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Abstract—Nowadays, with the size and complexity of software 
increasing rapidly, vulnerabilities are becoming diversified and 
hard to identify. It is unpractical to detect and exploit 
vulnerabilities by manual construction. Therefore, an efficient 
automatic method of detecting and exploiting software 
vulnerability is in critical demand. 

This paper implements Pangr, an entire system for automatic 
vulnerability detection, exploitation, and patching. Pangr builds 
a complete vulnerability model based on its triggering behavior 
to identify vulnerabilities and generate exp or exploit schemes. 
According to the type and feature of the vulnerability, Pangr can 
generate the specific patch for the software. In the experiment, 
we tested 20 vulnerable programs on 32-bit Linux machine. 
Pangr detected 16 vulnerabilities, generated 10 exp, and patched 
14 programs. 

Keywords—automatic detection; automatic exploit generation; 
software security; automatic patching 

I.  INTRODUCTION  
With the development and popularization of machine 

learning and big data processing technologies, the research and 
application of artificial intelligence have entered a new upsurge. 
Cyberspace and software security is highly sensitive to new 
technologies. In 2010, Stuxnet [2] infected more than 45,000 
networks worldwide.  In 2017, WannaCry ransomware [3] 
exploited the risk of Vulnerability "EternalBlue" from NSA 
leakage to spread across at least 150 countries worldwide, and 
more than 100,000 machines were infected. The outbreak of 
these events also reveals the gradual emergence of network 
threats and the trend of intelligent development. The strength 
of artificial intelligence is that they can find and fix bugs much 
faster than human beings, and automating this task can 
contribute to greater system and application security at a lower 
cost, dramatically increasing the agility of network defense. 

DARPA organized the world's first Cyber Grand 
Chanllenge [4] at Defcon 2016 in the United States [4]. The 
goal of CGC is to establish an automated offenses and defenses 
system that can detect, exploit and repair software 
vulnerabilities, in contrast to the current vulnerability-based 
software security offensive and defensive which relies heavily 

on people. Seven teams participated in the final, in which a 
team named Shellphish posted the source of their tool angr [1]. 
Although computer programs during the CGC Finals and 
DEFCON CTF have illustrated the ability to make outstanding 
exploits and fixes, they still cannot compete with human 
security experts for detecting and exploiting vulnerabilities. 
CGC can be regarded as a milestone in network security’s 
automatic offensive and defensive. Later, under the guidance of 
the Chinese Central Network Information Office, a company 
named YongXinZhiCheng held a CGC-like contest, which is 
officially called Robo Hacking Game. 

angr is a binary code analysis tool that can automate the 
analysis of binaries. The main challenge to Find and exploit 
vulnerabilities is the difficulty of visualizing the data structures 
and the information of control flow in binary code. angr is a 
python-based binary vulnerability analysis framework that 
integrates a variety of existed analysis techniques (eg, KLEE [5] 
and Mayhem [6]), which performs binary and system state 
simulation by loading and analyzing a binary. These techniques 
include static analysis (Control Flow Graph [7], Value Flow 
Graph, Backward Slicing, etc.), dynamic analysis (symbolic 
execution [8], debugging) and constraint solving [9]. 

We create Pangr, a framework of automatic exploit system. 
angr is just a platform to perform symbolic execution, so it 
cannot find any vulnerability. Pangr adopts angr’s symbolic 
execution to model behavior of vulnerability conveniently. 
Pangr can analyze the behavior of binaries and perform 
automatic detection and exploitation of format string, stack 
overflow and heap overflow vulnerability, and generate the 
corresponding protection schemes. Tools such as AEG [10], 
APEG [11], Mayhem [6], PolyAEG [13] failed to exploit heap 
overflow vulnerability and did not consider repairing it. Pangr 
also automatically identifies functions and exploits the 
vulnerability in a variety of ways. 

