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Abstract—Software exception analysis can not only improve 
software stability before putting into commercial, but also could 
optimize the priority of patch updates subsequently. We propose 
a more practical software exception analysis approach based on 
taint analysis, from the view that whether an exception of the 
software can be exploited by an attacker. It first identifies the 
type of exceptions, then do taint analysis on the trace that 
between the program entry point to exception point, and 
recording taint information of memory set and registers. It 
finally gives the result by integrating the above recording and the 
subsequent instructions analysis. We implement this approach to 
our exception analysis framework ExpTracer, and do the 
evaluation with some exploitable/un-exploitable exceptions which 
shows that our approach is more accurate in identifying 
exceptions compared with current tools. 

Keywords—Software engineering; crash analysis; taint 
analysis; exception classification 

I.  INTRODUCTION (HEADING 1) 
Current software operators commonly used error-reporting 

mechanism for stability maintenance of the released software, 
as shown in Figure 1. Software developers receive such a 
report which is often a sample or a memory dump when the 
software crash and it cannot perform live trace debug. So it is 
very necessary how to quickly provide software crash-related 
information for software maintenance personnel. For example, 
software usually crash to an instruction, and we need to 
determine whether the crash is caused by internal logic error of 
the program or the external input data. If the cause is an 
external input, it is likely to be a serious crash, even an 
exploitable vulnerability. At this time we need to know which 
fields of the inputs are related to the data which cause this 
instruction an error, in order to further supply the judgment 
basis whether a crash can be used as vulnerability. Therefore, 
the ultimate goal of the software crash analysis is to determine 
whether the current software crash could be exploited by 
attackers. This paper uses data flow oriented analysis methods 
to directly analyze the binary program, and analyze whether the 
crash point can be controlled by an attacker to achieve crash 
threat classification to provide fix information for software 
maintenance personnel. 

Current researches on the analysis of software crash 
determination mainly focus on buffer overflow and format 
string. Two representatives are "! Exploitable" plugin [1, 2] of 
Microsoft winDBG, and AEG (Automatic Exploit Generation) 
[3]. And the exploitable is used as Windbg plugin, when the 

program crash, using load MSECD.dll to load exploitable 
plugins, and then use "! Exploitable-v" commands to check the 
exploitability analysis results of current crash. Exploitable will 
divide the crash into exploitable, may be exploitable, may be 
not exploitable and the unknown to measure the degree of 
crash exploitability. This plugin is generated after Microsoft's 
security personnel analyzed ten million crashes on vista and 
found that many crashes have something in common. Although 
the path is not reachable which some crashes triggered, the root 
cause is the same, so the crashes which appear in one code area 
can be classified as a class. When it is implemented in reality, 
we classify the crashes by collecting the stack information of 
crash points and use implementation of the exceptions to Type 
outliers stack by collecting information, and use the primary 
hash and secondary hash to commutate stack frame information 
of crash point, and then according to the hash value classify 
crashes which are caused by the same defect to one category, 
and thus determine the exploitability of the crash point. But the 
plugin can only give an accurate crash judgment under 
windows, for other third-party software and some of the more 
complex crashes such as heap overflows, UAF (Use-After-
Free), etc. often give false results. 

 
Fig. 1  Error reporting of software exceptions. 

AEG is different from exploitable. It uses symbolic 
execution[4, 5] technology to get constraints of execution paths, 
and then use the constraint solver, in order to determine the 
exploitability of crashes. To be specific, first the target program 
source code is compiled into a binary program using the GCC 
compiler, and the binary program is to be tested by AEG. Then 
use the LLVM compiler to compile target program into byte 
code object, and the byte code is to be analyzed by AEG. 
Traverse the execution paths in source code level by symbolic 
execution technology. When crash occurs, AEG  
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Fig. 2  Work flow of ExpTracer. 
collects the path’s constraint expression which reach the crash 
point, and solve specific input parameters by which the 
program can trigger vulnerability, then analyze the parameters 
to judge whether the crash is exploitable. However, because of 
the usage of symbolic execution technology, when there is a 
cycle occurs, it will lead to "the path explosion" phenomenon. 
The analysis efficiency will drop sharply, at the same time false 
positives rate raise up. And the tool can only determine the 
format string and buffer overflow crashes. 

In addition, Dawn Song et al proposed crash exploitability 
judgment technology based on path signature[6].The technology 
extracts the signature of the path from program entrance to 
vulnerable point to obtain vulnerability type. When make crash 
exploitability judgment, first extract signature, and make a 
judgment by matching crash types. The method may lead to too 
many crash types, and the result depends on the match list of 
vulnerabilities, whose practicality is not enough. 

