
CRAX: Software Crash Analysis for Automatic Exploit

Generation by Modeling Attacks as Symbolic Continuations

Shih-Kun Huang∗†,Min-Hsiang Huang†,Po-Yen Huang†,Chung-Wei Lai†,Han-Lin Lu†,Wai-Meng Leong†
∗Information Technology Service Center,†Department of Computer Science

National Chiao Tung University

Hsinchu, Taiwan

{skhuang,mhhuang,huangpy,laicw,luhl,start03629.cs95}@cs.nctu.edu.tw

Abstract—We present a simple framework capable of auto-
matically generating attacks that exploit control flow hijacking
vulnerabilities. We analyze given software crashes and perform
symbolic execution in concolic mode, using a whole system
environment model. The framework uses an end-to-end ap-
proach to generate exploits for various applications, including
16 medium scale benchmark programs, and several large scale
applications, such as Mplayer (a media player), Unrar (an
archiver) and Foxit(a pdf reader), with stack/heap overflow,
off-by-one overflow, use of uninitialized variable, format string
vulnerabilities. Notably, these applications have been typically
regarded as fuzzing preys, but still require a manual process
with security knowledge to produce mitigation-hardened exploits.
Using our system to produce exploits is a fully automated and
straightforward process for crashed software without source. We
produce the exploits within six minutes for medium scale of
programs, and as long as 80 minutes for mplayer (about 500,000
LOC), after constraint reductions. Our results demonstrate that
the link between software bugs and security vulnerabilities can
be automatically bridged.

Index Terms—automatic exploit generation; symbolic execu-
tion; taint analysis; software crash analysis; bug forensics.

I. INTRODUCTION

Crafting exploits for control flow hijacking is typically re-

garded as a manual process requiring security knowledge [17].

However, based on recent advances of symbolic execution,

several prototype approaches to automatically generating ex-

ploits have been proposed [2, 8, 13] . Exploits or other types of

attacks, e.g., SQL injection and XSS [10], have been developed

for the purposes of auditing web application security, IDS

signature generation and attack preventions, and have been

explored as research topics on dynamic taint analysis and

symbolic execution. Another type of exploiting applications

is the verification and validation purpose for hosting reliable

and secure software in the App store, or software marketplace.

Our motivation of this work is straightforward. Crashes of

software including web applications are inevitable. Given a

large number of crashes, we need a systematic approach to

judge whether they are exploitable crashes. In the crash report

analysis [11], crashes are analyzed by BitBlaze[16] and com-

pared with !exploitable [1] to prove that exploitable crashes

can be diagnosed in a more precise way though still with

limitations, e.g., possible false positives or requiring manual

efforts. Moreover, crash analysis plays an important role to

prioritize the bug fixing process [9]. A proven exploitable crash

is surely the top priority bug to fix.

Dynamic taint analysis and forward symbolic execution

have been the primary techniques in security fields[14]. Q

[13] is regarded as a recent promising success to generate

mitigation-hardened (W ⊕ X and ASLR[18]) exploits by

feeding concrete execution trace and triggering a tainted

instruction pointer. The vulnerable path is diverted by concolic

execution and exploit constraints to manipulate the instruction

pointer, and the constraints are combined with return-oriented

programming (ROP)[15] payload and solved by a decision

procedure, STP [7].

Our objective is similar to Q, but we target at a more gener-

alized threat model: all currently tainted threat models can be

viewed as a specific continuation threat. For example, control

flow hijacking attacks divert the input into an attacker ma-

nipulated continuation. The continuation results in execution

of arbitrary code. The SQL and command injection is a kind

of tainted input flowing into the SQL server or introducing

a ”shell” command execution, and thus can be viewed as a

continuation into SQL control or shell control. The cross-site

scripting is a reflection of web pages, inserting an explicit

continuation to execute arbitrary Java script, impersonating as

originating from the original Web server. If the continuation

is symbolic, that is, a concolic execution to reach the invoked

site of the continuation and a symbolic expression to describe

the continuation, we can generate practical attacks to exploit

the continuation. Software crash can be viewed as a tainted

continuation. Furthermore, if the tainted continuation is found

to be symbolic, an exploit can be automatically generated.