II. CHALLENGE 
The development of Pangr faces many challenges. One is 

about operating environment. Target binaries are running on a 
commonly used operating system (binaries are compiled and 
tested in 32-bit Linux Centos 6.5 version), and it is different 
from DECREE system used in DARPA CGC, a simplified 
version of common operating system. As a result, the Sponsored by National Natural Science Foundation of China (61472437)
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vulnerability exploiting approach of tools in CGC is relatively 
simple. In a real Linux system, the exploitation becomes more 
complicated. 

Second problem is about state explosion. As we know, the 
number of path branch in a binary grows exponentially. Pangr 
adopts the technique of symbolic execution in angr, and 
symbolic execution will execute every path branch of a binary. 
That causes a state explosion. Strategies adopted by angr are 
veritesting [14] and function summary. However, they can only 
mitigate the state explosion. To solve the problem of state 
explosion, we must solve the problem of function identification 
first, and adopt a new path optimization strategy. 

The third problem is related to vulnerability detection. In 
the past, AEG tools stopped when it found one vulnerability. 
Pangr's goal is to detect all vulnerabilities in the target binary 
as much as possible, which makes sense for software security 
defense. In addition, how to classify vulnerabilities correctly is 
also a problem. The VUzzer [15] adopted !Exploitable [16] to 
analyze the generated crash, but the result is not satisfactory, 
and most of the discovered crashes are unknown. Pangr needs 
to determine the type of vulnerability for the target binary 
during detection so that different exploits can be implemented 
according to the specific vulnerability type. 

The fourth is the problem of exploiting vulnerability. In the 
past, some AEG tools only got Proof of Vulnerability (PoV), 
which was only proved in theory, and they did not really 
exploit it. Some tools like APEG and PolyAEG could exploit 
stack overflow, format string, but did not take the ShellCode 
layout into account. For example, what if there is no sufficient 
space for ShellCode or there is a significant pointer on the 
stack. None of the tools above can exploit heap overflow 
vulnerability. 

The last problem is about defense technology. We have to 
ensure software security without source code. Most of the time, 
if you find a vulnerability, you have to wait for the vendor to 
fix the vulnerability. That would take a long time. During the 
waiting time, the vulnerability might have already been 
exploited. Previous AEGs rarely consider the issue of defense, 
some are violent patching, which may affect target binary’s 
functionality itself. How to generate correct defense rules or 
intelligent patch, which does not affect the functionality of the 
binary, is a serious problem. 

In order to diversify exploits, Pangr turned off stack 
protection (DEP) and address space layout randomization 
(ASLR). DEP can be bypassed by Return-oriented 
programming [34]. ASLR can be bypassed by leaking 
vulnerability. Neither of them is the key point of this paper. 
Successful situations of exploiting are divided into five types. 
One is crash. The second is to set the EIP as a specified address. 
EIP is a pointer to an address where the program is executing. 
The third is to read at any address. The fourth is arbitrary 
address write and the final goal is to obtain a shell. 

III. OVERVIEW 
Pangr is composed of five elements. As Figure 1 shows, 

after a binary gets an input, the crash engine tests the binary 
and finds a new input that can make the program crash. The 

crash data will then be sent to the test engine and vulnerability 
analyzer to check its validity and perform further analysis. The 
initializer preprocesses the binary file before symbolic 
execution. The vulnerability analyzer then uses symbolic 
execution to detect vulnerability exploitable based on the 
preprocessed information. If an exploitable vulnerability is 
found, it will be sent to vulnerability exploiter to generate exp. 
After that process is completed, defense engine generates a 
defense rule or a binary patch. 

 
Figure 1. Architecture 

This article has following 4 contributions: 
• It proposes behavior-based vulnerability detection 

modeling, which can detect and triage vulnerability 
effectively. This behavior-based modeling can be used 
to detect heap overflow vulnerability and generate 
corresponding exploiting scheme. Up to now, no 
academic institution can exploit heap overflow 
vulnerability automatically. 

• The system can automatically identify library functions, 
effectively reducing the complexity of symbol 
execution. 

• This article has achieved different level of vulnerability 
exploitation. It defines five criteria for successful 
exploiting, crash, EIP hijacking, arbitrary address read, 
arbitrary address write and a shell returning. 

• Pangr can generate defense rules (length rules, data 
rules) and a patch for corresponding binary according to 
the program's vulnerability type. 