 In this paper we sum up the previous experience, and use a 
data flow guiding analysis technology based on taint analysis 
to judge software crash exploitability, according to the need of 
practical program analysis. As shown in Figure 2, the method 
identifies the crash type, screens and rejects crashes which are 
not exploitable, and then records taint propagation path and 
whether memory, register is tainted by analyzing the taint 
analysis path from program entrance to crash point. For 
instructions which change the control flow, we not only 
analyzes the taint situation of the current instruction, but also 
analyze whether the EIP register is tainted to give a more 
accurate analysis. At the same time the subsequent instructions 
are analyzed, to judge exploitability of current crash. We use 
binary instrumentation platform PIN to realize the research 
ideas -- the ExpTracer prototype system, and select opened 
loopholes to compare with Microsoft "! Exploitable". The 
results show that the method is more accurate in the 
identification of crashes, especially the writing cover type ones. 

Contributions 

1. We proposed a new dynamic taint analysis based on static 
optimization on DBI (Dynamic Binary Instrument) platform, 
by which we could effectively improve the efficiency of taint 
analysis. 

2. We proposed a practical method to analysis instructions in 
the subsequent traces by instruction pre-fetch, which could 
highly improve the accuracy of crash determination. 

3. We have built a crash determination framework named 
ExpTracer, and we have shown how this work could provide 
basic research foundation for vulnerability model study by 
specific case study. 

Roadmap 

Abnormal classification in the second part introduces 
ExpTracer the paper, in the third part introduces ExpTracer 
fine-grained stain was optimized by using static analysis 
algorithm, the fourth part introduced ExpTracer framework and 
function modules, the fifth part gives the results of the 
experiment, and analyze the results. The sixth part is the 
summary of the thesis, insufficient and future research work. 

II. CRASH CLASSIFICATION 
Before determining crash availability, in order to reduce the 

scope for further determination and improve the efficiency of 
system execution, we need first to remove those crashes which 
are known not exploitable, then further classify crashes which 
are exploitable maybe. In this payer, we divide crashes into the 
following types by crash messages generated during system 
exception and types of instructions which lead to crashes. 

A. NULL Point Deference 
A null pointer is the pointer whose memory unit value is 

NULL, and crash occurs when using the pointer. Null pointers 
usually has two causes: first, because the release version is the 
wrong version of programs to initialize pointers, it often reports 
"fail to read data, memory address is NULL", but this problem 
does not appear in the debug version. These crashes can be 
resolved through compatibility check and static compilation. 
Two is in the internal procedures the logical processing 
incorrect, leading to zero the pointer and read error, which is a 
logical error. But the use of this two reason cannot change the 
program’s control flow, therefore we determine "read empty 
memory" is not exploitable. 

B. Direct Jump Instruction 
For the situation that crashes come up when executing the 

jump instructions (such as JMP, CALL instruction), differently 
from using the approach of taint analysis such as TaintCheck[8], 
the system first determines whether the destination address is 
tainted. If the destination address is tainted, it needs to further 
determine whether the EIP register is tainted. Only when 
destination address and EIP register are both tainted, can the 
system determine the crash is exploitable. If the jump 
instruction is not tainted, the system will analyze whether 
subsequent instructions contain the ones which may change the 
control flow or not. 

C. Memory/Register Modify Instruction 
When crash instructions are memory / register modification 
instructions (such as mov), it needs to determine whether the 
source operand is tainted and how many bytes are tainted. At 

the same time track where the tainted memory/register is
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Fig.3 Work Flow of Taint Analysis

used, and whether information leak would occurs. If possible, 
crash is exploitable. Then analyze the subsequent instructions 
by the static analysis, and checking whether the tainted 
memory/register has affected the subsequent jump instructions. 
If there is, the control flow is likely to be hijacked, and the 
crash is also exploitable. 

D. Interrupt Instruction 
Usually, in order to protect control flow from being 

hijacked, the compiler will insert some interrupt instructions at 
compile time (0xCC). So when the process crashes, the crash 
point often appears "CC" command. The judgment on this type 
of crashes is difficult to realize automation, and usually these 
crashes are hard to use, because the control flow is relatively 
difficult to be changed. This type of crashes will be determined 
as "may be able to exploitable". 

