON China&BCTF  Heap overflow  unlink_exp 5 5 43 1194 —
note2 ZCTF 2016 Heap overflow  unlink_exp 18 10 83 1427 X
note3 ZCTF 2016 Heap overflow  unlink_exp 19 12 74 1483 X
b AliCTF 2016 Heap overflow unlink_exp 32 13 96 1638 X
Stkof HITCON 2014 Heap overflow  unlink_exp 27 12 117 1829 X
Successfil cases Simple note Tokyo westerns 2017 Off-by-one unlink_exp 21 10 99 1595 X
Search engine 2015 9447 CTF Double free fast_bin_exp 21 13 106 1762 —
Badint Defcon qualifier 2017 Heap overflow fast_bin_exp 31 13 138 2053 —
Wegpon Delta Ctf 2019 UAF fast bin_exp 24 12 82 1518 —
Babyheap Octf 2017 Heap overflow  overlap_exp 36 16 175 2431 —
Pwnme NCTF2019 Off-by-one overlap_exp 25 15 152 2218 —
Bcloud 2016 BCTF Heap overflow hof_exp 13 9 75 1364 —
Gyctf2020_force BUUCTEF Heap overflow hof_exp 16 8 86 1487 —
Bamboobox Hitcon training Heap overflow hof_exp 12 8 69 1329 —
Bookstore 2015 hacklu Heap overflow  unlink_exp 25 10 126 — —
Failed cases Babyheap 0ctf2018 Off-by-one overlap_exp 21 13 153 — —
Wheelofrobots 2017 insomni’hack Off-by-one overlap_exp 18 11 141 — —
Babypwn N1ctf2019 Double free fastbin_exp 23 11 148 — —

Second, RELAY can convert structural constraints
problems to solve the memory operation sequence and
transform the state coverage problem into a specific path
exploration problem, which can greatly reduce the com-
plexity of the state space and the difficulty in path explo-
ration. For pwnme, it needs to take out the fake chunk from
the FastBin chain, and then, RELAY can calculate the
shortest path A-A-A to complete the task. However, Revery
directly uses fuzzing to search for the target state, which may
repeatedly trigger another high-frequency path A-F-A-F. On
this path, we cannot quickly take out the target chunk, which
reduces the efficiency of promoting heap layout, and may
even cause the program to exit after reaching the allowed
maximum number of allocations.

(2). Failed Cases. RELAY currently supports four modes,
does not combine the global analysis of the program suf-
ficiently, and arranges the corresponding fixed mode
according to the current program state. The contradiction
between the complexity of the program path and the fixed
mode brings confusion to the exploitation. If there are
special restrictions on the program paths, the migration path
obtained according to the exploit pattern may not be driven.
For example, RELAY built exploit modes for 4 programs in
the table, but these programs cannot be driven in a real
environment.

For example, for bookstore, the size of the allocation is
fixed and does not belong to the FastBin range. And the
overflowed content is not controlled, which makes the
conventional Hof/Unlink/FastBin attack impossible. The
solution is to destroy the size metadata and cause a chunk
overlap; then, the content of the format string can be
modified, and AAW can be triggered by the format string
vulnerability. For babyheap, the size of allocation cannot
exceed 0 x 58, and the callable fake chunk cannot be directly
constructed on the FastBin chain. But the TopChunk pointer
at Main_Arena [57] can be modified with FastBin attack to

cause an arbitrary address allocation. For wheelofrobots, the
callable fake chunk also cannot be constructed directly.
Attackers can only launch chunk overlape»FastBin attack to
modify one control variable to achieve heap overflow of any
length and then employ Unlink to achieve AAW. Similarly,
for babypwn, attackers also need to modify a variable that
controls the allowed number of allocations with FastBin
attack, and then the malloc_hook can be modified through
FastBin attack again.

It can be seen that if there are strict restrictions on the
program path, a single exploit pattern can no longer fully
guide the exploitation. And more flexible combinations of
multiple vulnerabilities and multiple patterns are required to
bypass the restricted path and reactivate the exploitation. In
future work, we will consider adding some ML (machine
learning) methods to build the overall perception of the
program paths and explore ways of organizing multiple
vulnerabilities and exploit patterns to approach the target
heap layout.