IV. AUTOMATIC VULNERABILITY DETECTION 
The stage of vulnerability automatic detection involves 

three engines, crash engine, initializer and vulnerability 
analyzer. Crash engine is responsible for binary fuzzing [32]. If 
a crash is found, it will be sent to the vulnerability analyzer for 
further analysis and to the test engine for testing. Initializer is 
responsible for some initializing work, such as the function 
identification and function hooking work. Vulnerability 
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analyzer will further detect and analyze the vulnerability. In the 
rest of this section, this paper will introduce three engines and 
the technology used in detail. Note that, this article takes 32-bit 
Linux programs for example. 

A. Crash Engine 
Crash engine uses Symbolic-execution assisted fuzzing, 

which refers to Driller [17]. Symbolic-execution assisted 
fuzzing is based on AFL fuzzer [18] and angr that serves as a 
symbolic tracker. By monitoring AFL executes, Driller can 
decide when to begin symbolic tracking of specific inputs 
generated by AFL. When AFL fails to find a new state 
transition after a round of input mutation, it calls angr to 
perform symbolic execution, tracing the specific input provided 
by the AFL. Whenever a conditional instruction such as "cmp" 
is encountered, there might be a new branch. If the new branch 
is not known to AFL, it will invoke the SMT solver [9] to 
generate an input to reach the new path and feed the input back 
to the AFL. Then it continues the fuzzing test. The 
disadvantage of fuzzing is that only shallow paths are generally 
explored, for many generated inputs from AFL cannot pass the 
check of conditional instructions at all. Symbolic- assisted 
fuzzing takes advantage of symbolic execution on semantic 
understanding, and fuzzing’s short executing time. 

B. Initializer 
Initializer is mainly responsible for preparing the symbols 

before symbolic execution. As we all know, symbolic 
execution’s biggest problem is state explosion. In a binary file, 
with the execution of the program, the program will encounter 
a lot of conditional instructions, resulting in an explosive 
increase of branch. angr’s symbolic execution will execute 
each branch. If there are too many branches, the time 
consumed will increase, and the memory will be quickly 
depleted to preserve the status of every branch. Pangr needs to 
avoid exploring unrelated code, such as the code in link library, 
as much as possible. Thus Pangr needs to identify library 
functions in statically compiled binaries accurately. 

Byteweight [20] proposed a more accurate method of 
function identification than Hex-Ray's Interactive Disassembler 
Pro (IDA), but only detected the existence of a function and 
Byteweight was not sure what it was. John McMaster [19] 
mentioned in the paper that using the FLIRT signature 
algorithm to detect known malware works well.Pangr's method 
is to calculate a CRC16 checksum for each function, and then 
compare the CRC values of the two functions to figure out 
whether they are the same function, which can solve the 
problem of large search volume. If a function does not contain 
variables, then you can take the first N bytes of the function to 
do CRC check. Pangr sets the corresponding variable to 0 or 
does not deal with it.  

Initializer works by generating CRC16 signature for 
corresponding library functions of the target binary and then 
identifying library functions based on the generated signatures. 
That has been reported to the angr team and they have begun to 
improve angr. 

C. Vulnerability Analyzer 
Vulnerability analyzer is the most important part in Pangr, 

which applies the novel behavior-based modeling. Pangr 
models the behavior of format string, stack overflow and heap 
overflow vulnerability, respectively, and exploits the intrinsic 
semantics triggered by vulnerabilities during symbolic 
execution to find valuable loopholes. After finding a vulnerable 
point, which is conducive to the vulnerability exploitation later, 
the vulnerability analyzer records input values and the context 
information, such as registers, stack, heap and environment 
variables, etc. In the rest of this section, this paper will 
introduce the novel behavior-based modeling specifically. 

