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Abstract—Android’s Inter-Component Communication (ICC)
mechanism strongly relies on Intent messages. Unfortunately, due
to the lack of message origin verification in Intents, implementing
security policies based on message sources is hard in practice,
and completely relies on the programmer’s skill and attention. In
this paper, we present a framework for automatically detecting
Intent input validation vulnerabilities. We are thus able to
highlight component fragments that expose vulnerable resources
to possible malicious message senders. Most importantly, we
advance the state of the art by developing a method to auto-
matically demonstrate whether the identified vulnerabilities can
be exploited or not, adopting a formal approach to automatically
produce malicious payloads that can trigger dangerous behavior
in vulnerable applications. We therefore eliminate the high rate of
false positives common in previously applied methods. We test our
methods on a representative sample of applications, and we find
that 29 out of 64 tested applications are detected as potentially
vulnerable, while 26 out of 29 can be automatically proven to be
exploitable. Our experiments demonstrate the lack of exhaustive
sanity checks when receiving messages from unknown sources,
and stress the underestimation of this problem in real world
application development.

I. Introduction

Android applications are formed by logically separated com-
ponents that communicate with each other through two mes-
sage passing mechanisms: Binder and Intents. Binder is a
lightweight remote procedure call mechanism, mainly used in
service-to-service communication, while Intents are the most
used inter-component and inter-application communication
mechanism. Intents are used for data exchange, as well as for
requesting the execution of a procedure to another application.

Unfortunately, the Android Intent Passing mechanism does
not provide the receiving component with any information
concerning the origin of an intent. This facilitates the creation
of spoofed intents with malicious input data. If such malicious
input is not properly validated or sanitized by an application
before being processed, it may subvert its state and control
flow in unexpected ways. This attack vector may lead to a
wide range of attacks, not only against the application itself,
but also against other applications that receive and process data
from the vulnerable app.

Previous research works studied applications and the An-
droid ecosystem to identify components that are exposed

to receiving intents from untrusted applications [1]. Others
studied how applications can circumvent Android’s permission
checking by delegating execution of operations to applications
with elevated permissions [2]. [3] analyzed permission leaks in
Android apps in order to identify permission leakage. Finally,
CHEX [4] develop static analysis techniques to check whether
there exist dataflows that could lead to component hijacking
vulnerabilities.

However, a common shortcoming of prior literature is not
being able to automatically verify the practical exploitability of
component hijacking vulnerabilities. For instance, CHEX [4]
identifies 254 apps with suspicious data flows. A subsequent
manual analysis by the authors, however, identified that 48 out
of these 254 apps were false positives. Such false positives are
due to two main reasons:

• Precision issues in static analysis. Static analysis techniques
approximate the behavior of programs. Usually, a sound
approximation is sought, by including all possible behaviors.
However, to do so, approximations err on the side of excess,
including additional behaviors that are not really present,
such as dead code (i.e. paths that are never feasibly exer-
cised). Since such additional paths are considered during
dataflow analysis, they may lead to false instances of suspi-
cious dataflows.

• Effect of security-critical actions of code. Analysis tech-
niques in state-of-the-art approaches to this problem only
take into account the existence of potential suspicious paths.
They ignore, however, the effect of the code along those
paths, such as the use of input validation to mitigate intent
spoofing vulnerabilities [1]. Since such techniques can effec-
tively obviate the security issues, ignoring their effectiveness
leads to a large number of false alerts.

In this paper, we improve the state-of-art by automatically
developing proof-of-concept exploits against applications, to
effectively prove that they are vulnerable to intent message
vulnerabilities. Developing proof-of-concept exploits helps
minimize the risk of false alarms, and thus it increases the
usability of the approach.

To do so, we statically analyze the application to identify
data-flows under an attacker’s (indirect) control. We design an
analyzer that is able to follow such flows and identify Intent
data that may affect either directly or indirectly the results



that a component produces and sends in output. We formulate
the problem as an Interprocedural Distributive Environment
one, which allows us to efficiently deal with inter-procedural
flows. Once such suspicious flows are identified, we develop
techniques to analyze the operations (e.g., sanitization) along
the identified flows. At this point, we use a constraint solver to
develop concrete proof-of-concept exploits, thereby confirming
the presence of the vulnerability. Finally, we are able to
demonstrate the vulnerability by developing an attacker app,
capable of launching these exploits on actual applications. It
is important to note that, similarly to [4], our approach works
on unmodified Android apps, without requiring any special
information, nor access to the source code.

We test our approach on 64 popular applications from the
Google Play store. Of these, 29 exhibit potential vulnerabili-
ties, and for 26 of these, we are able to automatically generate
an exploit, i.e. spoofed intents that trigger and demonstrate
those vulnerabilities. We discuss in depth the results of this
evaluation and analyze manually the applications to confirm
them. We can thus confirm that many popular applications
do not implement appropriate security countermeasures for
Intent communications. Indeed, from our analysis we observed
that most applications only check if malformed Intent payload
tuples are received, but such checks are meant to avoid errors,
and are thus far from sufficient to stop a determined attacker.

In summary, we make the following novel contributions:

• We provide a static analysis method to automatically detect
data flows that potentially allow Intent data to affect the
results sent in output by the applications, i.e. to identify
potential vulnerabilities (Sections II, III).

• We provide a formulation of this problem as an Interproce-
dural Distributive Environment problem(Section IV).

• We describe an approach to automatically generate Intent ex-
amples that trigger a malicious behavior, thus automatically
validating the discovered vulnerabilities (Section IV).

• We develop an attacker app, that is capable of delivering
malicious exploit inputs to exercise these vulnerabilities
(Section IV).

We report our evaluation results in Section V. In Section
VI we review related works. Finally, in Section VII we draw
our conclusions.

