

Reliability Digest, November 2014

40

Exploit Generation from Software Failures

Shih-Kun Huang
Information Technology Service Center
National Chiao Tung University
Hsinchu, Taiwan
skhuang@cs.nctu.edu.tw

Han-Lin Lu
Department of Computer Science
National Chiao Tung University
Hsinchu, Taiwan
luhl@cs.nctu.edu.tw

Abstract—We normally monitor and observe failures to

measure the reliability and quality of a system. On the

contrary, the failures are manipulated in the debugging process

for fixing the faults or by attackers for unauthorized access of

the system. We review several issues to determine if the failures

(especially the software crash) are reachable and controllable

by an attacker. This kind of efforts is called exploitation and

can be a measurement of the trustworthiness of a failed system.

Keywords—automatic exploit generation; control flow

hijaction

I. INTRODUCTION

The failure exploitation methods are to manifest the room for

security breaches from the observed failures. The motivation of

this type of work is rooted from generating attack inputs to

compromise the system and prioritize the bug fixing order.

Since failure of software is inevitable and if there are a large

number of failures, we need a systematic approach to judge

whether they are exploitable. In Miller et al.'s crash report

analysis, the authors analyze crashes by BitBlaze [1].

Compared with !exploitable [2], the results show that

exploitable crashes could be diagnosed in a more accurate way.

Moreover, crash analysis plays an important role to prioritize

the bug fixing process [3]. A proven exploitable crash should

be the top priority bug to fix. A general review and recent

advances are described in [4]. Research insight about exploit

generation is analyzed in [5]. Recent work has proved

feasibility for common linux and windows applications [6-8],

Microsoft office [9, 10] and web applications [11].

Software crash is a special case of control-flow hijacking by

the exception handler, raised by the protection hardware. If the

program accesses an invalid address (program counter, or

memory data access), the memory protection hardware will be

signaled. It is due to an incorrect memory update of run-time

context or data pointers. If the update is derived from user

inputs, run-time context (especially program counter or called

instruction pointer and frame pointer) and pointers can be

manipulated. If we manipulate the run-time context by deriving

the user input, this exploitation process is called failure

hijacking. For example, the instruction pointer (or program

counter) IP can be related to the failure input with a set of

constraints as follows:

IP = F(failure-input)

We are able to control the value of IP by resolving the above

constraint. The function with path condition is constructed by a

failure input feeding to a concolic execution[12].

A failure is the observable event that violates predefined

specification. Software crash is a kind of failure that raised

from the execution environment, such as run time protection

added by the compiler or address protection by the memory

management unit. However, many types of failures may not be

easily detected unless a predefined specification is enforced by

a violation checker. To our problem setting, if the failure is to

be controlled by an attacker, we should have tagged the source

of the attacker input and monitor the potential outcome to see if

the tagged input will eventually influence the failure. There are

several types of failures, some of which will raise run-time

exceptions, and some of which won’t. We view exploit as the

manipulation of the software. Exploit generation process is to

find input that will control the software. For example, a

program written in C is listed in the following:

int f(int x) {

 int y = x + 10;

 if (y > 0)

 return y;

 else

 return x;

}

If we want to obtain f(x) = 100, what is the value of x? Since

in the function f(x), two possible conditions must be explored:

(1) y >0 and x+10 > 0 which is called a path condition and we

add a constraint of x+10 = 100. The solution is x = 90.

(2) y <=0 and x + 10 <= 0 and we add another constraint of x =

100. No solution is found for x <= -10 and x = 100.

The final solution is x =90 to obtain f(x) = 100. The above

process is called symbolic execution since we treat x and y as

symbolic variables and don’t assume any concrete values as the

mailto:skhuang@cs.nctu.edu.tw

Reliability Digest, November 2014

41

values of x and y. A special case of symbolic execution is to

build the first set of path conditions according to an initial input.

The variables are still treated as symbolic. If the evaluated

results of any path condition is false, the negation is added to

the path condition. Otherwise, the original path condition is

added. For example, with the initial input of 100 for a concolic

execution, f(x) is expressed as x+10 > 0 and f(x)=x+10. If we

feed an initial input that will trigger a failure in the software by

a concolic execution, we will obtain a set of path conditions

that is a precise symbolic model of the failure. For example, if

we have a Microsoft office RTF file that will crash the

Microsoft Office Word software, we can feed the RTF file as

the initial input by concolic execution of Word 2010, and

obtain a precise symbolic model like:

 Path conditions: C1  C2  C3  C4  ...

 EIP = F(I0,I1,I2,...)

 EBP = F’(I0,I1,I2,...)

 ESP = F’’(I0,I1,I2,...)

Where Ci is the path condition and Ii is the input to be

manipulated.

The following of Fig.1 is a partial listing of the EIP constraint

after concolic execution with a failure as the initial input.

