
Pangr: A Behavior-based Automatic Vulnerability
Detection and Exploitation Framework

Danjun Liu/s per 1st Author
College of Computer

National University of Defense and Technology
Changsha, China

liudanjun12@nudt.edu.cn

Jingyuan Wang, Zelin Rong, Xianya Mi, Fangyu Gai,
Tang Yong, Baosheng Wang

College of Computer
National University of Defense and Technology

Changsha, China
{wangjingyuan12, rongzelin12, mixianya09, gaifangyu15,

ytang, bswang}@nudt.edu.cn

Abstract—Nowadays, with the size and complexity of software
increasing rapidly, vulnerabilities are becoming diversified and
hard to identify. It is unpractical to detect and exploit
vulnerabilities by manual construction. Therefore, an efficient
automatic method of detecting and exploiting software
vulnerability is in critical demand.

This paper implements Pangr, an entire system for automatic
vulnerability detection, exploitation, and patching. Pangr builds
a complete vulnerability model based on its triggering behavior
to identify vulnerabilities and generate exp or exploit schemes.
According to the type and feature of the vulnerability, Pangr can
generate the specific patch for the software. In the experiment,
we tested 20 vulnerable programs on 32-bit Linux machine.
Pangr detected 16 vulnerabilities, generated 10 exp, and patched
14 programs.

Keywords—automatic detection; automatic exploit generation;
software security; automatic patching

I. INTRODUCTION
With the development and popularization of machine

learning and big data processing technologies, the research and
application of artificial intelligence have entered a new upsurge.
Cyberspace and software security is highly sensitive to new
technologies. In 2010, Stuxnet [2] infected more than 45,000
networks worldwide. In 2017, WannaCry ransomware [3]
exploited the risk of Vulnerability "EternalBlue" from NSA
leakage to spread across at least 150 countries worldwide, and
more than 100,000 machines were infected. The outbreak of
these events also reveals the gradual emergence of network
threats and the trend of intelligent development. The strength
of artificial intelligence is that they can find and fix bugs much
faster than human beings, and automating this task can
contribute to greater system and application security at a lower
cost, dramatically increasing the agility of network defense.

DARPA organized the world's first Cyber Grand
Chanllenge [4] at Defcon 2016 in the United States [4]. The
goal of CGC is to establish an automated offenses and defenses
system that can detect, exploit and repair software
vulnerabilities, in contrast to the current vulnerability-based
software security offensive and defensive which relies heavily

on people. Seven teams participated in the final, in which a
team named Shellphish posted the source of their tool angr [1].
Although computer programs during the CGC Finals and
DEFCON CTF have illustrated the ability to make outstanding
exploits and fixes, they still cannot compete with human
security experts for detecting and exploiting vulnerabilities.
CGC can be regarded as a milestone in network security’s
automatic offensive and defensive. Later, under the guidance of
the Chinese Central Network Information Office, a company
named YongXinZhiCheng held a CGC-like contest, which is
officially called Robo Hacking Game.

angr is a binary code analysis tool that can automate the
analysis of binaries. The main challenge to Find and exploit
vulnerabilities is the difficulty of visualizing the data structures
and the information of control flow in binary code. angr is a
python-based binary vulnerability analysis framework that
integrates a variety of existed analysis techniques (eg, KLEE [5]
and Mayhem [6]), which performs binary and system state
simulation by loading and analyzing a binary. These techniques
include static analysis (Control Flow Graph [7], Value Flow
Graph, Backward Slicing, etc.), dynamic analysis (symbolic
execution [8], debugging) and constraint solving [9].

We create Pangr, a framework of automatic exploit system.
angr is just a platform to perform symbolic execution, so it
cannot find any vulnerability. Pangr adopts angr’s symbolic
execution to model behavior of vulnerability conveniently.
Pangr can analyze the behavior of binaries and perform
automatic detection and exploitation of format string, stack
overflow and heap overflow vulnerability, and generate the
corresponding protection schemes. Tools such as AEG [10],
APEG [11], Mayhem [6], PolyAEG [13] failed to exploit heap
overflow vulnerability and did not consider repairing it. Pangr
also automatically identifies functions and exploits the
vulnerability in a variety of ways.

II. CHALLENGE
The development of Pangr faces many challenges. One is

about operating environment. Target binaries are running on a
commonly used operating system (binaries are compiled and
tested in 32-bit Linux Centos 6.5 version), and it is different
from DECREE system used in DARPA CGC, a simplified
version of common operating system. As a result, the Sponsored by National Natural Science Foundation of China (61472437)

705

2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th
IEEE International Conference On Big Data Science And Engineering

2324-9013/18/31.00 ©2018 IEEE
DOI 10.1109/TrustCom/BigDataSE.2018.00103

vulnerability exploiting approach of tools in CGC is relatively
simple. In a real Linux system, the exploitation becomes more
complicated.