We have successfully produced exploits from software crashes

for control flow hijacking attacks from large applications,

including Mplayer, Unrar, Foxit pdf reader and AEG [2]

benchmarks. All processes are end-to-end, built on top of

environment model of S2E[6], symbolic virtual machine of

KLEE[5], and processor emulator of QEMU[3].

Our framework, called CRAX, is to act as a backend

of static/dynamic program analyzers, bug finders, fuzzers,

and crash report database. Given these ”crashes” from the

frontends and the program binary, CRAX can automatically

generate attacks, practical mitigation-hardened exploits.

2012 IEEE Sixth International Conference on Software Security and Reliability

978-0-7695-4742-8/12 $26.00 © 2012 IEEE

DOI 10.1109/SERE.2012.20

78

A. Contributions

The primary contributions and impacts of our work are as

follows:

• Dedicate to automatic exploit generation for large soft-

ware systems without source code. Concolic execution

ideas have been proposed for exploit generation since

2009. Due to the rapid development of symbolic com-

putation, processor emulation and environment model

supports, automatic exploit generation has become an

integration work from existing systems. However, to the

best of our knowledge, we have not found a practical

integration of exploit generation work that can produce

exploits from large applications, such as Mplayer, and

Foxit pdf reader. We are the first to demonstrate such

capability though completing the hacking process for-

merly regarded as a manual process. A similar scale of

work is the Catchconv[12], which performs metafuzzing,

taking the Mplayer as a prey. However, it only acts as

a fuzzer and succeeds to produce Mplayer crashes in

about the comparable numbers of zzuf[19]. In contrast,

CRAX takes the crash from Mplayer (constituting of

more than 500,000 lines of code) and produce exploits.

Other successes of CRAX include Foxit pdf reader,

and mplayer. We have automated the process of exploit

writing work.

• Prioritize crashes to be fixed. Currently, many sources of

crash report from various of bug analyzers and random

fuzzers are available. Too many crashes need to be fixed,

and there is a pressing need to determine their priorities

[9]. We have preliminarily examined the crash database

of Bugzilla for the Mozilla project and found that many

of the crashes can be our seed input to produce exploits.

Our tool would be the first screen gateway to prioritize

the bug fixing order.

B. Paper Organization

The paper is organized as follows. Sections II and III

describe our method and implementation, respectively. Exper-

imental results are reported in Section IV. Section V presents

related work. Finally, Section VI concludes our paper.

II. METHOD

We propose a new automated exploit generation method

based on S2E with path selection optimization to speed up the

process of exploit generation. Concolic-mode simulation ex-

plores a potential vulnerable path directly, and code selection

filters some complex and unrelated library functions that do

not affect exploit generation in order to reduce the overhead

of SMT solvers.

A. The Weakness of AEG

Both our method and AEG (Automatic Exploit Generation)

[2] detect vulnerabilities by symbolic execution and then

collects run-time information from concrete execution with

the test case generated by the previous step. However, AEG

collects run-time information and computes exploits only

when vulnerability is triggered. The generated exploit may fail

to work due to the propagation distance between the vulnerable

site and the triggered exploit site. AEG cannot guarantee

that the program under test arrives at the triggered exploit

site successfully if the exploits are not revised accordingly.

Considering Listing 1, the buffer overflow vulnerability occurs

at line 4 where strcpy() function is located, but the exploit

is triggered at line 6 where the function returns. However,

the exploiting string is reversed at line 5 and therefore, fails

to work when the function returns. The process is shown in

Figure 1.

Listing 1. An example code for AEG
vo id t e s t (c h a r s r c [3 0])
{

c h a r des [1 0] ;
s t r c p y (des , s r c) ; /∗ b u f f e r o v e r f l o w v u l n e r a b i l i t y ∗ /
r e v e r s e (des) ;

} /∗ c o n t r o l f low i s h i j a c k e d ∗ /

Des[0]

Des[9]

…

Old EBP

Return address

Src

…

Des[0]

Des[9]

…

Old EBP

Return address

Src

…

s

Src[10]

Src[0]

Src[15]

reverse()

strcpy() function return

sss

Src[19]

Src[15]

Src[0]