(Concat w20 (Extract w8 0 (Add w20 ffffffa9 (Or w20 (And

w20 (Add w20 (Or w20 (ZExt w20 (Extract w8 0 (Shl w20

(ZExt w20 (Extract w8 0 (Add w20 ffffffd0

(Or w20 (ZExt w20 (Read w8 9 eip)) 7c810000)))) 4)))

207200) (Or w20 (Or w20 (ZExt w20 (Read w8 a eip))

7c810000) 20)) ff) 7c810000))) (Concat w18 (Extract w8 0

(Add w20 ffffffa9 (Or w20 (And w20 (Add w20 (Or w20

(ZExt w20 (Extract w8 0 (Shl w20 (ZExt w20 (Extract w8 0

(Add w20 ffffffd0 (Or w20 (ZExt w20 (Read w8 7 eip))

7c810000)))) 4))) 207200) (Or w20 (Or w20 (ZExt w20 (Read

w8 8 eip)) 7c810000) 20)) ff) 7c810000))) (Concat w10

(Extract w8 0 (Add w20 ffffffa9 (Or w20 (And w20 (Add w20

(Or w20 (ZExt w20 (Extract w8 0 (Shl w20 (ZExt w20

(Extract w8 0 (Add w20 ffffffd0 (Or w20 (ZExt w20 (Read

w8 5 eip)) 7c810000)))) 4))) 207200) (Or w20 (Or w20 (ZExt

w20 (Read w8 6 eip)) 7c810000) 20)) ff) 7c810000))) (Extract

w8 0 (Add w20 ffffffd0 (Or w20 (And w20 (Add w20 (Or

w20 (ZExt w20 (Extract w8 0 (Shl w20 (ZExt w20 (Extract

w8 0 (Add w20 ffffffa9 (Or w20 (Or w20 (ZExt w20 (Read

w8 3 eip)) 7c810000)

20))))

….

Fig. 1. The Microsoft Word EIP Constraint with a Failure Input

We are able to control the value of EIP, EBP, or ESP by

solving the above constraints. The solution of I0,I1,..,In are the
exploit input of the failure. Failures of stack overflow and
uninitialized uses can be modeled in the above similar way.
Situations like format string and heap corruption is treated by
introducing pseudo symbolic variables for assuming the
variable referred by the pointer that is symbolic is probably
symbolic. To resolve the pseudo symbolic variables, we first
obtain a solution assuming pseudo symbolic variables are
symbolic. By searching the memory contents that meet the
solutions of the pseudo symbolic variable, we can resolve the

values of the symbolic pointers that refer to the pseudo
symbolic variables.

II. EXPLOITS WITH SHELLCODE AND ANTI-MITIGATIONS

To launch a practical manipulations of the failures, a set of

malicious commands called shell code must be supplied. For

example, to execute arbitrary code, the memory location of

MEM[X] is injected with the malicious code D0,D1,... and the

EIP is resolved with the value of X by solving the constraints:

 Path conditions: C1  C2  C3  C4  ...

 MEM[X] = D0 = F(I0,I1,I2,...)

 MEM[X+1]= D1 = F’(I0,I1,I2,...)

 ...

 EIP = X = F’’(I0,I1,I2,...)

The concolic execution is performed under the CRAX

framework[10] and depicted in Fig. 2.

Fig. 2. Concolic Execution for Constructing Failure Constraints

Given a crash input, the target program, and the shell code, the

exploit can be produced.

Fig. 3. The Generated Failure Constraints

Other types of attacks such as SQL injection is to find

potential manipulations to the query strings to the SQL server.

We can also build concolic constraints of web applications by

feeding failure inputs. If the query to the SQL server is found

to be symbolic, arbitrary SQL injection attacks may be

constructed. If the output as the HTML response is symbolic,

arbitrary Javascript code is very likely constructed as Cross

site script (XSS) attacks. The generation is listed in Fig. 4.

We extend these types of exploitation as follows.

a. SQL injection

 Path conditions: C1  C2  C3  C4  ...

SQL query = Q = F(I0,I1,I2,...)

Reliability Digest, November 2014

42

b. Cross site scripting

 Path conditions: C1  C2  C3  C4  ...

HTML Output response = R = F(I0,I1,I2,...)

c. Command injection

 Path conditions: C1  C2  C3  C4  ...

string to the system() function = S = F(I0,I1,I2,...)

Fig. 4. Concolic execution of Web applications

Even if we can control the instruction pointer, several

guards in front of the failures must be escaped. The first guard

is the path constraint to reach the failure site without

mitigations (surviving security attacks).

Many systems will be with protections such as data

execution prevention (DEP) and address space layout

randomization (ASLR)[13]. In such a system, executable code

may not be injected and a return-oriented programming

(ROP)[14] payload built through the application code must be

constructed. The exploit constraint is changed into:

Path conditions: C1  C2  C3  C4  ...