Second problem is about state explosion. As we know, the
number of path branch in a binary grows exponentially. Pangr
adopts the technique of symbolic execution in angr, and
symbolic execution will execute every path branch of a binary.
That causes a state explosion. Strategies adopted by angr are
veritesting [14] and function summary. However, they can only
mitigate the state explosion. To solve the problem of state
explosion, we must solve the problem of function identification
first, and adopt a new path optimization strategy.

The third problem is related to vulnerability detection. In
the past, AEG tools stopped when it found one vulnerability.
Pangr's goal is to detect all vulnerabilities in the target binary
as much as possible, which makes sense for software security
defense. In addition, how to classify vulnerabilities correctly is
also a problem. The VUzzer [15] adopted !Exploitable [16] to
analyze the generated crash, but the result is not satisfactory,
and most of the discovered crashes are unknown. Pangr needs
to determine the type of vulnerability for the target binary
during detection so that different exploits can be implemented
according to the specific vulnerability type.

The fourth is the problem of exploiting vulnerability. In the
past, some AEG tools only got Proof of Vulnerability (PoV),
which was only proved in theory, and they did not really
exploit it. Some tools like APEG and PolyAEG could exploit
stack overflow, format string, but did not take the ShellCode
layout into account. For example, what if there is no sufficient
space for ShellCode or there is a significant pointer on the
stack. None of the tools above can exploit heap overflow
vulnerability.

The last problem is about defense technology. We have to
ensure software security without source code. Most of the time,
if you find a vulnerability, you have to wait for the vendor to
fix the vulnerability. That would take a long time. During the
waiting time, the vulnerability might have already been
exploited. Previous AEGs rarely consider the issue of defense,
some are violent patching, which may affect target binary’s
functionality itself. How to generate correct defense rules or
intelligent patch, which does not affect the functionality of the
binary, is a serious problem.

In order to diversify exploits, Pangr turned off stack
protection (DEP) and address space layout randomization
(ASLR). DEP can be bypassed by Return-oriented
programming [34]. ASLR can be bypassed by leaking
vulnerability. Neither of them is the key point of this paper.
Successful situations of exploiting are divided into five types.
One is crash. The second is to set the EIP as a specified address.
EIP is a pointer to an address where the program is executing.
The third is to read at any address. The fourth is arbitrary
address write and the final goal is to obtain a shell.

III. OVERVIEW
Pangr is composed of five elements. As Figure 1 shows,

after a binary gets an input, the crash engine tests the binary
and finds a new input that can make the program crash. The

crash data will then be sent to the test engine and vulnerability
analyzer to check its validity and perform further analysis. The
initializer preprocesses the binary file before symbolic
execution. The vulnerability analyzer then uses symbolic
execution to detect vulnerability exploitable based on the
preprocessed information. If an exploitable vulnerability is
found, it will be sent to vulnerability exploiter to generate exp.
After that process is completed, defense engine generates a
defense rule or a binary patch.

Figure 1. Architecture

This article has following 4 contributions:
• It proposes behavior-based vulnerability detection

modeling, which can detect and triage vulnerability
effectively. This behavior-based modeling can be used
to detect heap overflow vulnerability and generate
corresponding exploiting scheme. Up to now, no
academic institution can exploit heap overflow
vulnerability automatically.

• The system can automatically identify library functions,
effectively reducing the complexity of symbol
execution.

• This article has achieved different level of vulnerability
exploitation. It defines five criteria for successful
exploiting, crash, EIP hijacking, arbitrary address read,
arbitrary address write and a shell returning.

• Pangr can generate defense rules (length rules, data
rules) and a patch for corresponding binary according to
the program's vulnerability type.

IV. AUTOMATIC VULNERABILITY DETECTION
The stage of vulnerability automatic detection involves

three engines, crash engine, initializer and vulnerability
analyzer. Crash engine is responsible for binary fuzzing [32]. If
a crash is found, it will be sent to the vulnerability analyzer for
further analysis and to the test engine for testing. Initializer is
responsible for some initializing work, such as the function
identification and function hooking work. Vulnerability

706

analyzer will further detect and analyze the vulnerability. In the
rest of this section, this paper will introduce three engines and
the technology used in detail. Note that, this article takes 32-bit
Linux programs for example.