1) Format String Vulnerability 
The format string vulnerability [21] [22] typically occurs in 

the following types of functions: 

TABLE I.  FUNCTIONS THAT CAN CAUSE FORMAT STRING 
VULNERABILITY 

Function name Calling convention 
Format 

argument’
s location 

printf int printf(const char *format,...); 1 

sprintf int sprintf( char *buffer, const char 
*format, [ argument] … ); 2 

snprintf int snprintf(char *str, size_t size, const 
char *format, …); 3 

 Once the format parameter is affected by input value, the 
attacker may control the format parameter. It means that the 
target binary contains format string vulnerability. According to 
the characteristics of compiling rules, general format parameter 
is a value that has already been determined when a program is 
written. It is stored in a binary section such as .data and .bss, so 
it is in the program’s own address space. Generally, user’s 
input value is located in the stack or heap, and stack and heap 
space address is beyond the scope of the program itself. Thus, 
in a 32-bit x86 system, the data dependency graph [7] [31] is 
generated first and then the corresponding format parameter on 
the stack is checked only when the program executes to a 
suspicious library function point. If the format parameter is 
affected by input, then the binary can be judged as format 
string vulnerability, and the context information is recorded at 
this time. 

2) Stack Overflow Vulnerability 
Stack overflow [23][24] is a kind of vulnerability caused by 

stack buffer overflow. This may cause data overrides or 
execution flow hijacking. As is shown in Listing 1, main() 
function inputs a string of which length is greater than 20. 
Then it calls the vul() function, and str string overflows buf 
buffer. The stack structure is shown in Figure 2.  

Anyway, the final result of a stack overflow is to make the 
ip pointer point to a user-controllable address. Then during 
symbolic execution, it is most likely to be stack overflow 
vulnerability once Pangr finds out that ip is affected by input. 
Because format string and heap overflow vulnerability cannot 
directly hijack the program control flow. Pangr also records the 
context information. 

1.void vul(char *str) 
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2.{ 
3. char buf[20]=""; 
4. char *ptr; 
5. ptr=malloc(0x10); 
6. strcpy(buf,str); 
7. read(0,ptr,0xf); 
8.} 
9.int main() 
10.{ 
11. char str[100]; 
12. read(0,str,100); 
13. vul(str); 
14. return 0; 
15. } 

Listing 1. Stack overflow vulnerability 

 
Figure 2. The layout of the stack 

3) Heap Overflow Vulnerability 
Heap overflow [25][26] is a kind of vulnerability caused 

by a heap buffer overflow. As it doesn’t cause crash, so it is 
difficult to detect. This may cause next heap’s content or heap 
structure to be overwritten. This type of vulnerability is 
difficult to detect, for it cannot directly lead to a crash, and 
conditions to trigger it are far more complicated. As is shown 
in Listing 2, the main() function first allocates a heap block 
and then invokes the get_str() function to read data to the heap 
block. Obviously, if the requested heap block has only 8 bytes, 
the input of which length is 0x1f is copied to the heap block, 
causing an overflow. Pangr's strategy is that, in the symbolic 
execution process, once it encounters a program point where 
malloc() function is called, it  records the address of heap 
block and size into the GlobalChunkArr array. Just like 
malloc(num), if num is a certain value, then it can be directly 
recorded. If num is a tainted value (affected by input value), 
Pangr uses SMT solver to calculate the smallest value and 
record it. And then it continues symbolic execution. If there is 
an instruction writing to a chunk recorded in globalChunkArr 
array, it might be a string copying operation. The string 
copying operation is generally implemented by library 
functions or loops, as is shown in Listing 2. These library 
functions include read, strcpy, memcpy, sprint, snprintf etc. 
During the copying process, once Pangr finds that an access 
crossing the chunk boundary, Pangr regards it as heap 
overflow vulnerability. 

1.int get_str(char *str) 
2.{ 
3. int i=0; 
4. char buf[0x20]=""; 
5. read(0,buf,0x1f); 
6. strcpy(str,buf); 
7. return 0; 
8.} 
9.int main() 
10.{ 
11. int size; 
12. char *ptr; 
13. printf("Please input the chunk size:"); 
14. scanf("%d",&size); 
15. if (size<8) size=8; 
16. ptr=malloc(size); 
17. get_str(ptr); 
18. return 0; 
19.} 

Listing 2. Heap overflow vulnerability 

V. AUTOMATIC VULNERABILITY EXPLOITATION 
Methods used in vulnerability exploiter are divided into 

three kinds. In fact, there are many ways to exploit, and some 
ways may be relatively rare. This paper only discusses more 
general ways. Pangr's scalability is good, so you can easily add 
new models later. 