II. Problem Statement

In this section, we provide a running example and illustrate
the problem we are exploring.

Threat Model. In our threat model, an attacker first
analyzes the manifest file to identify exposed components that
can receive intent messages. An example of such a component
is depicted in Listing 1, where the onCreate method (line 1)
is called to start a component. Next, the attacker identifies
statements inside those components whose execution may be
subverted to the attacker’ s advantage. These statements may
include network operations, database operations, updates to
GUI elements and so on, and their execution may be subverted
by modifying their parameter values, e.g., URL-s where data
are sent by network operations, database queries, and the text

of GUI elements. One such statement, dealing with a network
operation is the HttpGet object creation in line 19. If the
attacker is able to modify the value of the url variable to a
domain under the attacker’s control or the value of the httpPar
variable to a string containing a cross-site scripting attack, then
the component can be used to leak data to the attacker’s web
site or to execute a cross-site scripting attack, respectively.
Another statement that may be of interest to an attacker is the
one on line 31, which sets the path of a file that is ultimately
sent over the network. If the attacker is able to modify the
value of the variable p (for instance, by including “..” in the
path to perform directory traversal) together with the variable
url, then the component can be used to send arbitrary files to
a host under the attacker’s control. In the rest of this paper, we
call such statements targeted by an attacker sink statements.

Under this threat model, the only way in which the attacker
can try to modify the parameters of the sink statements is
by sending a specially crafted intent to the component via a
malicious application installed on the user’s phone. Thus, if
the component is exposed, the attacker can control the values
that that component receives in input (e.g., lines 2-5).

This attack vector has been recognized in the past by re-
searchers and developers alike [1], [4]–[6]. Two recommended
practices for limiting this type of attacks are to not expose
components needlessly and to sanitize and validate the data
in input to the components. However, as often happens in ap-
plication development, secure coding practices are not always
followed. In fact, as shown by two independent studies of the
first practice, a large percentage of applications still exposes
components needlessly [1], [7]. In addition, as shown by other
studies, there may exist execution paths from (exposed) source
statements to sensitive sinks [4], along which data may flow.
However, the presence of a path does not necessarily imply that
an attack is feasible. In particular, applications may perform
several operations along that path, such as sanitizations and
other business logic operations.

Listing 1: Source code of a vulnerable application
1 void onCreate(Bundle savedInstance) {
2 Intent intent=getIntent();
3 String host = intent.getStringExtra("hostname");
4 String user = intent.getStringExtra("username");
5 String file = intent.getStringExtra("filename");
6 String url="http://www.example.com";
7 if (host.contains("example.com"))
8 url = "http://" + host + "/";
9 if (file.contains(".."))

10 file = file.replace("..", "");
11 String userId = getUserID(user);
12 if (userId != null)
13 textView.setText(user);
14 String b64File = toBase64(file);
15 String httpPar = toHttpParams(b64File,user_id);
16 . . .
17 try {
18 DefaultHttpClient httpC = new DefaultHttpClient();
19 HttpGet get = new HttpGet(url+httPar);
20 . . .
21 httpC.execute(get);
22 }
23 catch(IOException e) {
24 e.printStackTrace();
25 }
26 }
27 String toBase64(String p) {
28 if(p=null || p.equals(""))
29 p = "/data/data/com.example/defaultFile.pdf";
30 else
31 p = "/data/data/com.example/public/" + p;



32 byte[] bytes = InputStream.read(p);
33 String b = Base64Encoder.toString(bytes);
34 return b;
35 }

In our example, we delineate three different operations that
deal with the input variables. The first operation is a sanitiza-
tion (lines 7-8) of the variable host. This sanitization is not
sufficient, since an attacker can use any host name that contains
the “example.com” string, e.g., “malicious.example.com” or
“example.com.com”. The value of host set by the attacker in-
side the intent therefore flows unmodified to the sink statement
at line 19. The second operation is also a sanitization (lines 9-
10), which removes eventual “..” substrings from the file name
to prevent directory traversal attacks. This sanitized value is
then used later in line 31, which also adds a predefined prefix
to the path. Thus, even though an attacker may be able to
control to a certain degree the value of the variable p at the
sink statement (line 32), he cannot use it to perform a directory
traversal attack. The third operation (lines 11-13) checks that
the user exists and sets a GUI element to a default user name
if it does not exist. After this point, the value of the variable
user is not used by the program anymore.

As has been recognized by previous work, to detect this
type of vulnerabilities, it is important to correctly identify paths
that starting from the source statements enable an attacker to
influence the variable values at the sink statements. However,
the existence of a path does not imply that an attack is feasible.
To precisely identify exploit opportunities and prevent them,
the operations performed on the variable values along that
path must also be considered. In fact, these operations may
include sanitizations (e.g., lines 9-10), and other business logic
operations (e.g., lines 11-13) that, while allowing an attacker
to influence the values at the sink statements, make exploits
unfeasible. An approach that includes these path operations
in its analysis is therefore needed to precisely identify exploit
opportunities and prevent them. Such an approach must also
provide a vulnerability proof under the form of malicious input
to the component, in order to verify the vulnerability. In the rest
of the paper, we present a method for automatically detecting
such vulnerabilities and providing proofs for them.

III. Approach

In this section, we provide an overview of our approach
for automatically generating exploits as proofs of application
vulnerabilities.