A. Crash Engine
Crash engine uses Symbolic-execution assisted fuzzing,

which refers to Driller [17]. Symbolic-execution assisted
fuzzing is based on AFL fuzzer [18] and angr that serves as a
symbolic tracker. By monitoring AFL executes, Driller can
decide when to begin symbolic tracking of specific inputs
generated by AFL. When AFL fails to find a new state
transition after a round of input mutation, it calls angr to
perform symbolic execution, tracing the specific input provided
by the AFL. Whenever a conditional instruction such as "cmp"
is encountered, there might be a new branch. If the new branch
is not known to AFL, it will invoke the SMT solver [9] to
generate an input to reach the new path and feed the input back
to the AFL. Then it continues the fuzzing test. The
disadvantage of fuzzing is that only shallow paths are generally
explored, for many generated inputs from AFL cannot pass the
check of conditional instructions at all. Symbolic- assisted
fuzzing takes advantage of symbolic execution on semantic
understanding, and fuzzing’s short executing time.

B. Initializer
Initializer is mainly responsible for preparing the symbols

before symbolic execution. As we all know, symbolic
execution’s biggest problem is state explosion. In a binary file,
with the execution of the program, the program will encounter
a lot of conditional instructions, resulting in an explosive
increase of branch. angr’s symbolic execution will execute
each branch. If there are too many branches, the time
consumed will increase, and the memory will be quickly
depleted to preserve the status of every branch. Pangr needs to
avoid exploring unrelated code, such as the code in link library,
as much as possible. Thus Pangr needs to identify library
functions in statically compiled binaries accurately.

Byteweight [20] proposed a more accurate method of
function identification than Hex-Ray's Interactive Disassembler
Pro (IDA), but only detected the existence of a function and
Byteweight was not sure what it was. John McMaster [19]
mentioned in the paper that using the FLIRT signature
algorithm to detect known malware works well.Pangr's method
is to calculate a CRC16 checksum for each function, and then
compare the CRC values of the two functions to figure out
whether they are the same function, which can solve the
problem of large search volume. If a function does not contain
variables, then you can take the first N bytes of the function to
do CRC check. Pangr sets the corresponding variable to 0 or
does not deal with it.

Initializer works by generating CRC16 signature for
corresponding library functions of the target binary and then
identifying library functions based on the generated signatures.
That has been reported to the angr team and they have begun to
improve angr.

C. Vulnerability Analyzer
Vulnerability analyzer is the most important part in Pangr,

which applies the novel behavior-based modeling. Pangr
models the behavior of format string, stack overflow and heap
overflow vulnerability, respectively, and exploits the intrinsic
semantics triggered by vulnerabilities during symbolic
execution to find valuable loopholes. After finding a vulnerable
point, which is conducive to the vulnerability exploitation later,
the vulnerability analyzer records input values and the context
information, such as registers, stack, heap and environment
variables, etc. In the rest of this section, this paper will
introduce the novel behavior-based modeling specifically.

1) Format String Vulnerability
The format string vulnerability [21] [22] typically occurs in

the following types of functions:

TABLE I. FUNCTIONS THAT CAN CAUSE FORMAT STRING
VULNERABILITY

Function name Calling convention
Format

argument’
s location

printf int printf(const char *format,...); 1

sprintf int sprintf(char *buffer, const char
*format, [argument] …); 2

snprintf int snprintf(char *str, size_t size, const
char *format, …); 3

 Once the format parameter is affected by input value, the
attacker may control the format parameter. It means that the
target binary contains format string vulnerability. According to
the characteristics of compiling rules, general format parameter
is a value that has already been determined when a program is
written. It is stored in a binary section such as .data and .bss, so
it is in the program’s own address space. Generally, user’s
input value is located in the stack or heap, and stack and heap
space address is beyond the scope of the program itself. Thus,
in a 32-bit x86 system, the data dependency graph [7] [31] is
generated first and then the corresponding format parameter on
the stack is checked only when the program executes to a
suspicious library function point. If the format parameter is
affected by input, then the binary can be judged as format
string vulnerability, and the context information is recorded at
this time.

2) Stack Overflow Vulnerability
Stack overflow [23][24] is a kind of vulnerability caused by

stack buffer overflow. This may cause data overrides or
execution flow hijacking. As is shown in Listing 1, main()
function inputs a string of which length is greater than 20.
Then it calls the vul() function, and str string overflows buf
buffer. The stack structure is shown in Figure 2.

Anyway, the final result of a stack overflow is to make the
ip pointer point to a user-controllable address. Then during
symbolic execution, it is most likely to be stack overflow
vulnerability once Pangr finds out that ip is affected by input.
Because format string and heap overflow vulnerability cannot
directly hijack the program control flow. Pangr also records the
context information.