A. Format String Vulnerability 
Exploiting format string vulnerability is mainly based on 

three features of format string. One is to use "%s" to read data 
from the target memory address. The second is to use width 
modifier "$" to control the output number of characters. The 
third is to use "%n" to write the output number of characters to 
the target memory address. Note that "%n" writes 4 bytes at a 
time, "%hn" writes 2 bytes at a time, and "%hhn" writes 1 byte 
at a time. For example, "%8$s" can read the value at the 
address that the eighth parameter on the stack points to. 

B. Stack Overflow Vulnerability 
There are two ways to exploit stack overflow vulnerability. 

One is to use ShellCode, and the other is to construct ROP 
chain, which refers to Q [27]. 

There are two problems with ShellCode building. One is 
that the stack may contain important data and a reference error 
occurs if it is overwritten. As is shown in Listing 1, if strcpy() 
results in ptr being overwritten, a pointer reference error will 
occur before the vul() function returns. Thus you cannot 
successfully hijack control flow. The second problem is that 
stack space is not enough to put down a whole ShellCode. As 
is shown in Figure 2, buf and the area behind ret_addr can 
hold ShellCode. Just buf area is obviously not enough. Pangr 
implements storage of segmenting ShellCode to solve the 
problem of space fragmentation. As is shown in Figure 3, 
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ShellCode = ShellCode0 + ShellCode1. There are two kinds of 
ShellCode arrangement solutions for the vulnerability in 
Listing 1. When automatically arranging ShellCode, Pangr can 
segment the original ShellCode intelligently, in order to make 
full use of the controllable space. At the same time, Pangr 
should pay attention to stack information recovery. *ptr 
pointer must be a valid address, but cannot be replaced by 
non-meaningful padding characters. Directly covering the 
return address will be able to achieve eip controlling, and 
ShellCode can lead to crash, arbitrary address read, arbitrary 
address write and shell access.Furthermore, another tool by 
ShellPhish team named angrop can be used to construct ROP 
chain to bypass DEP protection [12]. 

C. Heap Overflow Vulnerability 
Heap overflow does not directly cause the return address 

being covered, so it is very complicated to exploit it. There is 
no research institutes or academic articles having achieved 

automating exploiting heap overflow vulnerability.  

 
Figure 3. Layout of ShellCode 

The difficulty to exploit heap overflow reflects on two main 
aspects. First, heap management program is very complicated. 
Heap management program is a management procedure 
between system and user, and it is to achieve efficient 

 

TABLE II.  FEATURES OF HEAP OVERFLOW VULNERBILITY 

Feature Double 
Free 

Forging 
chunk unlink Shrinking 

free chunks 
House of 
spirit 

House of 
lore 

House of 
force 

House of 
einherjar 

Overlapped 
chunk 

Repeatable malloc ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Repeatable edit ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✔ 

Chunk malloc size Fast bin Fast bin any Large chunk 
(>=256) Fast bin Small chunk 

Top 
chunk 
(big) 

Not limited Not limited 

Overflow length any any >=5 >=1 any >=32 or 
UAF >=8 >=5 >=5 

free() ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ 

Repeatable free() ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ 

Use-after-free ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘ 

Controlling chunk 
pointer ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ 

Controlling other 
space ✘ ✘ ✘ ✘ ✔(stack) ✔(stack) ✘ ✔(stack) ✘ 

Existing a pointer 
to malloc chunk 
(not on stack) 

✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ 

 
management of heap space. It reduces user to frequently 
allocate and release heap space, improving executing speed 
and resource utilization. Second, there are a lot of security 
checks in the heap management program. Once Pangr fails to 
place the correct data in the corresponding location when 
forging a heap chunk, it cannot pass the heap security check. 