III. DATA FLOW DIRECT ANALYSIS METHOD 
We adopt data flow analysis to improve the efficiency of 

data flow analysis. As a kind of fine-grained taint analysis 
based on static optimization, it can not only determine whether 
a memory unit/register is contaminated, but also be able to 
identify the offsets of taint sources that tainted the target 
memory or register, so as to identify the relationship between 
user input and software crash point. As shown in table 1, the 
first column represents the three order instructions. Among 
them, the variable T is used for taint variable, which means T 
(eax) ={0,1,2,3} induce that register eax is tainted by the first 
four bytes (offset 0,1,2,3) of taint source. 

As shown in figure 3, the length of taint source is 8 bytes. 
Initially, the memory units referred by esi is tainted by the first 
four bytes of taint source, while the other four bytes taint 
memory units referred by edi. As you can see that after the first 
two mov instructions, eax is tainted by the first four bytes of 
taint source, ebx is tainted by the last four bytes. However, the 
instruction add will merge the information of eax and ebx both 
into eax, making the eax rely on the whole 8 bytes of taint 
source. The taint process record is shown in table 1. 

But current fine-grained taint analysis methods still adopt 
the way that analysis instructions one by one, ignoring the taint 
transmission relationship between instructions, which increase 

a lot of extra overhead[9, 10, 11]. As shown in figure 3a, the 
sequences of instructions complete the assignment between 
memory operations. If we analysis this by instruction 
instrument one by one,  the correspond taint spread relations is 
shown in figure 2b. T (eax) indicates that the eax register is 
pollution, "< -" represent the spread of taint. On the other hand, 
the final goal of the instruction sequence is spread the taint 
information of memory units referred by ebx to which referred 
by edi, which has nothing to do with eax. But in the actual taint 
analysis process, current methods use four taint spread 
relationships to represent the process, among these the second 
and forth of them are superfluous, the first and third can be 
combined. 

Table 1 Taint Propagation Record 

Instruction T(eax) T(ebx) T(dword 
[esi]) 

T(dword 
[edi]) 

 {} {} {0,1,2,3
} {4,5,6,7} 

mov 
eax,[esi] 

{0,1,2,
3} {} {0,1,2,3

} {4,5,6,7} 

mov 
ebx,[edi] 

{0,1,2,
3} 

{4,5,6,
7} 

{0,1,2,3
} {4,5,6,7} 

add 
eax,ebx 

{0,1,2,
3,4,5,6,

7} 

{4,5,6,
7} 

{0,1,2,3
} {4,5,6,7} 

On the basis of previous studies, we proposes a fine-grained 
taint analysis based on static optimization algorithm. We 
extract the semantic information of taint propagation through 
static analysis, deleting the instructions which has nothing to 
do with taint propagation, and merging the spread of the repeat 
order. Furthermore, according to the feedback of static 
analysis, the dynamic analysis will complete the specific taint 
analysis. 

(1) Static Optimization for Dynamic Taint Analysis 

A. Intermediate Representation 

We design the intermediate representation language of taint 
propagation as follows. 

In this IR, we have two operators  and , the former used 
to represent taint information combination, while the latter used 
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to set the length of operator, for example 0x1&eax can get the 
last byte of eax, if the default length of operator is 4. 

B. Non Taint Propagation Instruction elimination 

As we know there are many non-taint propagation 
instructions during taint analysis, all these instructions could be 
eliminate by the following way. Firstly, we split our target into 
basic blocks, each block is constructed by many entrance point 
and only one exit point. Secondly, we set the input collection as 
�I and the output collection as �O. Lastly, we search and delete 
instructions that satisfy the express Inst��O. 

 
Fig.4 Taint Propagation Relationship before 

Optimization 

�

 
Fig.5 The grammar of intermediate representation 

C. Repeat Propagation of Taint Information 

 We set basic blocks as a sequence constituted by state1, 
state2, state3…staten. The taint express of each statei is 
represent by oprandi<=expi. Based on this, we get the algorithm 
on repeat propagation of taint express, which is shown in 
algorithm 1. 

With regard to assembly instructions in figure 6, after the 
static optimization, the taint propagation could eventually be 
simplified into the four transmission in figure 6c, and can be 
instrument before the fifth line, by which we could complete 
the whole fine-grained taint analysis process of seven 
instructions only by one instrument. 

Using the above optimized taint analysis algorithm, we 
could effectively shorten the time of taint analysis and 
accurately identify the corresponding taint source, which 

provide detailed decision basis for crash exploitability 
determination. 

