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Abstract—We normally monitor and observe failures to 

measure the reliability and quality of a system. On the 

contrary, the failures are manipulated in the debugging process 

for fixing the faults or by attackers for unauthorized access of 

the system. We review several issues to determine if the failures 

(especially the software crash) are reachable and controllable 

by an attacker. This kind of efforts is called exploitation and 

can be a measurement of the trustworthiness of a failed system. 

 
Keywords—automatic exploit generation; control flow 

hijaction 

 

I. INTRODUCTION 

The failure exploitation methods are to manifest the room for 

security breaches from the observed failures. The motivation of 

this type of work is rooted from generating attack inputs to 

compromise the system and prioritize the bug fixing order. 

Since failure of software is inevitable and if there are a large 

number of failures, we need a systematic approach to judge 

whether they are exploitable. In Miller et al.'s crash report 

analysis, the authors analyze crashes by BitBlaze [1]. 

Compared with !exploitable [2], the results show that 

exploitable crashes could be diagnosed in a more accurate way. 

Moreover, crash analysis plays an important role to prioritize 

the bug fixing process [3]. A proven exploitable crash should 

be the top priority bug to fix. A general review and recent 

advances are described in [4]. Research insight about exploit 

generation is analyzed in [5]. Recent work has proved 

feasibility for common linux and windows applications [6-8], 

Microsoft office [9, 10] and web applications [11].  
 

Software crash is a special case of control-flow hijacking by 

the exception handler, raised by the protection hardware. If the 

program accesses an invalid address (program counter, or 

memory data access), the memory protection hardware will be 

signaled. It is due to an incorrect memory update of run-time 

context or data pointers. If the update is derived from user 

inputs, run-time context (especially program counter or called 

instruction pointer and frame pointer) and pointers can be 

manipulated. If we manipulate the run-time context by deriving 

the user input, this exploitation process is called failure 

hijacking. For example, the instruction pointer (or program 

counter) IP can be related to the failure input with a set of 

constraints as follows: 

 

IP = F(failure-input) 

We are able to control the value of IP by resolving the above 

constraint. The function with path condition is constructed by a 

failure input feeding to a concolic execution[12]. 

 

A failure is the observable event that violates predefined 

specification. Software crash is a kind of failure that raised 

from the execution environment, such as run time protection 

added by the compiler or address protection by the memory 

management unit. However, many types of failures may not be 

easily detected unless a predefined specification is enforced by 

a violation checker. To our problem setting, if the failure is to 

be controlled by an attacker, we should have tagged the source 

of the attacker input and monitor the potential outcome to see if 

the tagged input will eventually influence the failure. There are 

several types of failures, some of which will raise run-time 

exceptions, and some of which won’t. We view exploit as the 

manipulation of the software. Exploit generation process is to 

find input that will control the software. For example, a 

program written in C is listed in the following: 

 

int f(int x) { 

  int y = x + 10; 

  if (y > 0)  

     return y; 

  else  

     return x; 

} 

 

If we want to obtain f(x) = 100, what is the value of x? Since 

in the function f(x), two possible conditions must be explored:  

 

(1) y >0 and x+10 > 0 which is called a path condition and we 

add a constraint of x+10 = 100. The solution is x = 90. 

(2) y <=0 and x + 10 <= 0 and we add another constraint of x = 

100. No solution is found for x <= -10 and x = 100.  

 

The final solution is x =90 to obtain f(x) = 100. The above 

process is called symbolic execution since we treat x and y as 

symbolic variables and don’t assume any concrete values as the 
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values of x and y. A special case of symbolic execution is to 

build the first set of path conditions according to an initial input. 

The variables are still treated as symbolic. If the evaluated 

results of any path condition is false, the negation is added to 

the path condition. Otherwise, the original path condition is 

added. For example, with the initial input of 100 for a concolic 

execution, f(x) is expressed as x+10 > 0 and f(x)=x+10. If we 

feed an initial input that will trigger a failure in the software by 

a concolic execution, we will obtain a set of path conditions 

that is a precise symbolic model of the failure. For example, if 

we have a Microsoft office RTF file that will crash the 

Microsoft Office Word software, we can feed the RTF file as 

the initial input by concolic execution of Word 2010, and 

obtain a precise symbolic model like: 

  

    Path conditions:   C1  C2  C3  C4  ...  

    EIP = F(I0,I1,I2,...) 

    EBP = F’(I0,I1,I2,...) 

    ESP = F’’(I0,I1,I2,...) 

 

Where Ci is the path condition and Ii is the input to be 

manipulated. 

 

The following of Fig.1 is a partial listing of the EIP constraint 

after concolic execution with a failure as the initial input. 