1.void vul(char *str)

707

2.{
3. char buf[20]="";
4. char *ptr;
5. ptr=malloc(0x10);
6. strcpy(buf,str);
7. read(0,ptr,0xf);
8.}
9.int main()
10.{
11. char str[100];
12. read(0,str,100);
13. vul(str);
14. return 0;
15. }

Listing 1. Stack overflow vulnerability

Figure 2. The layout of the stack

3) Heap Overflow Vulnerability
Heap overflow [25][26] is a kind of vulnerability caused

by a heap buffer overflow. As it doesn’t cause crash, so it is
difficult to detect. This may cause next heap’s content or heap
structure to be overwritten. This type of vulnerability is
difficult to detect, for it cannot directly lead to a crash, and
conditions to trigger it are far more complicated. As is shown
in Listing 2, the main() function first allocates a heap block
and then invokes the get_str() function to read data to the heap
block. Obviously, if the requested heap block has only 8 bytes,
the input of which length is 0x1f is copied to the heap block,
causing an overflow. Pangr's strategy is that, in the symbolic
execution process, once it encounters a program point where
malloc() function is called, it records the address of heap
block and size into the GlobalChunkArr array. Just like
malloc(num), if num is a certain value, then it can be directly
recorded. If num is a tainted value (affected by input value),
Pangr uses SMT solver to calculate the smallest value and
record it. And then it continues symbolic execution. If there is
an instruction writing to a chunk recorded in globalChunkArr
array, it might be a string copying operation. The string
copying operation is generally implemented by library
functions or loops, as is shown in Listing 2. These library
functions include read, strcpy, memcpy, sprint, snprintf etc.
During the copying process, once Pangr finds that an access
crossing the chunk boundary, Pangr regards it as heap
overflow vulnerability.

1.int get_str(char *str)
2.{
3. int i=0;
4. char buf[0x20]="";
5. read(0,buf,0x1f);
6. strcpy(str,buf);
7. return 0;
8.}
9.int main()
10.{
11. int size;
12. char *ptr;
13. printf("Please input the chunk size:");
14. scanf("%d",&size);
15. if (size<8) size=8;
16. ptr=malloc(size);
17. get_str(ptr);
18. return 0;
19.}

Listing 2. Heap overflow vulnerability

V. AUTOMATIC VULNERABILITY EXPLOITATION
Methods used in vulnerability exploiter are divided into

three kinds. In fact, there are many ways to exploit, and some
ways may be relatively rare. This paper only discusses more
general ways. Pangr's scalability is good, so you can easily add
new models later.

A. Format String Vulnerability
Exploiting format string vulnerability is mainly based on

three features of format string. One is to use "%s" to read data
from the target memory address. The second is to use width
modifier "$" to control the output number of characters. The
third is to use "%n" to write the output number of characters to
the target memory address. Note that "%n" writes 4 bytes at a
time, "%hn" writes 2 bytes at a time, and "%hhn" writes 1 byte
at a time. For example, "%8$s" can read the value at the
address that the eighth parameter on the stack points to.

B. Stack Overflow Vulnerability
There are two ways to exploit stack overflow vulnerability.

One is to use ShellCode, and the other is to construct ROP
chain, which refers to Q [27].

There are two problems with ShellCode building. One is
that the stack may contain important data and a reference error
occurs if it is overwritten. As is shown in Listing 1, if strcpy()
results in ptr being overwritten, a pointer reference error will
occur before the vul() function returns. Thus you cannot
successfully hijack control flow. The second problem is that
stack space is not enough to put down a whole ShellCode. As
is shown in Figure 2, buf and the area behind ret_addr can
hold ShellCode. Just buf area is obviously not enough. Pangr
implements storage of segmenting ShellCode to solve the
problem of space fragmentation. As is shown in Figure 3,

708

ShellCode = ShellCode0 + ShellCode1. There are two kinds of
ShellCode arrangement solutions for the vulnerability in
Listing 1. When automatically arranging ShellCode, Pangr can
segment the original ShellCode intelligently, in order to make
full use of the controllable space. At the same time, Pangr
should pay attention to stack information recovery. *ptr
pointer must be a valid address, but cannot be replaced by
non-meaningful padding characters. Directly covering the
return address will be able to achieve eip controlling, and
ShellCode can lead to crash, arbitrary address read, arbitrary
address write and shell access.Furthermore, another tool by
ShellPhish team named angrop can be used to construct ROP
chain to bypass DEP protection [12].