A. Problem Formulation and Approach Overview

We formulate the problem as follows. Let the state of an
application at a particular point in the program be defined as
a set of (variable, value) pairs V = {(v1, a1), (v2, a2), ...,
(vn, an)} visible at that point during execution. To successfully
launch an exploit on a specific sink, an attacker needs to
induce a state of the attacker’s choosing at that sink. We
denote this state by exploit state and represent it with a set of
(variable, value) pairs VE = {(ve1, b1)(ve2, b2)..., (vem, bm)},
where the variables vei represent the parameters of the sink

statement. Furthermore, to be able to induce state VE at the
sink, the attacker can only use the partial control over the
program input state at the source statements defined as a set of
(variable, value) pairs VI = {(vi1, c1), (vi2, c2)..., (vin, cn)}.
Therefore, from an attacker’s perspective, the problem can be
stated as follows: can he determine a state VI at one or more
source statements, which induces a state VE at a targeted sink
statement? For instance, if an attacker aims at inducing the
state VE = {url, “http : //malicious.example.com′′} in
line 19 of Figure 1, what are the values of the variable host
(line 3) that (s)he must induce in input via sending an intent?

Therefore, we state the problem as follows. Given any
potential sink p in the program and given an exploit state VE in
that point in the program, can we automatically determine if
there exists a state VI at the source statements that induces
VE in p when the program executes? We highlight at this
point that VE is determined by an attacker depending on the
type of attack s(he) plans to carry out and on the particular
sinks. That is, VE may represent a general pattern of attacks on
particular sinks present in many applications or a single state
for a specific application. For instance, if the attacker decides
to target commonly used database APIs as sinks with the goal
of carrying out SQL injection attacks on the applications that
use those APIs, the state VE will contain the variables that
appear as parameters of those APIs with values containing
SQL injection attack patterns (e.g., ’or 1=1 #). If, on the
other hand, the attacker decides to target UI components for
a phishing attack on a specific application, VE will contain
variables whose values determine the look and feel of that
application.

Therefore, in our approach, we take the state VE and related
sinks as input and try to automatically determine if one or more
related states VI exist. Once VI is determined, it then serves as
a proof of vulnerability for VE . To answer these questions, the
relationship between the application state at any point in the
program and the application state VI at the source statements
must be made explicit. The discovery of such relationship and
its modeling as a function F , such that we can automatically
compute VI as VI = F (VE) is at the core of our approach.

At a high level, the steps of our approach are as follows:

1) Path computation. Considering that every program point
p may be a sink statement, the paths between the source
statements and every point in the program are computed
using a combination of taint propagation and static data flow
analysis.

2) Symbolic execution. After the path computation step, sym-
bolic execution over the paths is performed to derive the set
of constraints imposed over the variable values along those
paths. At the end of this step, for every program point p,
a logic formula Fp is created, whose variables correspond
to program variables and whose terms correspond to the
program statements that modify those variables. Thus, Fp

represents the relationship between the input state VI and
the application state in p.

3) Exploit generation. Given a point p in the program with
the corresponding formula Fp, and an arbitrary exploit state
VE for that point, a new formula is created as F = Fp∧FE ,
where FE is a formula representing VE . Next, the formula
F is translated into a form suitable for an off the shelf solver



and solved for the variables of the state VI .

In the exploit generation step, the formula Fp, which rep-
resents the relationship between the state VI and the program
state in point p, is joined with the constraints over the variable
values desired by an attacker at the point p. Thus, if a solution
exists, it must satisfy both sets of constraints. In the rest of this
section, we describe each of these steps and their challenges
in more detail.

B. Path Computation

Path computation deals with the identification of all the pos-
sible execution paths from a source statement to any program
point p. This task can be modeled as a data-flow problem
where path information is collected inside facts associated with
each point in the program. However, in the context of Android,
such data-flow analysis must account for the peculiarities of
the Android environment, described next.

Interprocedural data-flow analysis. Android applications
written in Java use method calls heavily. Therefore, any analy-
sis framework must provide strong support for interprocedural
data-flow analysis. Providing such support may be challenging,
especially when identifying paths through deep sequences of
method calls as well as recursive method calls. An additional
challenge is posed by calls to library methods, which can
largely increase the amount of code to analyze. In addition, in
Android this problem is further exacerbated by the presence of
native method calls over JNI with the control flow involving
native code.

To deal with these challenges, we first divide the methods
into two sets: user-defined and libraries. Next, a control-flow
supergraph of the user-defined methods is created by the data-
flow analysis framework. In this supergraph, the call sites are
joined with callee definitions and callees’ exit sites are joined
back with the call sites. We show a portion of the supergraph
built for our example in Figure 1, where each node corresponds
to a statement and is labeled with the line number from code
listing 1.

The supergraph provides a uniform representation of the
control flow across different methods and is therefore well
suited for interprocedural analysis. In addition, library methods
are represented as single nodes inside it, that is their body is
not included in the supergraph. This choice, while potentially
reducing the precision of the approach, considerably reduces
the size of the supergraph and provides clear performance
advantages. To limit this imprecision, we summarize the oper-
ations of the most commonly used library methods (i.e., string
manipulations) with a library of constraints (described later in
this section), which can be used in the formula Fp.

Path explosion. Path explosion is a common problem when
performing data-flow analysis that additionally becomes even
more acute in an interprocedural context. To further limit the
size of the supergraph and reduce the number of paths, we
perform a preliminary taint propagation step, which identifies
the set of statements that use attacker-provided values or values
derived by them and the set of statements whose execution is
independent from an attacker. We include only the former set
in the subsequent analysis.

In Figure 1, the nodes in green background represent
statements that use tainted variables, while those in white
background represent the rest of the statements. The source
statements are represented in blue background. We note that
for space reasons, not every statement is shown in Figure 1.

Android application model. An additional challenge is posed
by the asynchronous nature of the Android framework and
its event-guided application execution, including various call-
backs. Common events are, for example, component stopping
or destruction based on user-events or system-wide events,
such as low memory or battery power. This execution model
poses challenges in the determination of all the possible paths
through which data may flow, by breaking some paths into
different methods, which are not connected in the supergraph.