 Search ROP Gadgets in m0,m1,m2,.... locations of the

application code

 STACK[X] = M0 = F(I0,I1,I2,...)

 STACK[X+1]= M1 = F(I0,I1,I2,...)

 …

The R1 is the location containing the instruction of “ret” of the

code and the starting of the gadget.

 EIP = R1 = F(I0,I1,I2,...)

III. THE CONSIDERATIONS OF THE ENVIRONMENT MODEL

Since the inputs to the target applications are through the

operating system environment, for example, the file inputs,

environment variables, or network socket, we must be able to

feed inputs as symbolic through the OS environment which is

called the environment model. There are two possible

implementations. The first is to intercept the system calls or

revise the standard library functions to mark the inputs as

symbolic for concolic execution. This method is used by

KLEE[15], AEG[7] and Mayhem[8]. Another solution is to

use the whole system emulation like S2E[16] which is based

on KLEE and QEMU. By using mmap() system call as in Fig.

5, or RAM disk, we can feed any environment input as

symbolic variables to the target applications. The first

implementation will be with limited supports of system

functions intercepted. The second implementation will support

all types of environments. To support an end-to-end approach

of exploit generation, environment models of symbolic inputs

must be supported. Otherwise, revisions of source is needed

like the Heelan’s method [6].

Fig. 5. The Symbolic File Environment by mmap()

IV. SUPPORTING BINARY PROGRAMS AND DEALING WITH

LARGE INPUTS

To support binary programs of exploit generation, we must

perform concolic execution over binary programs.

Instrumentation over binary programs is needed. There are

several concolc execution supports over binary

program. Mayhem is based on PIN [17], Catchconv[18] is

based on Valgrind[19] and S2E is based on QEMU. Another

issue of binary programs for exploit generation is to use

concrete address for symbolic memory. Conventional

symbolic execution is to use abstract address and these

addresses cannot be used for practical exploits. The concolic

execution in S2E are treated differently in the host and the

guest OS. In the guest OS, all addresses are concrete while

abstract in the host OS. Since our exploits are for the guest OS,

the concrete addresses meet the need for exploits of binary

programs.

A. Dealing with large inputs
The primary steps are to crash the software and control the

crash from carefully crafted inputs based on the crash input.

There are two techniques to craft the inputs for easier crash

manipulation: (1) search the influence over the crash by

injecting special patterns of input [20]. (2) find the critical

fragments of the input(called hot spot) that will influence the

crash (or failure) by tainted input analysis [21]. Since the path

conditions, EIP, shell code, and other constraints contain

inputs as symbolic variables, the input size will influence the

exploit generation process. For example, if the input size is

1024 bytes, there may be several large constraints with

thousands of variables. The constraint resolution time is

exponentially proportion to the size of input variables as listed

in Fig. 6.

Reliability Digest, November 2014

43

Fig. 6. The Execution time in seconds for symbolic input size
from 100 to 1000 bytes

We have proposed an adaptive input selection method by
dividing the input into several small size of symbolic inputs to
track the influence. Table 1 shows the performance
improvement of the adaptive input selection. Originally, if we
use the input length of 5000, the explore time is 1388 seconds.
If we divide the input into 20 bytes of small chunks, the total
explore time is reduced to 11.7 seconds. The improvement is
significant.

Table 1. The Performance Improvement of Adaptive Input Selection

Prog. Input
Length

Explore
Time

Exploit
Gen.
Time

Explore
Time
(Adaptive)

Exploit
Gen. Time
(Adaptive)

Unrar 5000 1388.5 2569.8 11.7 1.8

Mplayer 145 145.8 151.2 3.3 0.3

V. CONCLUSION

Failure Exploitation is firstly to construct a set of failure

conditions by initially feeding the failure input for concolic

execution. We manipulate the failure path condition in the

failure exploitation process to hijack the failure for

exploitation generation. The failure hijacking is to compute a

pre-destined value of instruction pointer (IP) in the relation of

IP=F(failure-input). The software exploitation process will be

a good measurement of trustworthiness for a failed system.

REFERENCES

[1] C. Miller, J. Caballero, N. M. Johnson, M. G. Kang, S.

McCamant, P. Poosankam, et al., "Crash analysis with

BitBlaze," at BlackHat USA, 2010.

[2] M. S. E. C. M. S. S. Team. (2009 March). !exploitable

Crash Analyzer - MSEC Debugger Extensions. Available:

http://msecdbg.codeplex.com/

[3] D. Kim, X. Wang, S. Kim, A. Zeller, S.-C. Cheung, and

S. Park, "Which crashes should I fix first?: Predicting top

crashes at an early stage to prioritize debugging efforts,"

Software Engineering, IEEE Transactions on, vol. 37, pp.