C. Heap Overflow Vulnerability
Heap overflow does not directly cause the return address

being covered, so it is very complicated to exploit it. There is
no research institutes or academic articles having achieved

automating exploiting heap overflow vulnerability.

Figure 3. Layout of ShellCode

The difficulty to exploit heap overflow reflects on two main
aspects. First, heap management program is very complicated.
Heap management program is a management procedure
between system and user, and it is to achieve efficient

TABLE II. FEATURES OF HEAP OVERFLOW VULNERBILITY

Feature Double
Free

Forging
chunk unlink Shrinking

free chunks
House of
spirit

House of
lore

House of
force

House of
einherjar

Overlapped
chunk

Repeatable malloc ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Repeatable edit ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✔

Chunk malloc size Fast bin Fast bin any Large chunk
(>=256) Fast bin Small chunk

Top
chunk
(big)

Not limited Not limited

Overflow length any any >=5 >=1 any >=32 or
UAF >=8 >=5 >=5

free() ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘

Repeatable free() ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Use-after-free ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘

Controlling chunk
pointer ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘

Controlling other
space ✘ ✘ ✘ ✘ ✔(stack) ✔(stack) ✘ ✔(stack) ✘

Existing a pointer
to malloc chunk
(not on stack)

✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

management of heap space. It reduces user to frequently
allocate and release heap space, improving executing speed
and resource utilization. Second, there are a lot of security
checks in the heap management program. Once Pangr fails to
place the correct data in the corresponding location when
forging a heap chunk, it cannot pass the heap security check.

Taking the flexibility and complexity of the heap exploiting
into account, Pangr does not directly produce an exp that can
be used, but according to characteristics of the vulnerability, it
automatically generates an exploiting scheme to guide people
to write a valid exp. Pangr divides methods of heap exploiting
into 9 types, and defines 10 kinds of feature. Then Pangr
generates exploiting schemes based on features the
vulnerability has. If the vulnerability satisfies too many
features defined, then there might be several exploiting
schemes. Specific method of exploiting heap vulnerability is

already described in [28]. The features defined are shown in
Table 2.

9 schemes above are all by forging structures of heap
chunks to cheat the heap management program to write a
given value at the target address. Then you can change normal
function address that will be called on .got table to system
address. You can choose those normal functions like atoi or
free. Finally, you can get a shell access.

VI. AUTOMATIC VULNERABILITY PATCHING

Defense engine uses two strategies. One is to generate
filtering rules, using regular expressions to filter the input. The
advantage of filtering rules is that they do not affect the
program's own function. However, if the binary is an
interactive program, usually one interaction triggers
vulnerability at a certain step. Filtering rules do not only filter

709

out the input at this step, but inputs at each interacting step are
filtered out. That may lead to false filtering. The second
strategy is automatic patching. You can filter out inputs at
certain program points, but the disadvantage is that it may
affect binary’s function. In the following, Pangr introduces
strategies to patch binaries automatically and correctly.

Pangr uses patchkit to patch binary. patchkit provides a
python interface for patching binary files, so that you can
directly modify binary code, inject code, and hook functions.
According to the vulnerability type detected by vulnerability
analyzer, defense engine applies different patch strategies
without affecting the functionality of the binary itself. For
format string vulnerability, Pangr filters characters such as
"%n" and "%s" at the address of the vulnerability such as printf
function. Pangr can also add a "%s" argument to the vulnerable
function. For stack overflow vulnerability, Pangr modifies its
length parameter if the overflow is caused by strncpy or
memcpy functions. Pangr can replace gets with read,
preventing copying overflow or overwriting the return address
and other important data. For heap overflow vulnerability,
Pangr can limit the copy length based on the chunk size
recorded before. Pangr can also apply for more heap space
when finding a malloc function, and it can replace free function
with empty instructions to prevent exploiting.

VII. EVALUATION
Pangr tests 20 binaries from RHG competition, including

various types of vulnerability mentioned above. Each binary’s
size is about 500K or much more and 20 binaries are 32-bit
Linux programs, statically compiled. All receive data from

standard input and send the data to standard output. The
experiment is performed on an Intel(R) Core(TM) i7-4790
3.60GHz machine with 8GB memory and 64-bit Ubuntu OS
which kernel is 4.4.0.