Fig. 1. The memory layout before and after reverse() is executed

B. Our Method
1) Detection of Symbolic Program Counter- the EIP Reg-

ister in x86 machines: Since the EIP register contains the

address of next instruction to be executed, to control the

register is a very common final target of all control-hijacking

attacks. Thus monitoring the state of EIP register is a compre-

hensive and easy way to tackle different kinds of control-flow

hijacking vulnerabilities. While symbolic execution explores

paths and taints memory, an exploit will be triggered when

the EIP register is updated with the symbolic data. The exploit

generation will search memory to find usable memory regions

to inject shellcode and NOP sled, and redirect EIP register

to shellcode. The process of detection of the symbolic EIP

register and exploit generation is shown in Figure 2.
2) Shellcode Injection: To inject a shellcode, the first thing

is to find all memory blocks that are symbolic and large

enough to hold payload. Even if a symbolic block consists

of many different variables, it could still be used to inject

a shellcode as long as the block is contiguous. However, it

is very difficult to manually analyze source code to find a

contiguous memory region that is tainted by user input and

combined with variables. In addition, since compiler often

changes the order or allocated size of variables for optimiza-

tion, it is difficult to find a shellcode buffer manually. We

79

Payload injection Symbolic execution

Memory
(buf[0] = \x90) & (buf[1] = \x90) & ...

Constraint
solver \x90\x90\x90\x31\xC0\x89 …

True False

Exploit generation

Build exploit constraints

Symbolic EIP/EBP

Constraint verification

Search for symbolic regions

Fig. 2. The process of our exploit generation

automate this process by searching the maximum contiguous

symbolic memory systematically.

3) NOP Sled and Exploit Generation: When the location

of a shellcode is determined, NOP sled will try to insert a

sequence of NOP instructions, which do nothings, as many as

possible in front of the shellcode closely. This padding helps

exploits against the inaccurate position of shellcode among

different systems, or to extend the entry point of shellocde.

Finally, the EIP register corrupted by symbolic data will

point to the middle of NOP padding. All exploit constraints,

including shellcode, NOP sled, and EIP register constraints,

are passed to an SMT solver with path conditions to determine

whether the exploit is feasible or not. If it is not feasible, the

exploit generation goes back to the step of shellocde injection

to change the location of shellcode until an exploit being

generated or no more usable symbolic buffer.

C. Detection of Symbolic Pointer

In addition to the EIP register, corrupted pointers may

change the control flow indirectly. Particularly, a symbolic

data is assigned to a symbolic pointer means that arbitrary

data can be written to arbitrary addresses. When a symbolic

pointer dereference is detected, the target of writing operation

will be redirected to sensitive data, such as return addresses,

.dtors section, and GOT, to update EIP register indirectly.

Otherwise, if the pointer operation is a reading operation or

a writing operation but cannot point to sensitive data, the

target is redirected to read from a symbolic data or write to a

concrete data to perform tainted data propagation. Considering

Listing 2, an off-by-one overflow vulnerability will corrupt the

ptr pointer and as a result, the value of buf[0] may write to

arbitrary addresses. Even if this vulnerability cannot corrupt

return addresses directly, the symbolic pointer can taint EIP

register indirectly and hijack the control of a program.

Listing 2. An example code for pointer corruption

vo id t e s t (i n t ∗ i n p u t)
{

i n t ∗ p t r = a r r a y ;
i n t a r r a y [1 0] ;
i n t i ;

f o r (i =0 ; i <=10 ; i ++)
a r r a y [i] = ∗ (i n p u t + i) ;

∗ p t r = a r r a y [0] ;
}

D. Path Selection

1) Concolic-mode Simulation: If an input data crashes a

program, the execution path the crash input exploring is very

likely exploitable. Exploring the suspicious path directly is

more effective than searching all paths. Concolic testing is

a kind of symbolic execution, and it explores one path at

a time. Concolic testing stores and updates concrete values

and symbolic expressions simultaneously. It uses the concrete

values to help symbolic execution determine which branch

path will be explored, and uses the symbolic expressions to

collect the branch conditions whenever a path is determined

to travel at branches.