Taking the flexibility and complexity of the heap exploiting 
into account, Pangr does not directly produce an exp that can 
be used, but according to characteristics of the vulnerability, it 
automatically generates an exploiting scheme to guide people 
to write a valid exp. Pangr divides methods of heap exploiting 
into 9 types, and defines 10 kinds of feature. Then Pangr 
generates exploiting schemes based on features the 
vulnerability has. If the vulnerability satisfies too many 
features defined, then there might be several exploiting 
schemes. Specific method of exploiting heap vulnerability is 

already described in [28]. The features defined are shown in 
Table 2. 

9 schemes above are all by forging structures of heap 
chunks to cheat the heap management program to write a 
given value at the target address. Then you can change normal 
function address that will be called on .got table to system 
address. You can choose those normal functions like atoi or 
free. Finally, you can get a shell access. 

VI. AUTOMATIC VULNERABILITY PATCHING 

Defense engine uses two strategies. One is to generate 
filtering rules, using regular expressions to filter the input. The 
advantage of filtering rules is that they do not affect the 
program's own function. However, if the binary is an 
interactive program, usually one interaction triggers 
vulnerability at a certain step. Filtering rules do not only filter 
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out the input at this step, but inputs at each interacting step are 
filtered out. That may lead to false filtering. The second 
strategy is automatic patching. You can filter out inputs at 
certain program points, but the disadvantage is that it may 
affect binary’s function. In the following, Pangr introduces 
strategies to patch binaries automatically and correctly. 

Pangr uses patchkit to patch binary. patchkit provides a 
python interface for patching binary files, so that you can 
directly modify binary code, inject code, and hook functions. 
According to the vulnerability type detected by vulnerability 
analyzer, defense engine applies different patch strategies 
without affecting the functionality of the binary itself. For 
format string vulnerability, Pangr filters characters such as 
"%n" and "%s" at the address of the vulnerability such as printf 
function. Pangr can also add a "%s" argument to the vulnerable 
function. For stack overflow vulnerability, Pangr modifies its 
length parameter if the overflow is caused by strncpy or 
memcpy functions. Pangr can replace gets with read, 
preventing copying overflow or overwriting the return address 
and other important data. For heap overflow vulnerability, 
Pangr can limit the copy length based on the chunk size 
recorded before. Pangr can also apply for more heap space 
when finding a malloc function, and it can replace free function 
with empty instructions to prevent exploiting. 

VII. EVALUATION 
Pangr tests 20 binaries from RHG competition, including 

various types of vulnerability mentioned above. Each binary’s 
size is about 500K or much more and 20 binaries are 32-bit 
Linux programs, statically compiled. All receive data from 

standard input and send the data to standard output. The 
experiment is performed on an Intel(R) Core(TM) i7-4790 
3.60GHz machine with 8GB memory and 64-bit Ubuntu OS 
which kernel is 4.4.0. 

A. Test crash engine 
The purpose of this experiment is to compare crash 

engine’s test result with other techniques. Crash engine applies 
fuzzing and symbolic execution like Driller. After the 
experiment, there are three major findings. The test results can 
be found in Table 3. A total of 15 crashes were found in 20 
binaries. Fuzzing found 14 crashes, and SE+fuzzing found 15 
crashes. As you can see, in addition to the 15th and 20th 
binary, SE+fuzzing (Pangr) found vulnerabilities faster than 
simply using fuzzing, which shows that symbolic execution 
helps to improve fuzzing’s efficiency. SE+fuzzing (Pangr) 
found a vulnerability in the 19th program, which fuzzing did 
not find. After a manual analysis of this binary, we find that it 
encrypts the input and checks the prefix of the encrypted input. 
Only if an input passes the check can it trigger a stack 
overflow vulnerability, which means that simply using fuzzing 
is difficult to make the binary execute a deeper function. 
Symbolic execution can help fuzzing explore unknown codes, 
so as to discover hidden vulnerabilities more effectively. 
SE+fuzzing  (Pangr) costs much less time than just fuzzing 
does when testing complicated binaries such as 1th, 8th, 12th 
and 16th. It shows that Symbolic-execution assisted fuzzing is 
more effective to detect vulnerabilities in complicated binaries. 