A. Test crash engine
The purpose of this experiment is to compare crash

engine’s test result with other techniques. Crash engine applies
fuzzing and symbolic execution like Driller. After the
experiment, there are three major findings. The test results can
be found in Table 3. A total of 15 crashes were found in 20
binaries. Fuzzing found 14 crashes, and SE+fuzzing found 15
crashes. As you can see, in addition to the 15th and 20th
binary, SE+fuzzing (Pangr) found vulnerabilities faster than
simply using fuzzing, which shows that symbolic execution
helps to improve fuzzing’s efficiency. SE+fuzzing (Pangr)
found a vulnerability in the 19th program, which fuzzing did
not find. After a manual analysis of this binary, we find that it
encrypts the input and checks the prefix of the encrypted input.
Only if an input passes the check can it trigger a stack
overflow vulnerability, which means that simply using fuzzing
is difficult to make the binary execute a deeper function.
Symbolic execution can help fuzzing explore unknown codes,
so as to discover hidden vulnerabilities more effectively.
SE+fuzzing (Pangr) costs much less time than just fuzzing
does when testing complicated binaries such as 1th, 8th, 12th
and 16th. It shows that Symbolic-execution assisted fuzzing is
more effective to detect vulnerabilities in complicated binaries.

TABLE III. VULNERABILITIES FOUND AND TIME SPENT

Number Binary name Vulnerability Fuzzing SE+Fuzzing SE Exploitable

1 b64_encode_1 Crash 5.0380589962 5.04984593391 X ✘

2 Equation_Parser_bad_index Crash 109.633465052 25.1422688961 X ✘

3 Equation_Parser_overflow_ROP Stack 591.431312006 230.345306759 97.9112250805 ✔

4 Equation_Parser_overflow Stack 431.472472906 159.838685989 6.58338212967 ✔

5 HTML_filter_INTOverflow_eip_1 None None None None None

6 HTML_filter_INTOverflow_eip_2 Stack X X X ✘

7 notes_DoubleFree Heap X X 791.403729102 ✘

8 Read_Httpd_Log_1 Crash 10.113517046 6.04957199097 X ✘

9 YY_IO_BS_003_ROP Stack 83.7479410172 55.3512039185 6.92026495934 ✔

10 YY_IO_BS_005_eip Stack 59.330696106 19.1218309402 7.37649106979 ✔

11 _81_pwn01 Stack X X X ✘

12 _83_pwn03 Crash 9.07820081711 5.04027295113 X ✘

13 _86_pwn06 Stack X X X ✘

14 _88_pwn08 Stack 691.4743011 685.06931901 13.7531511784 ✔

15 _89_pwn09 Format string 57.3135669231 63.3263599873 5.85865688324 ✔

16 _90_pwn10 Heap 6.05639815331 5.05384206772 27390.9301628 ✔

710

Number Binary name Vulnerability Fuzzing SE+Fuzzing SE Exploitable

17 _94_pwn14 Stack 378.135900021 19.1248691082 X ✘

18 _95_pwn15 Heap 84.483536005 61.3487529755 29831.2839019 ✔

19 _103_pwn23 Stack X 617.341187954 906.839201837 ✔

20 _105_cb Stack 8807.79094815 10318.6179779 23017.6372128 ✔

Figure 4. Recognition of Pangr and IDA

B. Test function recognizing
The main goal of function recognizing is to improve the

speed of symbolic execution, but not to exceed IDA. To test
the effectiveness of Pangr on function recognition, we tested
these 20 programs with IDA and Pangr respectively.
Interactive Disassembler Professional, often referred to as IDA
Pro, or IDA for short, is now one of the best static dissembling
software for many members of the 0day world and ShellCode
security analysts as an indispensable weapon. IDA Pro is
interactive, programmable, scalable, multiprocessor and it can
run on Windows, Linux, WinCE and MacOS platform for
program analysis. Its ability to recognize functions is the best
currently available. We compared initializer’s ability to
identify library functions with IDA and found that IDA cannot
identify version libc-2.12’s library. When we generate the
corresponding 2.12 version of the library function signature,
IDA works well. Pangr’s average accuracy to recognize library
functions reached 30.45%, slightly higher than IDA 30.16%. It
is found that IDA does not even recognize some common
functions such as printf, scanf and memset, while Pangr can do
it.

C. Test vulnerability analyzer
Vulnerability analyzer is implemented using pure symbolic

execution, of which the purpose is to provide necessary
information for vulnerability exploitation, so only exploitable
vulnerabilities can be detected. It cannot detect vulnerabilities
that are not exploitable in the 20 binaries. For example, 1th,
2th, 6th and 8th are memory access errors caused by an invalid
address access. 5th will fall into an endless loop, resulting in
collapse, and it cannot be exploited. Program logic in 11th,
12th, 13th and 17th is too complicated that symbolic execution
takes up too much memory, and machines with better
performance may solve this problem.