In our approach, we consider these methods independently:
as described in detail in Section IV we consider each statement
that extracts data from an intent as a separate source statement
and do not follow possible paths across methods that cannot
be linked in the supergraph. While this choice may miss some
paths, we note that a large number of these event-based method
calls deals with saving the state of a component and restoring
it when the component is resumed. Thus, in these cases there
is no loss of information about paths and variable values.

After the preliminary step of taint propagation, the data
flow analysis framework proceeds to traverse the supergraph
and to collect for every point in the program the paths reaching
that point from the source. The supergraph traversal starts from
the source statements and adds statements to each list until a
fix point is reached, and no additional statements are added to
any of the lists of any program point. During this traversal,
the nodes that do not use tainted variables are ignored.

C. Symbolic execution

Once the data-flow analysis framework collects all the paths
for every program point, symbolic execution is used to create
a formula of constraints for that point. In particular, for every
program point, the list of statements is consulted and every
statement different from a branching statement is added as
a constraint to a symbolic formula. At the end of this step,
for each program point we obtain the symbolic formula Fp,
which models the relationship between VI and its state in that
program point.

Fp → Fp ∨ conj | conj
conj → (conj ∧ term) | term
term → stat | ¬stat
stat → statement | var == statement
statement → statement + single stat | single stat
single stat → var | constant | lib method
lib method → solv stat | nonsolv stat

Fig. 2: Grammar of Symbolic Formula

The syntax of the symbolic formulas used in our ap-
proach is described by the grammar listed in Figure 2. In
particular, the symbol solv stat represents statements and
library methods whose operations semantics can be modeled
by the solver used in the exploit generation step (see Sec-
tion IV-D). These include string manipulation methods (e.g.,
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Fig. 1: Supergraph built by the analysis framework.

host.contains(“example.com”)). The symbol nonsolv stat
represents statements and library methods whose semantics
cannot be modeled by the solver. Finally, var represents
tainted variables, constant represents constant strings, while
the “+” symbol represents string concatenation. For instance,
the formula Fp related to the sink statement on line 20 of
Figure 1 is derived as:

(host.contains(”example.com”) ∧ url==”http://” + host + ”/”)
∨

(! host.contains(”example.com”) ∧ url==”http://www.example.com/”)

We note that each term in the symbolic formula represents
a statement along the path, while each new path created by
a branching statements is represented using a disjunction.
Assignment operations in the code are modeled using equality
constraints, in order to capture the equality conditions between
two expressions.

Loops. One of the main issues in symbolic execution is dealing
with loops. In fact, even a single loop can generate a large
number of execution paths depending on different number of
iterations and paths inside the loop. Since the number of loop
iterations is unknown during static analysis, a common strategy
is to place an upper bound over the number of times a loop is
executed symbolically. In our approach, we execute each loop
symbolically one time. This choice allows us to cover the loop
body statements while still having an acceptable performance.

D. Exploit Generation

The input to the exploit generation step, is a program point p,
the corresponding formula Fp and a set of assignments repre-
senting the exploit state VE . The first operation of this step is
the translation of the symbolic formula Fp into the solver’s
language. In particular, for each member of the solv stat
statements, we create a set of constraints in the language of
the solver, which model the behavior of that statement (for
more details about this task, see Section IV). The members
of the unsolv stat statements are modeled with a particular
operator in the solver’s language that returns the whole domain
of values for the variable.

IV. Implementation

In this section, we discuss the implementation of the different
steps of our approach.

A. Implementation Background

In this subsection, we provide a short background on two
techniques and tools that we used in our implementation,

namely the IFDS framework and Kaluza.

IFDS framework. IFDS is a framework for interprocedural
data flow analysis that transforms dataflow problems into graph
reachability problems [8], [9]. This framework is particularly
efficient in dealing with interprocedural data flow analysis, and
highly customizable to represent different data flow problems.
The framework takes care automatically of several general
analysis tasks, such as determination of valid paths on the
control flow supergraph (i.e., paths that can potentially be
executed at runtime) and of fact propagation. However, to
solve a specific analysis problem, it is necessary to formulate
it appropriately as an instance of an IFDS problem. In practice,
this means defining the analysis information contained in the
data-flow facts as well as the rules that update that information
for every node in the control flow supergraph.

Kaluza. Kaluza is an efficient solver for formulas containing
string variables and constraints in the form of string equalities,
substring operations, numeric constraints over string lengths,
and so on [10], [11]. Kaluza natively supports a set of string
operations, such as string concatenation, equality, and length
equality.

B. Path Computation

As mentioned previously, the problem of path computation is
a typical interprocedural data-flow problem. In our approach,
we model this problem as an instance of an interprocedural,
finite, distributive, subsets problem (IFDS). This framework is
build on top of Soot, a Java optimization framework, due to the
many analysis facilities it provides [9], [12], [13]. In addition,
we use the Heros Soot plugin, which provides a fully context-
sensitive implementation of the IFDS framework [12].

To prepare the application for use with Soot and HEROS,
the Dalvik bytecode is first transformed into Soot’s inter-
mediate representation language Jimple. While in theory this
transformation may be lossy and not retrieve the original code,
these losses are negligible. Jimple is particularly suited to our
task, since it provides a three-address and single assignment
representation of the code, making it easier to derive the
information about paths and perform symbolic execution. In
addition, the Soot framework provides many ready-to-use
capabilities for code analysis.

In our implementation, we model the preliminary taint
propagation step as a data-flow problem as well, and incor-
porate it into the IFDS instance problem of path computation.
This removes the need for running this step separately and im-
proves the efficiency of our implementation. Before proceeding
further, we provide a short review of the IFDS framework.