Algorithm 1  RepeatPropTaint 
Input: 1 2... nblock state state state=  

Output:
1 2' ... ,kblock state state state k n= <=  

begin 
1. for i=1 to n do 
2.   flags=false 
3.    ( exp )i i istate oprand= ⇐  

 //get current taint express 
      //if the left value of the express outside  
4.     if ( )ioprand OUT DAG∉   
5.       for k=i+1 to n do        //traverse subsequent taint express 
6.         ( exp )k k kstate oprand= ⇐  

            
//

kstate and
istate could be Repeat Propagat

 
7.           if( expi koprand ∈ )   

8.               ( exp ')k k kstate oprand= ⇐
   

 
9.               flags=true   //set Flags of Repeat Propagation 
10.          endif 
11.      endfor 
12.    endif 
13.    if (flags) 
         //if have repeat propagated, then delete it 
14.      delete(block,

istate )   
15.    endif 
16. endfor 
end 

 
Fig.6 The Optimization progress of Mov 

(2) Crash Instruction Analysis 

From crash classification we know that we could not give 
an accurate result to “memory/register modification 
instructions”. So we need a further step to analysis, and we 
category this type into three classes as follows. 

495



8 /16 / 32, / / dword/ ptr[ ] ( 1)
/ / / [ ], 8 /16 / 32 ( 2)

8 /16 / 32, 8 /16 / 32 ( 3)

mov reg byte word mem Type
mov byte word dword ptr mem reg Type
mov reg reg Type

         
       
                                     

 

Fig.7 The combination type of Mov 
For instruction mov, it has three types because of non-

directly copy of two memory units on x86 platform. However, 
when come to taint analysis, we only need to analyze Type1 
and Type2. For Type1, 8 / 16 / 32 / / dword/ ptr[ ]reg byte word mem⇐

the particular memory unit will be copy to target register, so we 
need to record that if the memory unit is readable. And if it is 
true, then we need to analyze the length of the tainted memory, 
from which we could determine the exploitable of current 
crash. For example, if the whole 4 bytes are all tainted, then we 
could get the control of a memory space which is as large as 
4G, inside which we could insert any dll making our exploit be 
success. 

For Type2 / / / [ ] 8 / 16 / 32byte word dword ptr mem reg⇐ , 
the particular register will be copy to target memory units, so 
we need to record that if the memory units is writable. And if it 
is true, then we need to analyze the taint information of source 
operand, from which we could determine the exploitable of 
current crash. 

IV. CRASH EXPLOITABLE DETERMINATION FRAMEWORK: 
EXPTRACER 

Crash exploitability determination is ultimately to 
determine whether EIP register can be controlled. The most 
direct way to determine whether EIP register is polluted is taint 
analysis techniques, and another way is to extract crash 
patterns through pattern matching method. In this paper, we 
complete the base portion ExpTracer, which classify the crash 
and then identify contaminate memory/register via taint 
analysis according to the different types of crash, based on 
which, we can determine whether the crash exploitable. 
Subsequently, under this framework we can extract patterns of 
different crash respectively, and perform more accurate crash 
determination through pattern matching to implement the 
extension of the ExpTracer framework. 

A. Type Identification 
For a binary program and a sample which can trigger crash 

point, we gather information of crash point by simulating 
execution and then triggering crash, and identify the type of 
crash by the error and command information of crash point 
system prompts when triggering crash. For "read empty 
memory" crash, because of its control flow cannot be exploited 
directly and we give "non-use" judgment result directly; while 
for "break" type of crash, because the program itself has a 
protection mechanism to control flow, given control flow is 
more difficult to hijack, we assume that it is "possible to use." 
For other types of crash, they need to be determined by further 
taint analysis. 

B. Taint Analysis 
In this paper, the taint analysis module contains two parts, 

static module and dynamic module.  The static module is used 
to optimize the stain, and the dynamic module takes the results 

of static optimized result to conduct concrete implementation. 
Static Module will first converter the instruction to an 
intermediate representation based on which we complete the 
non-pollution instruction directive and the optimization of 
duplicate spread of pollution. The optimized result is returned 
to the dynamic taint analysis module. Dynamic taint analysis 
extracts taint source based on the sample, complete the 
instruction stub and record of taint propagation, construct and 
analyze real-time updates tainted record sheet, at last taint 
analysis results will be submitted to the crash determination 
module. 