 

(Concat w20 (Extract w8 0 (Add w20 ffffffa9 (Or w20 (And 

w20 (Add w20 (Or w20 (ZExt w20 (Extract w8 0 (Shl w20 

(ZExt w20 (Extract w8 0 (Add w20 ffffffd0                                                                                                                                       

(Or w20 (ZExt w20 (Read w8 9 eip)) 7c810000)))) 4))) 

207200) (Or w20 (Or w20 (ZExt w20 (Read w8 a eip)) 

7c810000) 20)) ff) 7c810000))) (Concat w18 (Extract w8 0 

(Add w20 ffffffa9 (Or w20 (And w20 (Add w20 (Or w20 

(ZExt w20 (Extract w8 0 (Shl w20 (ZExt w20 (Extract w8 0 

(Add w20 ffffffd0 (Or w20 (ZExt w20 (Read w8 7 eip)) 

7c810000)))) 4))) 207200) (Or w20 (Or w20 (ZExt w20 (Read 

w8 8 eip)) 7c810000) 20)) ff) 7c810000))) (Concat w10 

(Extract w8 0 (Add w20 ffffffa9 (Or w20 (And w20 (Add w20 

(Or w20 (ZExt w20 (Extract w8 0 (Shl w20 (ZExt w20 

(Extract w8 0 (Add w20 ffffffd0 (Or w20 (ZExt w20 (Read 

w8 5 eip)) 7c810000)))) 4))) 207200) (Or w20 (Or w20 (ZExt 

w20 (Read w8 6 eip)) 7c810000) 20)) ff) 7c810000))) (Extract 

w8 0 (Add w20 ffffffd0 (Or w20 (And w20 (Add w20 (Or 

w20 (ZExt w20 (Extract w8 0 (Shl w20 (ZExt w20 (Extract 

w8 0 (Add w20 ffffffa9 (Or w20 (Or w20 (ZExt w20 (Read 

w8 3 eip)) 7c810000)                                                                                                                                                                       

20)))) 

….                                                                           
 

Fig. 1. The Microsoft Word EIP Constraint with a Failure Input 

 
We are able to control the value of EIP, EBP, or ESP by 

solving the above constraints. The solution of I0,I1,..,In are the 
exploit input of the failure. Failures of stack overflow and 
uninitialized uses can be modeled in the above similar way. 
Situations like format string and heap corruption is treated by 
introducing pseudo symbolic variables for assuming the 
variable referred by the pointer that is symbolic is probably 
symbolic. To resolve the pseudo symbolic variables, we first 
obtain a solution assuming pseudo symbolic variables are 
symbolic. By searching the memory contents that meet the 
solutions of the pseudo symbolic variable, we can resolve the 

values of the symbolic pointers that refer to the pseudo 
symbolic variables. 

II. EXPLOITS WITH SHELLCODE AND ANTI-MITIGATIONS 

To launch a practical manipulations of the failures, a set of 

malicious commands called shell code must be supplied. For 

example, to execute arbitrary code, the memory location of 

MEM[X] is injected with the malicious code D0,D1,... and the 

EIP is resolved with the value of X by solving the constraints: 

 

    Path conditions:   C1  C2  C3  C4  ... 

 MEM[X] = D0 = F(I0,I1,I2,...) 

 MEM[X+1]= D1 = F’(I0,I1,I2,...) 

       ... 

    EIP = X = F’’(I0,I1,I2,...) 

 

The concolic execution is performed under the CRAX 

framework[10] and depicted in Fig. 2. 

 
 

Fig. 2. Concolic Execution for Constructing Failure Constraints 

 

Given a crash input, the target program, and the shell code, the 

exploit can be produced. 

 

 
 

Fig. 3. The Generated Failure Constraints 
 

Other types of attacks such as SQL injection is to find 

potential manipulations to the query strings to the SQL server. 

We can also build concolic constraints of web applications by 

feeding failure inputs. If the query to the SQL server is found 

to be symbolic, arbitrary SQL injection attacks may be 

constructed. If the output as the HTML response is symbolic, 

arbitrary Javascript code is very likely constructed as Cross 

site script (XSS) attacks.  The generation is listed in Fig. 4. 

We extend these types of exploitation as follows.  

 

a. SQL injection 

   Path conditions:   C1  C2  C3  C4  ... 

SQL query = Q = F(I0,I1,I2,...) 
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b. Cross site scripting  

   Path conditions:   C1  C2  C3  C4  ... 

HTML Output response = R = F(I0,I1,I2,...) 

c. Command injection  

   Path conditions:   C1  C2  C3  C4  ... 

string to the system() function = S = F(I0,I1,I2,...) 

 

 
 

Fig. 4. Concolic execution of Web applications 

 

Even if we can control the instruction pointer, several 

guards in front of the failures must be escaped. The first guard 

is the path constraint to reach the failure site without 

mitigations (surviving security attacks).   