Source statements detection. The first step in defining the
problem as an IFDS instance is the specification of the
source statements, which constitute the IFDS analysis entry
points. To detect these entry points, a full scan of the Jimple
representation of the program is performed and the instruc-
tions that perform Intents and Bundle payload extraction (e.g.
getStringExtra) are identified. Since the set of API calls
that Android provides to extract Intent payloads is limited,
we use an exhaustive list of method signatures for this task.
A step further is made in order to reconcile extractions of
different payload pieces conceptually belonging to the same
Intent message. After this detection, the program variables
whose value is defined in the entry points serve as the initial
taint variables. These are indeed the variables appearing in the
state VI , whose value can be set by an attacker.

Path Computation and Taint Propagation. The next step
in modeling our problem as an IFDS instance, is to define
the information contained inside the dataflow facts and
how this information is updated for the different nodes of
the supergraph. In our implementation, we use a special
definition of a fact, which contains both taint propagation
and path information. Thus, a fact is defined as tuple F =
(input vars, tainted vars, statements, cond statments),
where input vars represents variables from the state VI

whose values is defined in the source statements (namely
predefined Android API statements that extract values from
intents), tainted vars is a set of variables representing the
tainted variables, statements, is the list of statements from
the source statement to the current point in the program, and
cond statements, is the list of all the conditional statements
from the source statement to the current point in the program.

Thus, for every program point, the fact associated with
that point contains the list of input variables, the list of tainted
variables visible in that point, as well as a list of statements
contained in the paths from the source statements to that
program point. The taint is therefore propagated to a variable
by adding that variable to the list.

During analysis, the IFDS framework takes care of travers-
ing the supergraph and update the facts associated with each
node using user-defined rules. These rules are different for
every node and described below.

• Normal Rules: These functions define how fact information
is updated for nodes different from method calls. In this
case, we add a statement to the statements list if: either
the input vars or one of the tainted variables is used by
the statement. A new variable is added to the tainted set if
its value is obtained by using one of the input vars or a
tainted variable.

• Call Rules: These rules define how fact information is
updated for procedure calls. In this case, the call statement is
added to the statements list, if the input var or one of the
tainted variables are contained in the list of arguments. In
addition, this rule is used to add to the set of tainted variables
the formal parameters of the callee that correspond to tainted
variables in the call.

• Return Rules: The purpose of a return rule is to propagate the
information discovered inside the body of a called method to
the caller. Using this rule, the taint information is therefore
propagated to the variables at the caller site. For instance,

since the return value of the method toBase64 is tainted,
the variable b64File is added to the list of tainted variables.

C. Symbolic Execution Implementation

Given the paths identified inside the facts by the previous
step, we match each statement to one of the productions of
the symbolic formula grammar described in Section III and
add it as a term to the rest of the formula. In particular, the
rules for each of the productions are described below. In this
step, we also perform variable name rewriting, to flatten the
objects and to extract constraints among String variables. This
renaming is performed by prepending to the name of a variable,
the name of the method it is declared in and the name of the
corresponding object (if available). For instance, the variable
p inside the function toBase64 is renamed to toBase64 p.

• Assignment statements: Every assignment statement in the
path is transformed into an equality constraint.

• Branching statements: For every branching statement, sym-
bolic execution is split into two paths and the condition of
the branching statement is added to the true branch, while its
negation is added to the false branch. For instance, when the
if statement in line 28 of Fig. 1 is encountered, the condition
toBase64 p == null‖toBase64 p == “′′ is added to the
formula representing the path that contains the then part
of the statement, while the condition !(toBase64 p ==
null‖toBase64 p == “′′) is added to the path that contains
the else part of the statement.

• User-defined procedure calls: When a call to a user defined
method is encountered, we first rename the local variables of
the method by prepending the name of the function to avoid
duplicates, then add equality constraints between arguments
and formal parameters. Next, we proceed to symbolically
execute the function. For instance, since the variable file is
passed as an argument to toBase64, we add the constraint
“file == toBase64 p′′ to the formula. If the function
returns a value that is assigned to a variable, we add an
equality condition between them as well. For instance, the
condition added after the return statement of toBase64 is
b64File == toBase64b.

• Library method calls: Unsolvable library method calls are
replaced by a special term whose purpose is to not introduce
any constraints to its arguments.

D. Exploit Proof Generation

As mentioned previously, to generate an exploit as a malicious
state input state VI , we chose to use the Kaluza constraint
solver. Kaluza natively supports several string operations. For
other operations, not natively supported by Kaluza, a transla-
tion system for a set of Java (Jimple) standard library methods
was built, which focuses on string and integer constrains.
This set together with the set of operations natively supported
implements the solvable library methods previously discussed.
Some examples of these custom translations are listed in
Table I, using regular definitions.

.

For library methods that can not be translated directly
in Kaluza (e.g., Base64Encoder.toString(bytes)), a report is



Java Kaluza formulation
a.contains(”test”) a ∈ CB(/. ∗ test. ∗ /, 0);
a.indexOf(”test”) a := T1.T2;

0x0 == Len(T1);
T2 := T3.T4;
T3 := T5.T6;
T6 == ”test”;
T5 /∈ CB(/test/, 0);
a indexOf == Len(T5);

new a = a.replace(”test”, a := T1.T2;
”newTest”)

T2 := T3.T4;
T3 := T5.T6;
T5 ∈ CB(/test/, 0);
T7 ∈ CB(/newTest/, 0);
T8 := T9.T4;
T9 := T7.T6;
new a := T1.T8;

TABLE I: Kaluza constraints formulation example (CB =
CapturedBrack)

created in output, and either a Kaluza approximation of their
functionality is manually built or they are represented by a
special term that places no constraints on the values of their
variables. An example of such approximation is the split
method, which is a utility function to divide a string into pieces
separated by a substring given in input to the function. Split
returns an array, and arrays are hard to represent in Kaluza
because they are defined as an unknown number of variables,
while Kaluza accepts only defined numbers of variables. Our
approximation consists in producing the entire string instead
of an array of parts as returned value of the method.