430-447, 2011.

[4] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M.

Woo, and D. Brumley, "Automatic exploit generation,"

Communications of the ACM, vol. 57, pp. 74-84, 2014.

[5] J. Vanegue, S. Heelan, and R. Rolles, "SMT Solvers in

Software Security," in WOOT, 2012, pp. 85-96.

[6] S. Heelan, "Automatic generation of control flow

hijacking exploits for software vulnerabilities," M.Sc.

thesis, University of Oxford, 2009.

[7] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley,

"AEG: Automatic Exploit Generation," in NDSS, 2011,

pp. 59-66.

[8] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley,

"Unleashing mayhem on binary code," in IEEE

Symposium on,Security and Privacy, 2012, pp. 380-394.

[9] S. K. Huang, M. H. Huang, P. Y. Huang, C. W. Lai, H. L.

Lu, and W. M. Leong, "CRAX: Software Crash Analysis

for Automatic Exploit Generation by Modeling Attacks

as Symbolic Continuations," in IEEE Sixth International

Conference on Software Security and Reliability (SERE),

2012, pp. 78-87.

[10] S. K. Huang, M. H. Huang, P. Y. Huang, H. L. Lu, and C.

W. Lai, "Software Crash Analysis for Automatic Exploit

Generation on Binary Programs," IEEE Transactions on

Reliability, vol. 63, pp. 270-289, 2014.

[11] S. K. Huang, H. L. Lu, W. M. Leong, and H. Liu,

"CRAXweb: Automatic Web Application Testing and

Attack Generation," in IEEE 7th International Conference

on Software Security and Reliability (SERE), 2013, pp.

208-217.

[12] K. Sen, "Concolic testing," in Proceedings of the

twenty-second IEEE/ACM international conference on

Automated software engineering, 2007, pp. 571-572.

[13] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,

and D. Boneh, "On the effectiveness of address-space

randomization," in Proceedings of the 11th ACM

conference on Computer and communications security,

2004, pp. 298-307.

[14] R. Roemer, E. Buchanan, H. Shacham, and S. Savage,

"Return-oriented programming: Systems, languages, and

applications," ACM Transactions on Information and

System Security (TISSEC), vol. 15, p. 2, 2012.

[15] C. Cadar, D. Dunbar, and D. R. Engler, "KLEE:

Unassisted and Automatic Generation of High-Coverage

Tests for Complex Systems Programs," in OSDI, 2008,

pp. 209-224.

[16] V. Chipounov, V. Kuznetsov, and G. Candea, "S2E: A

platform for in-vivo multi-path analysis of software

systems," ACM SIGARCH Computer Architecture News,

vol. 39, pp. 265-278, 2011.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

execution

execution control group

Reliability Digest, November 2014

44

[17] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn,

"PIN: a binary instrumentation tool for computer

architecture research and education," in Proceedings of

the 2004 workshop on Computer architecture education:

held in conjunction with the 31st International

Symposium on Computer Architecture, 2004, p. 22.

[18] D. A. Molnar and D. Wagner, "Catchconv: Symbolic

execution and run-time type inference for integer

conversion errors," Tech. Rep. UC Berkeley EECS,

2007-23, 2007.

[19] N. Nethercote and J. Seward, "Valgrind: a framework for

heavyweight dynamic binary instrumentation," in ACM

Sigplan Notices, 2007, pp. 89-100.

[20] H. Moore, "The metasploit project,"

http://www.metasploit.com.

[21] T. Wang, T. Wei, G. Gu, and W. Zou, "TaintScope: A

checksum-aware directed fuzzing tool for automatic

software vulnerability detection," in IEEE Symposium on

Security and Privacy, 2010, pp. 497-512.

Shih-Kun Huang received his B.S.

(1989), M.S. (1991) and Ph.D.

(1996) in Computer Science and

Information Engineering from the

National Chiao Tung University,

and was an assistant research fellow

at the Institute of Information

Science, Academia Sinica between

1996 and 2004. Currently he is the

deputy director of Information Technology Service Center,

and jointly with the Department of Computer Science,

National Chiao Tung University. Dr. Huang's research

integrates software engineering, and programming languages

to study cyber security and software attacks. He is the

Principal Investigator of the project on Exploit Generation

from Software Crash (CRAX and CRAXweb).

Han-Lin Lu received the B.S. degrees

in Department of Transportation

Technology and Management, and

M.S. degrees in Science in Computer

Science and Engineering from the

National Chiao-Tung University,

Taiwan in 2010, and 2012 respectively.

He is currently pursuing the Ph.D.

degree at the Institute of Science in

Computer Science and Engineering of

National Chiao-Tung University. His

research interests include software quality, network security,

and software security.