 

Many systems will be with protections such as data 

execution prevention (DEP) and address space layout 

randomization (ASLR)[13]. In such a system, executable code 

may not be injected and a return-oriented programming 

(ROP)[14] payload built through the application code must be 

constructed.  The exploit constraint is changed into: 

 

Path conditions:   C1  C2  C3  C4  ... 

 Search ROP Gadgets in m0,m1,m2,.... locations of the 

application code   

 STACK[X] = M0 = F(I0,I1,I2,...) 

 STACK[X+1]= M1 = F(I0,I1,I2,...) 

 … 

The R1 is the location containing the instruction of “ret” of the 

code and the starting of the gadget. 

 EIP = R1 = F(I0,I1,I2,...) 
 

III. THE CONSIDERATIONS OF THE ENVIRONMENT MODEL 

Since the inputs to the target applications are through the 

operating system environment, for example, the file inputs, 

environment variables, or network socket, we must be able to 

feed inputs as symbolic through the OS environment which is 

called the environment model. There are two possible 

implementations. The first is to intercept the system calls or 

revise the standard library functions to mark the inputs as 

symbolic for concolic execution. This method is used by 

KLEE[15], AEG[7] and Mayhem[8].  Another solution is to 

use the whole system emulation like S2E[16] which is based 

on KLEE and QEMU. By using mmap() system call as in Fig. 

5, or RAM disk, we can feed any environment input as 

symbolic variables to the target applications. The first 

implementation will be with limited supports of system 

functions intercepted. The second implementation will support 

all types of environments. To support an end-to-end approach 

of exploit generation, environment models of symbolic inputs 

must be supported. Otherwise, revisions of source is needed 

like the Heelan’s method [6].  

 

 
 

Fig. 5. The Symbolic File Environment by mmap() 

IV. SUPPORTING BINARY PROGRAMS AND DEALING WITH 

LARGE INPUTS 

To support binary programs of exploit generation, we must 

perform concolic execution over binary programs. 

Instrumentation over binary programs is needed. There are 

several concolc execution supports over binary 

program.  Mayhem is based on PIN [17], Catchconv[18] is 

based on Valgrind[19] and S2E is based on QEMU. Another 

issue of binary programs for exploit generation is to use 

concrete address for symbolic memory. Conventional 

symbolic execution is to use abstract address and these 

addresses cannot be used for practical exploits. The concolic 

execution in S2E are treated differently in the host and the 

guest OS. In the guest OS, all addresses are concrete while 

abstract in the host OS. Since our exploits are for the guest OS, 

the concrete addresses meet the need for exploits of binary 

programs.      

 

A. Dealing with large inputs  
The primary steps are to crash the software and control the 

crash from carefully crafted inputs based on the crash input. 

There are two techniques to craft the inputs for easier crash 

manipulation: (1) search the influence over the crash by 

injecting special patterns of input [20]. (2) find the critical 

fragments of the input(called hot spot) that will influence the 

crash (or failure) by tainted input analysis [21]. Since the path 

conditions, EIP, shell code, and other constraints contain 

inputs as symbolic variables, the input size will influence the 

exploit generation process. For example, if the input size is 

1024 bytes, there may be several large constraints with 

thousands of variables.  The constraint resolution time is 

exponentially proportion to the size of input variables as listed 

in Fig. 6. 
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Fig. 6. The Execution time in seconds for symbolic input size  
from 100 to 1000 bytes 

 

We have proposed an adaptive input selection method by 
dividing the input into several small size of symbolic inputs to 
track the influence. Table 1 shows the performance 
improvement of  the adaptive input selection. Originally, if we 
use the input length of 5000, the explore time is 1388 seconds. 
If we divide the input into 20 bytes of small chunks, the total 
explore time is reduced to 11.7 seconds. The improvement is 
significant.  

 

Table 1. The Performance Improvement of Adaptive Input Selection 

 

Prog. Input 
Length 

Explore 
Time 

Exploit 
Gen. 
Time 

Explore 
Time 
(Adaptive) 

Exploit 
Gen. Time 
(Adaptive) 

Unrar 5000 1388.5 2569.8 11.7 1.8 

Mplayer 145 145.8 151.2 3.3 0.3 

 

V. CONCLUSION 

Failure Exploitation is firstly to construct a set of failure 

conditions by initially feeding the failure input for concolic 

execution. We manipulate the failure path condition in the 

failure exploitation process to hijack the failure for 

exploitation generation. The failure hijacking is to compute a 

pre-destined value of instruction pointer (IP) in the relation of 

IP=F(failure-input). The software exploitation process will be 

a good measurement of trustworthiness for a failed system. 
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