C. Instruction Pre-fetch 
Typically instruction at the crash point can not change the 

control flow of the program, so it is difficult to achieve exploit. 
The exploit point of exploitable crash can be before crash 
points and can also be after the crash points. The former 
requires specific analysis by backtracking method, and the 
latter requires to analyze the instructions after the crash points. 
This paper only considers the case in which the exploit point is 
after the crash point, and reads the instructions after the crash 
point in a coarse-grained way, from which we extract the 
instructions which can change control flow of the program, 
such as call, jmp, etc. We perform static taint analysis on this 
type of Instructions to see the taint condition, and if the 
destination address is tainted, we think that it is possible to 
exploit. On the one hand because of the uncertainty whether 
the path up to that point, on the other whether the EIP 
instructions can be tainted. 

D. Exploitable Determination 
Exploitability determination module uses a different 

determination method on different types of instructions, 
according to the instruction type of crash points. For the jump 
instruction is mainly based on the results of the taint analysis, 
to see whether the destination address of the jmp instruction is 
tainted, and can be polluted by which bytes of taint sources. If 
they can be tainted, and EIP registers can be hijacked, then 
you the control flow of the program can be changed to achieve 
crash exploit. For memory / register modification instructions, 
we need to first determine whether the source operand can be 
tainted and if they can, then further trace taint condition of 
destination operand. If we detect taint spreads to the 
instruction which can change the program control flow, then it 
shows that the crash is also exploitable. 

V. EVALUATION 

A. Experimental Environment  
Table 2 Testing environment 

Environment Type Configuration and Version 

HardWare Processor Intel(R) Core(TM) i5-2300 
CPU @ 2.80GHZ 

Memory DDR3-4.00GB 

Software OS 
Windows XP Professional 
SP0-SP3, Win2000 SP4 

Virtual Machine 
DBI Pin v2.11-43611 
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NO. Vulnerability NO. Crash Instruction 
Taint 

Source 
(Byte) 

“!exploitable” ExpTracer 

1 MS06-040 call ds:_imp_wcscat 128 exploitable Probably 
exploitable 

2 MS08-067 mov ecx, dword ptr 
ss:[ebp+8] 128 exploitable exploitable 

3 CVE-2011-2130 movzx eax, word 
ptr[eax+1ch] 64 Unknown exploitable 

4 CVE-2011-2595 mov ecx, dword ptr 
ds:[eax] 128 Unknown exploitable 

5 CVE-2013-2551 mov ecx, dword 
ptr[eax+14h] 256 Probably 

exploitable 
Probably 

exploitable 

6 CVE-2013-0753 movzx eax, word 
ptr[ecx+4ah] 128 Unknown exploitable 

7 CVE-2011-0609 call dword ptr[ebp+68h] 64 Unknown exploitable 

8 CNNVD-201310-
129 

mov ecx, dword ptr 
ss:[ebp+34h] 256 Probably 

exploitable Unknown 

9 CNNVD-201309-
301 

movzx eax, word 
ptr[ecx+34h] 128 Unknown Unknown 

Note: respectively from the Microsoft security center, CVE vulnerability database[12] [13] [14] and the national vulnerability database selection has 
publicly loophole, corresponding to the number of MS, CVE, CNNVD respectively. To "fly" abnormal crash and exploits the distance to use 
point address, abnormal points instructions for use of point; For abnormal is not available, the distance is up; Usually exploits point after the 
crash point, but also can appear before, after negative. 

B.  Experimental Result 
From table2 we could get a direct point that ExpTracer 

could identify more crashes of third-part software than 
exploitable, especially for crashes that change control flow. 
And the table also show that UAF (Use-After-Free) 
vulnerabilities could not be determined accurately, because the 
POC (Prof Of Conscept) has many memory rewrite 
instructions, which leading a complicated logical result. So 
ExpTracer recognize this type as “probably exploitable”. 
Figure 9 shows that “exploitable” take any unrecognized crash 
as “Unknow”, while ExpTracer not, and for crash that occurred 
by stack overflow, our method has more accuracy. Figure 10 
shows that the overhead of ExpTrace is more high than 
“exploitable”, however, because we are offline analysis, and 
compared with manual analysis, the time consuming is 
acceptable. 

 
Fig.8 Comparing of Recognition Accuracy 

From the exception type, divided into two aspects of data 
flow analysis research of binary anomaly judgment. Although 
able to identify the abnormal availability to identify the type of 
more, but it is still a coarse-grained anomaly judgment method, 

 

 
Fig.9 Comparing of Time Consuming 

VI. CONCLUSION 
Especially for abnormal for some logical relationship is 

relatively complex, still can't accurate judgment result is given. 
Especially to "fly" and abnormal points in the case of MOV 
instruction cannot path for effective analysis of the abnormal 
points later, just by the disassembly, instruction identification 
methods, such as not on subsequent path analysis, the flow of 
control will be the focus of future research. 
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