In contrast to implementing concolic testing on S2E, sim-

ulating the behavior of concolic testing on S2E is an easier

and flexible task. Whenever a branch is encountered, S2E

does not access the concrete value of variables but adds input
constraints to limit the values of all symbolic variables to

the values of original input, which are constants. Figure 3

shows an example that executes the program under test with an

argument string “ABCDEF” and the input constraints are built

to restrict those values of the argument. Because each symbolic

variable could be only one possible value after adding the input

constraints, it simulates the concrete values to choose one path

to explore. This method does not modify the memory model

of S2E and based on symbolic execution to provide the ability

of concolic testing.

Input constraints

(Eq 65 (Read w8 0 argv))
(Eq 66 (Read w8 1 argv))
(Eq 67 (Read w8 2 argv))
(Eq 68 (Read w8 3 argv))
(Eq 69 (Read w8 4 argv))
(Eq 70 (Read w8 5 argv))

sqlab@ ~$./a.out ABCDEF

Fig. 3. An example of input constraints

With fuzzer tools to identify an input crashing the program

under test, concolic-mode simulation determines whether the

path is exploitable rapidly because it focuses on only one path.

Combining fuzzer tools with concolic-mode simulation pro-

vides a powerful technique for exploit generation as illustrated

in Figure 4.

80

Fuzz testing

Input

Program

Concolic testing

EIP/EBP is Symbolic!

Build input constraints Inject payload

Exploit

Fuzzer

Get crash input Collect branch conditions

Generate exploit

Fig. 4. The process of exploit generation from concolic-mode simulation
with fuzz testing

2) Code Selection: Since S2E performs symbolic execution

on the entire operating system, path explosion becomes an

issue when the symbolic data are passed to library or kernel.

On the other hand, the constraints induced by the library or

kernel are usually complex and huge, and constraint solvers

often get stuck in solving them. For example, if the first

argument of fopen() function, which is a path of the file to

be opened, is symbolic, the constraint solvers will get a time-

out error or hang in S2E. But, those paths in the library or

kernel are often irrelevant to exploit generation. In order to

avoid exploring those irrelevant paths, those library functions

should run on concrete execution.

Symbolic execution

Symbolic execution

Concrete execution

Interested

Uninterested

Interested

Fig. 5. An execution tree with code selection

When the symbolic arguments are changed to concrete

values and then passed to those irrelevant functions, only one

path will be explored. Figure 5 shows that the executions are

changed into concrete runs after the entry of the irrelevant

part and persist in concrete states until the program returns

to symbolic execution. In order to ensure the return values

of those irrelevant functions are correct, the concrete values

passed to functions must be generated according to current

path conditions by constraint solvers. When the functions

return, those data changed to concrete must be restored to

the original symbolic data to keep the symbolic execution.

III. IMPLEMENTATION

In order to implement automated exploit generation, many

pieces of run-time information must be collected and many

constraints must be built to reason out an exploit. Therefore,

the memory model in S2E is an important key to implementing

our methods.

Many protections are implemented on compilers or oper-

ating systems in real-world systems. In addition to return-

to-memory exploits, we also implement other two types of

exploits, i.e., return-to-libc and jump-to-register exploits, to

bypass some protections so that our exploit generation can be

useful in real-world systems.

A. Detection of Continuation based Symbolic Registers

In QEMU, the CPUX86State structure, is used to simulate

the states of x86 CPU, and all register references in a guest

operating system will be turned into memory references on

this structure. When S2E is started, this structure is divided

into two parts, i.e., CpuRegistersState and CpuSystemState,

and they are stored separately. The CpuRegistersState is a

symbolic area where stores all the data in front of EIP register

in CPUX86State structure, such as general-purpose registers,

but the CpuSystemState part is a concrete-only area that stores

the other data including the EIP register.

S2E translates every guest instruction into TCG IRs, and

then translates those TCG IRs into host instructions or LLVM

IRs. For example, the ret instruction is separated into more

detailed operations, and the operation of updating EIP register

is converted to a store instruction. In QEMU, all memory

access operations are handled by a softmmu model in order

to map the guest addresses to host addresses. Whenever

accessing a memory data, S2E checks whether the value of

data is symbolic or not in the softmmu model. If the value

is symbolic, S2E will rerun this translated block from the

current instruction in KLEE to perform symbolic execution.

To detect EIP register corruption, S2E must check whether

the writing target is the location of EIP register and whether

the source value is symbolic data whenever KLEE perfrom a

store memory operation on symbolic execution.