One format string vulnerability, seven stack overflow
vulnerabilities and three heap overflow vulnerabilities were

found out. The heap overflow vulnerability in 7th binary was a
vulnerability that traditional fuzzing and symbolic execution
techniques could not find out, for heap vulnerability usually
cannot cause a crash. In this test case, you can see the
advantages of behavior modeling. Vulnerability analyzer is
fully implemented using symbolic execution so its speed
depends on characteristics of the vulnerability, the program's
own complexity and machine’s performance. The test results
can be found in Table 3.

To sum up, our behavior modeling successfully found
exploitable vulnerability, and even found heap vulnerability
that other AEGs couldn’t find.

D. Test vulnerability exploiter
Pangr successfully generated exp for one format string

vulnerability and seven stack overflow vulnerabilities, and the
relevant exp could result in a crash, arbitrary address read,
arbitrary address write, eip hijacking and shell returning.
Pangr also generated relevant exploiting scheme for three heap
vulnerabilities. A binary named notes_DoubleFree does not
meet conditions of any exploiting scheme, so Pangr judged
DoubleFree as not exploitable. 16th binary has four kinds of
exploiting schemes, for it meets four characteristics,
repeatable malloc, repeatable free, random malloc size, any
byte overflow, and it has a value pointing to the malloc chunk.
Four exploiting schemes are Unlink, Shrinking free chunks,
House of force (assuming heap address known) and
Overlapped chunk. The exploiting scheme of 18th binary is
House of force. We manually construct exploiting scripts
according to the schemes generated. The scripts achieve crash,
arbitrary address write, eip hijacking and shell returning in
16th and 18th binary. We cannot achieve arbitrary address
read, for the binary itself does not have a read interface.

Defense engine successfully generated patches for 14
binaries and effectively prevent the crash error and remote
shell access. Pangr did not find vulnerability in 5th, 6th, 7th,
11th and 13th binary, so it cannot generate relevant patches.
17th binary’s vulnerability is caused by brainfuck language
[33] and this language is unfamiliar to Pangr, so it cannot be
automatically patched.

The final test results are shown in Table 4.

TABLE IV. PERCENTAGE OF THE OVERALL TEST RESULT

Item Percentage

Vulnerability by fuzzing 70%

Vulnerability by SE+fuzzing 75%

Vulnerability by SE 55%

711

Item Percentage

Vulnerability by Pangr 80%

Success of exploiting 50%

Success of defense 70%

VIII. DISCUSSION
Pangr's crash engine found 15 vulnerabilities, one more

than merely using fuzzing technology, and Pangr is much
faster. Initializer engine has a slightly higher recognition rate
for non-symbol binaries than IDA, which greatly speeds up
symbolic execution. Vulnerability analyzer engine
successfully discovered 11 program vulnerabilities, including
3 heap overflow vulnerabilities, of which one heap
vulnerability was not found in crash engine. Pangr's brightest
spot is using symbolic execution to detect suspicious behavior
of binaries and determine the type of vulnerability. The
accuracy of this method is higher, for it can effectively
identify exploitable vulnerabilities. At the meantime, it has
high scalability, so researchers can easily add new models to it
based on vulnerability’s behavior. Vulnerability exploiter
generates corresponding exp or exploiting schemes for format
string, stack overflow and heap overflow vulnerability.
Defense engine effectively repairs vulnerabilities found.

Pangr also has some deficiencies. The first, target binaries
are 32-bit x86 programs, so platforms supported need to be
expanded. Secondly, the speed is very slow, for Pangr adopts
symbolic execution. Thirdly, the process of exploiting heap
vulnerability is not automatic enough, for current heap
overflow vulnerability is very complicated and diversified. We
need to do further testing in the future. Fourthly, vulnerability
modeling is not perfect. Models of other vulnerability types
remain to be expanded. Fifthly, in terms of vulnerability
exploiting, we need to consider bypassing system protection,
like address space layout randomization. But DEP and ASLR
can be bypassed by return-oriented programming and leaking
vulnerability, which is not the key point of our research. Maybe
we can do some research on automatic leaking address in the
future.

REFERENCES
[1] Shoshitaishvili Y, Wang R, Salls C, et al. Sok:(state of) the art of war:

Offensive techniques in binary analysis[C]//Security and Privacy (SP),
2016 IEEE Symposium on. IEEE, 2016: 138-157.

[2] Karnouskos S. Stuxnet worm impact on industrial cyber-physical system
security[C]//IECON 2011-37th Annual Conference on IEEE Industrial
Electronics Society. IEEE, 2011: 4490-4494.

[3] Mohurle S, Patil M. A brief study of wannacry threat: Ransomware
attack 2017[J]. International Journal, 2017, 8(5).