After the constraint solver processes the translated formula,
it provides a set of solutions for the ranges of variables in
VI for which the formula Fp ∧ VE is satisfiable, where VE

is also expressed using the Kaluza language, which provides
the opportunity to define several patterns for the values of
the parameters at the sinks. Conversely, an unsatisfiable result
produced by the solver means that the vulnerable sink cannot
be reached, in practice, at run-time. For instance, the following
example shows a Kaluza formula derived from one of the
studied applications. In this example, after ensuring that the
input value source length is greater than 0, the prefix is
stripped out (if any) in tmp. This tmp variable is then matched
against a regular expression for validation purposes. Our tool
was able to traverse the control flow graph with the Jimple
representation of this code fragment, and in the end obtain the
solution 4444944944.

1 $source.length > 0
2 $IF(source.startsWith("+1")) { $tmp := $source.

substring(2, $source.length - 1) }
3 IF((not $source.startsWith("+1"))) { $tmp := $source

}
4 $tmp.match("/([2-9][0-8][0-9])\ *([2-9][0-9][0-9])\

*([0-9][0-9][0-9][0-9])/")

E. Approximations and limitations

For simplicity, we used several approximations in our ap-
proach. We discuss their impact in the following paragraphs.

Untainted input variables. Motivated by efficiency consid-
erations, we chose to ignore variables whose values cannot be
affected by the variables input via intents. While allowing us
to prune a portion of the control flow super-graph by removing

statements that do not use tainted variables, this choice may
also reduce the precision of our approach. In fact, the value of
the outputs at the sink may also depend on these variables. The
overall result of this choice is that the untainted variables may
appear in constraints containing tainted variables. For instance,
if a statement x = s+ t; appears in the code, with s untainted
and t tainted, the constraint x == s+ t will be added by the
symbolic execution to the symbolic formula. However, since
the solver has no constraints related to s, it assumes that s can
have any possible value.

This approximation may lead to false positives where an
input state VI is computed statically starting from an exploit
state VE , while at run time, the presence of these untainted
variables in the computation path may induce a state different
from VE at the sink statement.

Attack Effectiveness. The effectiveness of this attack de-
pends partly on the Android communication system, on the
installed apps in the device, as well as on user attention. In
particular, when an intent is sent, if several activities have
registered to as receivers for that intent type, Android will
present a list of choices to the user. Thus, if malicious intents
are caught in this way, the attack may fail. However, we note
that this type of behavior may be bypassed by an attacker
by sending explicit intents, where the receiving component is
explicitly named.

F. Attack app construction

Having generated the exploit automatically, we take a step
further, and generate an attack application that exploits the
vulnerable application. An effective attack is automatically
prepared in the form of a well-crafted application able to send
Intent messages to the right target, at the right moment in time
and carrying the malicious payload. It is entirely possible to
present such attack application as a simple utility application
(such as a torch), which runs a malicious service behind the
scene.

Our malicious service embeds the exploit strings obtained
from the previous steps in a list of pre-populated Intent mes-
sages ready to be sent, one for each demonstrated vulnerability.
In order for the attack to be successful, we enhance the service
logic and domain knowledge to obtain the best attack scenario
possible: the user perception of the environment during the
attack must be as transparent as possible.

For each of the messages, the service first needs
to check whether the target vulnerable application is
installed on the system or not. We do this through
the Android Package Manager API offering the
getInstalledApplications method. The invocation with
the PackageManager.GET META DATA specified
as argument returns a complete list of all the applications
installed on the phone. The list contains several meta-data
such as the application’s package name or the application’s
launch Intent message.

In the next step of the attack the application checks if
the application is currently active (in foreground) on the
device. This is particularly important for two reasons: first
we limit the context switching consequences of presenting
to the user a completed unrelated content (e.g. a different



application screen), then we can assume that the user uses
the vulnerable application and hence that the user is logged
in at the moment of the attack. Also in this case, Androids
offers an API: the Activity Manager API, in particular the
getRunningAppProcesses method that returns a list of
RunningAppProcessInfo containing the foreground/back-
ground information along with the packages Application pro-
cess package information, that are used to identify the appli-
cation. When it ensures that a victim application is installed
and running, the attacker app easily sends the malicious Intent
message to trigger the attack.

V. Results

A. Experimental Setup

We evaluate our approach on 64 free applications of different
sizes, picked from different categories of the Google Play
Store. We targeted a class of easily verifiable vulnerabilities,
which includes manipulation of UI components, which could
lead to phishing attacks. For each application, we targeted
the code of the UI components and determined the possible
values for the state VE in those components. Verification of
different vulnerabilities is also possible. For instance, for SQL
injection vulnerabilities, the state VE can be set to contain a
malicious query and the results of the query may be checked
after the attack. For cross site scripting attacks targeting sinks
with network operations, VE may be set to contain cross site
scripting code and the effects can be checked on the remote
server.

The evaluation was performed on a quad-core machine
equipped with 16 GB of RAM. The need of a large amount of
memory was driven by the application call graph generation
performed by Soot. The memory requirements during the IFDS
run and super-graph construction varied depending on the code
size, peaking at approximately 5 GB.