When the EIP register is updated by symbolic data, the

expression of symbolic data must be recorded because it

describes which variable and which part of the symbolic data

will update EIP register. For example, given an expression

that represents a 32-bit symbolic data at the first element of

an array named buf denoted as

(ReadLSB w32 0 buf),

we can build a constraint to control the value of symbolic data,

e.g., a constraint limiting the 32-bit data to zero as shown by

(Eq 0 (ReadLSB w32 0 buf)).

The current continuation has been set by the data, with

constraints described by symbolic expressions. Next, we inject

shellcode into memory to determine where EIP register should

point to.

81

B. Exploit Generation

1) Memory Model in S2E: In S2E, memory consists of

MemoryObject objects and the actual contents of these objects

are stored in ObjectState objects. In an object of ObejectState,

symbolic data are stored separately from concrete data. The

expressions of symbolic data are stored in an array that

consists of Expr objects and pointers named knownSymbolics
pointing to them. The concrete data are stored in an array of

uint8 t and pointed by a pointer named concreteStore. In each

ObejectState object, a BitArray object named concreteMask is

used to record the state of each byte, i.e. the byte is concrete

or symbolic.

2) Finding Symbolic Memory Blocks: The default size of

the storage in an ObjecetState object is 128 bytes. To find

continuous symbolic data in a memory region, the value of

concreteMask structures must be checked sequentially object

by object. An object can be skipped easily whenever the

values of its concreteMask structure are all ones, otherwise

the locations of every zero in concreteMask structure must be

recorded to compute the continuous size. For the symbolic

blocks crossing different objects, it is necessary to check

whether the current symbolic block is connected with the

last symbolic block in the last checked object. The above

procedure is shown in Algorithm 1.

Algorithm 1: Searching for symbolic blocks

Input: Objects : All ObjectState objects to be searched.

Output: V : A set of address and size.

1 foreach obj ∈ Objects do
2 if isNotAllConcrete() then
3 size ← 0

4 for i ← 0 to 127 do
5 if isByteSymbolic(i) then
6 size ← size + 1

7 else if size �= 0 then
8 address ← getAddress(i)

9 if V → isConnect(address,size) then
10 V → updateLastItem(size); /* A

part of the last block

*/
11 else
12 V → addNewItem(address,size)

/* An independent block

*/

13 size ← 0

It is also required to determine the search range of memory

regions. In Linux memory layout, the stack starts from the

top at address 0xbffffffff and grows downward. It is easy to

search stack region from this address downward,but heap and

data segment are not necessarily located at a fixed address for

different programs. Therefore, those starting locations need

to be obtained dynamically. According to the ELF executable

layout, the top of executable files is the program header, which

records the all segment information. The program header can

be analyzed at address 0x08048000, which is the location

where binary is loaded at, to get the location and size of data

segment. On the other hand, because heap region is behind

data segment and grow upward, the based address of heap

can be obtained by adding the starting address and size of

data segment.

3) Shellcode Injection: In order to determine whether shell-

code can be stored in the potential buffers found by the

previous step, each symbolic expression of a symbolic block

needs to be read to build constraints that restrict each byte

of symbolic data to a byte of shellcode sequentially byte by

byte. Below is an example showing the constraints that inject

shellocde into an array named buf :

(Eq 31 (Read w8 0 buf))

(Eq C0 (Read w8 1 buf))

(Eq 89 (Read w8 2 buf))

(Eq C2 (Read w8 3 buf))

...

Next, the shellcode constraints are passed to an SMT solver

with path conditions to validate their feasibility.

The best location of shellcode is selected by having the

NOP sled as large as possible. Therefore, all the symbolic

blocks are sorted by size, and shellcode is first injected from

the end of the largest symbolic block. In addition to building

the shellcode constraints, a new constraint needs to be added

to ensure the EIP register can point to the range between the

starting address of shellcode and the top of the symbolic block.

Even if the EIP register cannot point to the starting location

of shellcode precisely, it may be feasible because NOP sled

will extend the entry point later. If all of those constraints are

infeasible, the location of shellcode injection is shifted by one

byte forward to try a new location iteratively.

≠ NOP

The largest block

X

Y

Y > X

Z

Z > X

The second

. . .