 

TABLE III.  VULNERABILITIES FOUND AND TIME SPENT 

Number Binary name Vulnerability Fuzzing SE+Fuzzing SE Exploitable 

1 b64_encode_1 Crash 5.0380589962 5.04984593391 X ✘ 

2 Equation_Parser_bad_index Crash 109.633465052 25.1422688961 X ✘ 

3 Equation_Parser_overflow_ROP Stack 591.431312006 230.345306759 97.9112250805 ✔ 

4 Equation_Parser_overflow  Stack 431.472472906 159.838685989 6.58338212967 ✔ 

5 HTML_filter_INTOverflow_eip_1 None None None None None 

6 HTML_filter_INTOverflow_eip_2 Stack X X X ✘ 

7 notes_DoubleFree Heap X X 791.403729102 ✘ 

8 Read_Httpd_Log_1 Crash 10.113517046 6.04957199097 X ✘ 

9 YY_IO_BS_003_ROP Stack 83.7479410172 55.3512039185 6.92026495934 ✔ 

10 YY_IO_BS_005_eip Stack 59.330696106 19.1218309402 7.37649106979 ✔ 

11 _81_pwn01 Stack X X X ✘ 

12 _83_pwn03 Crash 9.07820081711 5.04027295113 X ✘ 

13 _86_pwn06 Stack X X X ✘ 

14 _88_pwn08 Stack 691.4743011 685.06931901 13.7531511784 ✔ 

15 _89_pwn09 Format string 57.3135669231 63.3263599873 5.85865688324 ✔ 

16 _90_pwn10 Heap 6.05639815331 5.05384206772 27390.9301628 ✔ 
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Number Binary name Vulnerability Fuzzing SE+Fuzzing SE Exploitable 

17 _94_pwn14 Stack 378.135900021 19.1248691082 X ✘ 

18 _95_pwn15 Heap 84.483536005 61.3487529755 29831.2839019 ✔ 

19 _103_pwn23 Stack X 617.341187954 906.839201837 ✔ 

20 _105_cb Stack 8807.79094815 10318.6179779 23017.6372128 ✔ 

 

 
Figure 4. Recognition of Pangr and IDA 

B. Test function recognizing 
The main goal of function recognizing is to improve the 

speed of symbolic execution, but not to exceed IDA. To test 
the effectiveness of Pangr on function recognition, we tested 
these 20 programs with IDA and Pangr respectively. 
Interactive Disassembler Professional, often referred to as IDA 
Pro, or IDA for short, is now one of the best static dissembling 
software for many members of the 0day world and ShellCode 
security analysts as an indispensable weapon. IDA Pro is 
interactive, programmable, scalable, multiprocessor and it can 
run on Windows, Linux, WinCE and MacOS platform for 
program analysis. Its ability to recognize functions is the best 
currently available. We compared initializer’s ability to 
identify library functions with IDA and found that IDA cannot 
identify version libc-2.12’s library. When we generate the 
corresponding 2.12 version of the library function signature, 
IDA works well. Pangr’s average accuracy to recognize library 
functions reached 30.45%, slightly higher than IDA 30.16%. It 
is found that IDA does not even recognize some common 
functions such as printf, scanf and memset, while Pangr can do 
it. 

C. Test vulnerability analyzer 
Vulnerability analyzer is implemented using pure symbolic 

execution, of which the purpose is to provide necessary 
information for vulnerability exploitation, so only exploitable 
vulnerabilities can be detected. It cannot detect vulnerabilities 
that are not exploitable in the 20 binaries. For example, 1th, 
2th, 6th and 8th are memory access errors caused by an invalid 
address access. 5th will fall into an endless loop, resulting in 
collapse, and it cannot be exploited. Program logic in 11th, 
12th, 13th and 17th is too complicated that symbolic execution 
takes up too much memory, and machines with better 
performance may solve this problem. 