5.4. Efficiency of RELAY (RQ2). Previously, we analyzed the
effectiveness of RELAY and we assess its efficiency in this
section. The working time of RELAY mainly comes from
MPC and MPD modules, so we conducted an evaluation for
the performance of these two modules and analyzed the
factors that may have affected their performance.

First, we evaluated the impact of the introduction of
driving cost on MPC, MPD, and overall speed. We selected
13 CTF programs and recorded the working time of the
MPC and MPD modules under the two conditions of firstly
using the driving cost (C,) and then of not using it (C,). For
C,, the MPC module introduced the time consumption of
calculating the driving cost (mainly from the path explo-
ration of fuzzing tools), and the MPD module attempts to
drive the migration path of the optimization set P in
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ascending order for driving cost. These experimental results
are reflected on the right bar of Figure 6 for each program.
For C,, the MPC module does not need to calculate the
driving cost, and the MPD module attempts to drive the
migration path in the set P with a random selection
strategy. The results of these experiments are recorded on the
left bar of Figure 6 for each program.

Figure 6 shows the experimental results. From the
horizontal comparison, although the introduction of driving
cost increases the working time of the MPC module, the total
exploitation time is reduced. During the experiment of C,,
we calculated the standard deviation o for the weight of the
MOP graph edges for each program. Then, we further found
that, for a program with more uneven weight distribution on
the edges in the MOP graph (i.e., with a larger o), there is a
more obvious reduction in the total exploitation time from
C, to C,. Therefore, we infer that the introduction of driving
cost can effectively improve the efficiency of the system, and
this improvement is obvious when processing programs
with an uneven distribution of complexity for branch
constraints.

In addition, in terms of longitudinal comparison, no
matter under C, or C, conditions, MPC has a small working
time, and there is no large fluctuation in the time for dif-
ferent programs. So we infer that the efficiency of the MPC is
only slightly affected by the program logic. On the contrary,
MPD takes a lot of time to drive the migration path. We
calculated the average driving cost y for the migration paths
during the experiment of C,. It can be clearly seen that the
higher the driving cost, the more time the MPD takes, which
indicate that the performance of the MPD is greatly affected
by the program logic. In conclusion, we can infer that the
MPC is a low-consumption and stable module. Below, we
continue to discuss the performance improvements brought
by the MPC to the system.

In the process of promoting the heap layout, the largest
difference between RELAY and other tools such as Revery is
that RELAY adds a guide of the migration path for the heap
layout driver (i.e., adding the MPC module). The key for
RELAY to driving heap layout efficiently is that the MPC can
extract migration paths that satisfy structural constraints
from the huge path space. Since we lack the experimental
data of other tools, we expect to perform a self-contrast
experiment on the MPC module to observe the reduction
effect of the program path space after the MPC module
works so that we can evaluate the performance improvement
of RELAY compared to other tools.

The path space can be expressed as a set of tuples p;,d,;,
where path p; = 0y,0,,...,05), (0; € (A,F,R,W,V))and
d; represents the driving cost of path p;. For the two path
spaces and G,, the efficiency ratio of the complete explo-
ration can be expressed as follows (N, M represent the total
number of paths for G, and G,, respectively):

_ X4,
=S5
ijl d;

If assuming that the driving costs of all program paths
are the same, this expression can be simplified to # = M/N,

1 (17)
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which indicates that the efficiency of exploring path space is
inversely proportional to the number of paths in path space.

Based on this assumption, we conducted a separate test
on the MPC module. For each program, within a 2-minute
limit, we recorded the number of program paths tried by
MPC (denoted byg, and shown as the whole bars in
Figure 7) and the number of migration paths that can satisfy
the structural constraints (denoted by g, and shown as blue
segments in Figure 7). We can suppose that, for those tools
without the MPC function, the path space to be explored is
G, (g, for size); then, the path space of the same program to
be explored by RELAY with MPC function is G, (g,for size),
so the efficiency ratio of RELAY to other tools is rough
n=91/9,-

As shown in Figure 7, it can be seen that, after using
MPC, the program path space is roughly compressed to less
than 1/5. The efficiency of exploring the path space is im-
proved accordingly, which means we can promote the heap
layout more effectively. We accept this conclusion under the
assumption that all driving costs of program paths are the
same. In fact, MPC can build the path space G,° composed of
migration paths with low driving costs, and according to the
previous formula, the efficiency of exploring space G, will
be higher than G,.