B. Experimental Results

The evaluation detected paths from sources to sinks in 29 of
the 64 applications. Out of these 29 applications, the string
solver was able to produce VI exploit strings for 26 of them.
These exploits were manually tested and confirmed. We divide
these vulnerabilities according to the class of UI elements that
can be targeted by an attacker:

• Entire screen: vulnerabilities in which an attacker could
change the content of the main portion of application screens,
keeping visible parts of UI that identify the application such
as the action bar. Applications such as Mint, which load
arbitrary web pages or Booking that let populate a text area
belong into this category.

• Alert screen: vulnerabilities involving pieces of code used
that populate application-specific alert screens. Applications
such as Poste Italiane or Poste Pay can be induced to prompt
to users arbitrary text content in UI areas usually assigned
to communicate operations status.

• User Inputs: applications filling user inputs, such as text
fields, with Intent payload pieces. An example could be

Fig. 3: Example of phishing attack on the Mint app.

found in GoSMS where the SMS creation form (recipient
and text body) can be arbitrary populated.

• Other components: we grouped in this category all the
vulnerabilities that involve the manipulation of minor inter-
face components such as search input fields, screen titles
or buttons. Vulnerabilities found in applications such as
Craiglist belongs to this category.

The results of the analysis are summarized in Table II,
Table III, Table IV and Table V. For each of the applications
found to be vulnerable, we describe the related vulnerability
and the implications of a possible attack.

C. Detailed description of attacks

In this section, we describe in detail four attack scenarios
chosen from the vulnerable findings in the sample set.

Mint aggregates and presents to users detailed reports of
all their incomes and expenses from different financial sources
such as credit cards and bank accounts. Our tool reported a
entire screen vulnerability in Mint. The UI integrity attack
consists in showing to the user an arbitrary web page inside the
application visual context. A phishing attack scenario consists
in presenting to the user a crafted web page resembling Mint’s
look and feel inside the application. In the page, the user
is asked to reinsert her credit card details complete with
verification code because of identity verification purposes.
Reasonably, the user would act as asked, since they already
inserted such information in the Mint system. The loaded web
page is now free to send the collected credit card information
to any server. It is also important to point out that the URL
of the currently visualized page is never presented to the user.
An example of this attack can be seen in Figure 3.

Poste Pay manages the popular Poste Pay rechargeable
debit card service, allowing users to recharge prepaid cell
phones and any other Poste Pay card. Our tool reported a
alert screen vulnerability in Poste Pay. Since the content of an
alert screen is completely specified by an attacker, one could
mimic traditional phishing attacks, prompting users to submit



TABLE II: Experimental Results - Entire screen

Application Implication
Booking Important Information Activity screen

content can be filled with text
IM+ Display an arbitrary web page inside an

Activity && Change the Activity title.
An attacker can thus inject arbitrary
conversation threads

Mint Display an arbitrary web page inside
an Activity

PromoQui Induced an Activity to load an arbitrary
web page and to change the common
purchase process

SwissQuote Populate an Activity with arbitrary text
content

TABLE III: Experimental Results - User Input

Application Implication
GoSMS Prompt to the user notification about

a new message received. Can set an
arbitrary sender and SMS content

Imo Populate registration screen by insert-
ing custom fields such as email, pass-
word

Yelp Modify the fields contained in the
venue review draft screen. A successful
attack leads in a random review by the
user to a specific venue.

TABLE IV: Experimental Results - Alert screen

Application Implication
Poste Italiane Modify and show the application

prompt screen usually used by the ap-
plication show notifications to users

Poste Pay Modify and show the application
prompt screen usually used by the ap-
plication show notifications to users

TABLE V: Experimental Results - Other components

Application Implication
Craiglist Change the Action Bar title, compro-

mising the interface integrity
Hollister Fill the search box used to search be-

tween book contents
OpenTable Populate the editable text field used for

restaurant searching
SnapChat Arbitrary set the label of some buttons

in the preference screen

their information to a malicious website or email address.
Another scenario could ask the user to make a small transfer
to a specific credit card in order to, for example, extend the
expiration date of the card.

Booking is a hotel reservation system, allowing to browse
hotels by geographical position, price and user rating and
book them with the help of a credit card. Our tool reported a
entire screen vulnerability in Booking. The application allows
attackers to fill arbitrary text in the “Important Information”
screen. An attack aimed to steal the reservation amount can be
designed as follows: The user is informed of a (fake) server
issue experienced by Booking itself, and told to proceed with a
manual transaction to fake bank coordinates, or on an alternate
(malicious) website.

GOSMS is a popular SMS replacement client for Android
for which our tool reported a user input vulnerability, which
can be used to fill the SMS creation screen with arbitrary
recipient and message body. Exploiting this vulnerability, for
instance, pre-populating the user inputs with a fake demand for
charity as SMS body one can set up an effective SMS fraud.

D. Other experimental results

In Table VI we summarize several performance results, includ-
ing information about analysis execution time, path lengths
and components in the applications, and so on. As it can be
noted, the execution time of our whole analysis depends on the
number of components of an application. The per-application
execution time range is very wide, varying from a minimum

of 2.4 minutes for 3 analyzed components to a maximum
of 33.3 minutes spent to analyze an application including 31
components, with an average of 12.3 minutes per application.
The execution time is heavily dominated by the IFDS analysis
which consists in 70-80% of the overall execution time.

We discovered 92 paths leading to a sink out of 537 ana-
lyzed with an average of 4.2 vulnerable paths per application.
For each vulnerable path the analyzer collected an average
number of 17.2 statements, with an average number of 5.8
statements including API calls. We approximated 31.2% of the
supported API methods by not giving precise formulations due
to Kaluza limitations, as described in Section IV-D. We found
this not to be a limitation to our approach for two reasons: this
apparently large number of approximations were performed,
in practice, over the 7.7% of the total number of translated
statements including library calls, meaning that approximated
transformations are, in general, infrequent. Second, it is worth
noting that within the analyzed paths, very few include val-
idation checks over the data in input. In particular, our tool
found at most 3 checks in those paths, usually checks on null
values. In short validation checks involving Intent payloads are
performed in the 23% of the vulnerable paths.