Shellcode

NOP sled

Fig. 6. The process of searching symbolic blocks

In addition, shellcode will keep to be injected to the current

block or next blocks when those sizes are larger than the sum

of the shellcode size and the current longest NOP sled size.

For example, consider Figure 6, the sum of shellcode size

82

and current NOP size is X, but it is smaller than Y and Z, so

shellcode and NOP sled will keep to be injected in next blocks

and the current block. The algorithm is shown in Algorithm

2.

Algorithm 2: Injecting shellcode

Input: V : A set of address and size of symbolic blocks.

Shellcode : A shellocde string. PC : Path

conditions.

Output: ShellcodeAddress : The starting location of

shellcode injection. MaxNopSize : The max size

of NOP sled.

1 foreach v ∈ V do
2 if sizev ≥ strlen(Shellcode) then
3 address ← addressv + sizev - strlen(Shellcode)

4 MaxNopSize ← -1

5 while address ≥ addressv do
6 c1 ← injectShellcodeAt(address) /* Build

shellcode constraints */
7 c2 ← eipBetween(address, addressv)

/* Build eip constraints */
8 if Verify(PC ∧ c1 ∧ c2) then
9 nopSize ← NOPSled(address, addressv)

10 if nopSize > MaxNopsize then
11 MaxNopSize ← NopSize

12 ShellcodeAddress ← address

13 if (address - addressv) > strlen(shellcode)
+ MaxNopSize) then

14 address ← address - nopSize

15 else
16 break

17 else
18 address ← address - 1

4) NOP Sled: NOP sled aims to generate the more reliable

exploits that increase chances of success. The method is to

insert NOP instructions in front of the shllecode as many as

possible, and make EIP register point to the range. For effi-

ciency, binary search-like algorithm is used to determine the

longest length of NOP sled rather than insert NOP instructions

byte by byte. Whenever binary search finds a range that EIP

register can point to, NOP instructions will be tried to fill

this range sequentially to check whether both conditions are

feasible simultaneously. If it is infeasible, the range is reduced,

otherwise extend, and so on. The process is shown in Figure

7.

After the longest length of NOP sled is obtained, the next

step is to make EIP register point to the middle of NOP sled

as close as possible. Because the number of NOP sled may be

large, the constraint solver is used to reason out the suitable

location that EIP register points to. To help a constraint solver

to compute the address as close the middle of NOP sled as

Shellcode

NOP Sled

max

mid

min

Shellcode

NOP Sled
max

mid

min

Shellcode

NOP Sled

max
mid
min

P SOP SOP S
P SOP SOP S P SOP SOP S

EIP
EIP

EIP

OK NO …

Symbolic block Symbolic block Symbolic block

Fig. 7. The process of NOP sled

possible, a constraint is added to limit the range. First, the

range is a point in the middle of NOP sled, and the constraints

are passed to a constraint solver to get the solution. If it is

infeasible, the range is extended twice each time, and so on.

This process can always get a solution, because the previous

step guarantees that the EIP register can point to the range of

NOP sled. The process as shown in Figure 8.

Finally, when the staring address of shellcode, the size of

NOP sled and the location where EIP register points to all are

determined and feasible, the constraint solver will solve the

final path conditions to generate the exploit that performs the

malicious task in the shellocde.

EIP EIP EIP

Shellcode

NOP sled

Shellcode

NOP sled

Shellcode

NOP sled

Fig. 8. The process of determining where EIP register point to

C. Other Types of Exploit

1) Return-to-libc: A return-to-libc attack is a technique

to bypass non-executable memory regions, such as W⊕X

protection. It redirects control flow to functions in C runtime

library, such as system(), and injects the arguments of the

function into stack manually to fake the behavior of func-

tion callers. Because runtime library is always executable

and loaded by operating systems, a return-to-libc attack can

perform malicious tasks by executing library code and bypass

executable space protection. Considering Figure 9, function

callers have to push arguments and return address into stack

when calling functions. It does not really matter where the

libc function call returns to, but the arguments are the key to

perform the tasks we are interested.

TABLE I
THE DIFFERENCES BETWEEN RETURN-TO-MEMORY AND

RETURN-TO-LIBC EXPLOIT

Exploit Shellocde Injection NOP Sled

Return-to-memory shellocde NOP instruction(0x90)

Return-to-libc “/bin/sh” whitespace(0x20)

Taking system(“/bin/sh”) for example, which will open a

shell, the only one argument is a pointer that points to the

string “/bin/sh” as shown in Figure 9. The process of return-

to-libc exploit generation is very similar to return-to-memory.