One format string vulnerability, seven stack overflow 
vulnerabilities and three heap overflow vulnerabilities were 

found out. The heap overflow vulnerability in 7th binary was a 
vulnerability that traditional fuzzing and symbolic execution 
techniques could not find out, for heap vulnerability usually 
cannot cause a crash. In this test case, you can see the 
advantages of behavior modeling. Vulnerability analyzer is 
fully implemented using symbolic execution  so its speed 
depends on characteristics of the vulnerability, the program's 
own complexity and machine’s performance. The test results 
can be found in Table 3. 

To sum up, our behavior modeling successfully found 
exploitable vulnerability, and even found heap vulnerability 
that other AEGs couldn’t find. 

D. Test vulnerability exploiter 
Pangr successfully generated exp for one format string 

vulnerability and seven stack overflow vulnerabilities, and the 
relevant exp could result in a crash, arbitrary address read, 
arbitrary address write, eip hijacking and shell returning. 
Pangr also generated relevant exploiting scheme for three heap 
vulnerabilities. A binary named notes_DoubleFree does not 
meet conditions of any exploiting scheme, so Pangr judged 
DoubleFree as not exploitable. 16th binary has four kinds of 
exploiting schemes, for it meets four characteristics, 
repeatable malloc, repeatable free, random malloc size, any 
byte overflow, and it has a value pointing to the malloc chunk. 
Four exploiting schemes are Unlink, Shrinking free chunks, 
House of force (assuming heap address known) and 
Overlapped chunk. The exploiting scheme of 18th binary is 
House of force. We manually construct exploiting scripts 
according to the schemes generated. The scripts achieve crash, 
arbitrary address write, eip hijacking and shell returning in 
16th and 18th binary. We cannot achieve arbitrary address 
read, for the binary itself does not have a read interface. 

Defense engine successfully generated patches for 14 
binaries and effectively prevent the crash error and remote 
shell access. Pangr did not find vulnerability in 5th, 6th, 7th, 
11th and 13th binary, so it cannot generate relevant patches. 
17th binary’s vulnerability is caused by brainfuck language 
[33] and this language is unfamiliar to Pangr, so it cannot be 
automatically patched. 

The final test results are shown in Table 4. 

TABLE IV.  PERCENTAGE OF THE OVERALL TEST RESULT 

Item Percentage 

Vulnerability by fuzzing 70% 

Vulnerability by SE+fuzzing 75% 

Vulnerability by SE 55% 
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Item Percentage 

Vulnerability by Pangr 80% 

Success of exploiting 50% 

Success of defense 70% 

VIII. DISCUSSION 
Pangr's crash engine found 15 vulnerabilities, one more 

than merely using fuzzing technology, and Pangr is much 
faster. Initializer engine has a slightly higher recognition rate 
for non-symbol binaries than IDA, which greatly speeds up 
symbolic execution. Vulnerability analyzer engine 
successfully discovered 11 program vulnerabilities, including 
3 heap overflow vulnerabilities, of which one heap 
vulnerability was not found in crash engine. Pangr's brightest 
spot is using symbolic execution to detect suspicious behavior 
of binaries and determine the type of vulnerability. The 
accuracy of this method is higher, for it can effectively 
identify exploitable vulnerabilities. At the meantime, it has 
high scalability, so researchers can easily add new models to it 
based on vulnerability’s behavior. Vulnerability exploiter 
generates corresponding exp or exploiting schemes for format 
string, stack overflow and heap overflow vulnerability. 
Defense engine effectively repairs vulnerabilities found. 

Pangr also has some deficiencies. The first, target binaries 
are 32-bit x86 programs, so platforms supported need to be 
expanded. Secondly, the speed is very slow, for Pangr adopts 
symbolic execution. Thirdly, the process of exploiting heap 
vulnerability is not automatic enough, for current heap 
overflow vulnerability is very complicated and diversified. We 
need to do further testing in the future. Fourthly, vulnerability 
modeling is not perfect. Models of other vulnerability types 
remain to be expanded. Fifthly, in terms of vulnerability 
exploiting, we need to consider bypassing system protection, 
like address space layout randomization. But DEP and ASLR 
can be bypassed by return-oriented programming and leaking 
vulnerability, which is not the key point of our research. Maybe 
we can do some research on automatic leaking address in the 
future. 
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