[4] https://en.wikipedia.org/wiki/2016_Cyber_Grand_Challenge "The
Cyber Grand Challenge (CGC) seeks to automate cyber defense
process". Cybergrandchallenge.com. Retrieved 17 July 2016.

[5] Ramos D A, Engler D R. Under-Constrained Symbolic Execution:
Correctness Checking for Real Code[C]//USENIX Security Symposium.
2015: 49-64.

[6] Cha S K, Avgerinos T, Rebert A, et al. Unleashing mayhem on binary
code[C]//Security and Privacy (SP), 2012 IEEE Symposium on. IEEE,
2012: 380-394.

[7] Xu L, Sun F, Su Z. Constructing precise control flow graphs from
binaries[J]. University of California, Davis, Tech. Rep, 2009.

[8] Schwartz E J, Avgerinos T, Brumley D. All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask)[C]//Security and privacy (SP), 2010 IEEE
symposium on. IEEE, 2010: 317-331.

[9] De Moura L, Bjørner N. Z3: An efficient SMT solver[J]. Tools and
Algorithms for the Construction and Analysis of Systems, 2008: 337-
340.

[10] Avgerinos T, Cha S K, Rebert A, et al. Automatic exploit generation[J].
Communications of the ACM, 2014, 57(2): 74-84.

[11] Brumley D, Poosankam P, Song D, et al. Automatic patch-based exploit
generation is possible: Techniques and implications[C]//Security and
Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 2008: 143-157.

[12] Andersen S, Abella V. Data Execution Prevention. Changes to
Functionality in Microsoft Windows XP Service Pack 2, Part 3: Memory
Protection Technologies[J]. 2004.

[13] Wang M, Su P, Li Q, et al. Automatic polymorphic exploit generation
for software vulnerabilities[C]//International Conference on Security and
Privacy in Communication Systems. Springer, Cham, 2013: 216-233.

[14] Avgerinos T, Rebert A, Cha S K, et al. Enhancing symbolic execution
with veritesting[C]//Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014: 1083-1094.

[15] Rawat S, Jain V, Kumar A, et al. Vuzzer: Application-aware
evolutionary fuzzing[C]//Proceedings of the Network and Distributed
System Security Symposium (NDSS). 2017.

[16] Foote J. Cert triage tools[J]. 2013.
[17] Stephens N, Grosen J, Salls C, et al. Driller: Augmenting Fuzzing

Through Selective Symbolic Execution[C]//NDSS. 2016, 16: 1-16.
[18] American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.
[19] McMaster J. Issues with FLIRT aware malware[J]. 2011.
[20] Bao T, Burket J, Woo M, et al. Byteweight: Learning to recognize

functions in binary code[C]. USENIX, 2014.
[21] Tsai T, Singh N. Libsafe 2.0: Detection of format string vulnerability

exploits[J]. white paper, Avaya Labs, 2001.
[22] Newsham T. Format string attacks[J]. 2000.
[23] Kuperman B A, Brodley C E, Ozdoganoglu H, et al. Detection and

prevention of stack buffer overflow attacks[J]. Communications of the
ACM, 2005, 48(11): 50-56.

[24] Cowan C, Pu C, Maier D, et al. Stackguard: automatic adaptive
detection and prevention of buffer-overflow attacks[C]//USENIX
Security Symposium. 1998, 98: 63-78.

[25] Zeng Q, Wu D, Liu P. Cruiser: concurrent heap buffer overflow
monitoring using lock-free data structures[C]//ACM SIGPLAN Notices.
ACM, 2011, 46(6): 367-377.

[26] Chien E, Ször P. Blended attacks exploits, vulnerabilities and buffer-
overflow techniques in computer viruses[J]. Virus, 2002, 1.

[27] Schwartz E J, Avgerinos T, Brumley D. Q: Exploit Hardening Made
Easy[C]//USENIX Security Symposium. 2011: 25-41.

[28] https://heap-exploitation.dhavalkapil.com
[29] Cifuentes C, Van Emmerik M. Recovery of jump table case statements

from binary code[C]//Program Comprehension, 1999. Proceedings.
Seventh International Workshop on. IEEE, 1999: 192-199.

[30] Sutton M, Greene A, Amini P. Fuzzing: brute force vulnerability
discovery[M]. Pearson Education, 2007.

[31] Müller U. Brainfuck–an eight-instruction turing-complete programming
language[J]. Available at the Internet address http://en. wikipedia.
org/wiki/Brainfuck, 1993.

[32] Prandini M, Ramilli M. Return-oriented programming[J]. IEEE Security
& Privacy, 2012, 10(6): 84-87.

712