6. Related Work

As described above, our work focuses on assessing
exploitability for metadata corruption vulnerabilities in
applications. It should be noted that RELAY is the first
system that addresses AEG problems aimed at metadata
corruption vulnerability characteristics in user-level appli-
cations. As a result, the works most relevant to ours is heap-
based AEG solutions. In the following, we describe the
existing works of this type and discuss their limitations.
In order to find exploit primitives for metadata cor-
ruption in the allocator, Repel et al. [11] described the first
method of AEG for heap overflow. They connect the driver
to the target allocator and then use summary execution to
discover exploit primitives. To explore weaknesses in the
heap allocator, Eckert et al. [29] proposed a system Hea-
pHopper for discovering primitives in the allocator and
building an exploit in the context of a driver connected by an
allocator. In order to solve the derivative problem of heap
exploits, Wang et al. [24] described Revery, a system that
employs a layout-oriented fuzzer and control-flow stitching
technique to discover the exploitable state in the divergent
path instead of the crash path. Their approach can generate
some heap exploits, but only in the case where their fuzzer
randomly reaches the required heap layout. To facilitate the
exploitation of kernel UAF vulnerabilities, Wu et al. [58]
constructed FUZE, a system employing kernel fuzzing and
symbolic execution to identify useful system calls for kernel
UAF exploitation, and utilize dynamic tracking and an off-
the-shelf constraint’ solver to guide exploitation. In order to
promote the exploitation of kernel vulnerabilities, Chen et al.
[27] proposed SLAKE, which utilizes static and dynamic
analysis techniques to identify kernel objects and useful
system calls, and then modeled common exploitation
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methods to manipulate the slab layout. In order to connect
an exploitable state to trigger the execution of a code-reuse
payload, Wu et al. [59] constructed Kepler, which accepts an
input including control-flow hijacking primitive and
bootstraps any kernel ROP payload by symbolically stitching
an exploitation chain with corresponding gadgets. In order
to automatically generate exploits for heap overflow vul-
nerability in the PHP interpreter, Heelan et al. [28, 60]
employed a pseudorandom black-box search method to
manipulate heap layout and described an automatic solution
Gollum, which contains a number of novel ideas, including
the mining of tests for code fragments that provide prim-
itives, lazy resolution of heap layouts, a genetic algorithm for
heap layout manipulation, and a completely gray-box ap-
proach to automatically generate exploits.

7. Conclusion and Future Work

Given that the organization of heap metadata is usually
complicated, it is vulnerable to variant forms of heap-related
attacks. Despite its importance, fewer efforts have been made
to analyze whether heap metadata could be corrupted and
exploited by cyberattackers. To improve software quality and
ensure cybersecurity, we proposed RELAY, a software testing
framework to assess the exploitability of metadata corrup-
tion vulnerabilities, by simulating human exploitation be-
havior. Experiments suggest that RELAY can effectively
evaluate hazardous degree for programs containing met-
adata corruption vulnerabilities and works more efficiently
compared to other state-of-the-art automated tools. How-
ever, RELAY does not work properly in some cases since the
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contradiction between the complexity of the program paths
and the unicity of the exploit patterns confuses the evalu-
ation (detailed in the Failed Cases in Section 5.3.2). In future
work, we will try to add the ML method to help RELAY build
the overall concept of program paths and explore ways of
organizing multiple vulnerabilities and exploit patterns, to
enhance the capability of RELAY. Besides, we find that the
current discussion on the security issues in Internet of
Things (IoT) systems is very intense, and we can also see that
some excellent research results [61-65] have been published.
In the course of studying the above work, we have found that
there are some similarities with our research direction in this
field, such as the path exploring and constructing method.
Therefore, in future work, we will consider integrating the
method of exploitability evaluation for vulnerabilities with
the analysis method of IoT security issues.
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