E. Discussion of Results and Recommendations

From our results, it is clear that only a few applications
properly implement validation of data received from Intent
messages. Most applications perform only basic checks on
Intent payloads parts, such as null-checks, performed only to



Min Max Avg
Per-application execution time 2.4 min 33.2 min 12.3 min
Per-application components 3 31 24.5
Per-application vulnerable paths 2 19 4.2
Per-path statements 5 81 17.2
Per-path if-statements 0 3 0.98

TABLE VI: Other experimental setup

protect against malformed Intents payload tuples. Such checks
are not strict enough to defend application resources against
more sophisticated Intent spoofing attacks as the ones we
considered in this work.

In order to verify the intents’ origins, currently developers
may need to implement custom authentication mechanisms,
given the absence of a system-provided intent origin verifica-
tion feature. A recommended solution consists in exchanging
keys between intent sender and receiver, and requiring sig-
natures to be exchanged within intents as a mean of authen-
tication. This solution is very similar to the one used in web
application exchanging CSRF tokens, and it is very effective in
practice, since it guarantees complete protection to application
components possibly exposed to Intent attacks. However, it
requires communication of key material among applications
before normal communications can start.

A similar mechanism to provide trust among application
components in Android is the signature permission type,
where a permission is automatically granted to a request from a
component, if both the sender and receiver components belong
to applications signed with the same developer key. However,
this mechanism provides trust among apps developed by the
same developer and would limit communications among apps
of different developers.

An OS-level enhancement to offer to final users a set of
features in the Intent API to reliably retrieve an intent’s origin
or sign intent’s data would also help mitigate this risk. A work
that proposes something similar can be found in [14].

Most importantly, developers should always include strong
data validation checks, even when dealing with intents, and
should follow all the guidelines to securely implement intent
communications by not exposing their application components
unnecessarily. In addition, another good programming practice
is to limit as much as possible the functionality of external
components, which may be subverted by an attacker.

VI. Related Work

Android ICC security has received an increasing interest in the
past years. The current state of the art is presented in [7]. This
work aims to provide a precise specification of applications
ICC interconnections by using IFDS analysis to determine
communication entry and exit points and determine security
breaches. Despite some common points in the techniques, our
work is focused on the paths inside a single application rather
than analyzing a network of intercommunicating applications.
In addition, we characterize vulnerabilities and provide exploit
proofs.

In [1], the authors analyze the inter-application message

passing system and identify risks of intent-spoofing, such as
broadcast eavesdropping and denial of service. Their work
is however focused on developer practices that allow intents
to be sent by malicious applications and received by victim
applications. Our work goes more in-depth and focuses on how
the attackers can use intent-spoofing and leverage insufficient
intent data validation checks inside applications to carry out
additional attacks. Also, our work goes in the direction of
automatic detection and exploitation of the vulnerabilities.

In FlowDroid, the authors present an IFDS-based taint
analysis to derive information flow inside Android applications
and detect malicious data leakages [15]. Conversely, in our
work, IFDS-based taint analysis is used only as a first step
towards symbolic execution of an application component with
the goal of finding vulnerable paths inside an application.

A work related to defenses against intent spoofing is [14].
Quire is a lightweight framework to enhance Android IPC
mechanism by adding message provenance. The implementa-
tion relies on a signature scheme that allows message recipient
validation before delivering. The class of attacks they want to
prevent is closely related to the ours: confused deputy attacks.
Their approach needs to modify the Android OS in order to
guarantee the described security features, our approach aims
to obtain a similar result by preventing behaviors that can
potentially introduce vulnerabilities in applications.

Other related studies includes different techniques for
statically testing security of Android applications: Schmidt
et al. [16] used static analysis to extract a list of function
calls from which they can perform data analysis for malware
detection. Mirzaei et al. [17] applied symbolic execution
techniques in order to generate test cases and thus differs
significantly from our work. ScanDal [18] is a static analyzer
that implements a formal approach to automatically detect
private data leaks in Android applications rather than detect
active attacks as in our work. AppIntent [5] uses symbolic
execution to detect if dataflows from application GUI elements
are not intended by the user and differs from our approach for
detecting vulnerabilities and providing proofs for them.

Our approach shares some characteristics with similar
research on automatics exploit generation and vulnerability
proving [19], [20]. In particular, symbolic execution is a
common technique to for finding inputs that exercise specific
paths in a program. However, our work differs from them in
that it is applied to the Android context and requires a heavy
use of interprocedural analysis. In addition, our work differs
from Mayhem [20] in that it uses static taint propagation
as a “heuristic” for pruning the search space. Similarly to
our approach, in Dowser [19], the authors use dynamic taint
taint propagation to find paths that are most likely to exercise
predefined vulnerabilities.



VII. Conclusions

In this paper, we describe an automated analysis framework to
study validation checks over the data received via Intent mes-
sages in Android applications. Our method for automatically
detecting these vulnerabilities relies on static taint analysis and
symbolic execution, using the IFDS framework. Furthermore,
we use a solver to automatically generate a proof-of-concept
attacker app that validate the vulnerabilities. We evaluate our
approach on 64 popular applications downloaded from the
Google Play Store, finding 29 potential vulnerabilities, and
automatically exploiting (and thus confirming) 26 of these.
Our results confirm that a large percentage of commonly-used
applications do not implement appropriate security safeguards
for Intent communications.
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