83

ESP
Return address

Arguments 4 bytes

4 bytes

Stack

ESP

Return address

Arguments

Stack

Old EBP

Local variables

“/bin/sh”

Before call system() After call system()

Fig. 9. The process of return-to-libc exploit generation

As shown in Table I, the steps of shellcode injection and NOP

sled are still required to return-to-libc exploit generation. But,

shellcode injection injects the string “/bin/sh” instead of a

shellcode, and NOP sled fills whitespace characters rather than

NOP instructions.
2) Jump-to-register: Stack is the most common memory

region for shellocode injection, but ASLR randomizes the base

address of stack so that control flow is very difficult to jump

to shellcode accurately. A large NOP sled may bypass ALSR,

but it is not always feasible. A jump-to-register attack is a

technique to bypass ASLR. It uses a register that points to a

shellcode as a trampoline to execute the malicious tasks. For

example, EAX register is usually used to store the return value

of functions. Strcpy() function returns a pointer points to the

location of buffer, and EAX register is often used to store

the address. If a “call %eax” instruction can be found in code

segment, which is very common, and shellcode can be injected

into the buffer EAX register points to, control flow will be

redirected to execute this instruction and jump to shellcode.

In addition, a jump-to-esp attack is also a common and

reliable technique without NOP sled and guessing stack offset

in Windows and old version of Linux. Because return ad-

dresses are always popped to make ESP register points to

their next address when functions return, shellcode can be

injected behind the return address and uses ESP register as a

trampoline. If a “jmp %esp” instruction can be found in code

segment, a jump-to-esp exploit can be generated to bypass

ASLR. The process as shown in Figure 10.

ESP

Shellcode

Stack

Local variables

Old EBP

Return address
ESP

Shellcode

Stack

Before function return After function return

EIP

EBP

Pop

Pop

Old EBP

Return address

Fig. 10. The process of jump-to-register exploit generation

In order to generate jump-to-register exploits, code segment

must be searched to find the related instructions such as “call

%eax” and “jmp %esp”. If the related instructions are found

and the memory region that register points to is symbolic,

shellcode will be injected into the location, and EIP register

will be redirected to execute the related instruction. In addi-

tion, if there is not any usable instructions in code segment,

data segment may be searched to find a two-byte symbolic

data to inject the related instruction because data segment is

unaffected by ASLR. For example, “jmp %esp” instruction is

0xffe4 and “call %eax” instruction is 0xffd0.

IV. EXPERIMENTAL RESULTS

We conducted five types of experiments to evaluate our

work for automatic exploit generation. The first experiment

is with five different common control-flow hijacking vul-

nerabilities to demonstrate that our method can handle all

vulnerabilities that symbolically update the EIP register and

some vulnerabilities that symbolically update pointers. The

second experiment is with return-to-libc and jump-to-register

exploit generations to demonstrate that our method could

bypass some mitigation protections in real-world systems.

In the third experiment, we generated exploits for 16 real-

word programs, most chosen from the benchmark of AEG, to

demonstrate that our method can handle at least all cases that

AEG addresses. Our method is slightly slower than AEG since

we are conducting the whole system symbolic execution and

AEG is on the application level. The performance has been

optimized by reducing the number of constraints during the

concolic execution. The fourth experiment reveals the perfor-

mance speedup between the original concolic method (also the

AEG uses) and the improved method. After the optimization,

the performance of the whole system execution approximates

to the speed of AEG. Due to this performance tuning, the

speedup can achieve 50 times. Finally, we demonstrate the

power of our CRAX to produce exploits of large applications,

including foxit pdf reader, and Mplayer.

A. Testing Method and Environment

TABLE II
THE RESULTS OF EXPLOIT GENERATION FOR SAMPLE CODE

Concolic Symbolic
Vulnerability Corrupted Data

Wall Time(sec.) Wall Time(sec.)

Stack buffer overflow Return address 0.61/3.59 0.69/303.59

Heap buffer overflow Pointer 0.24/3.16 0.25/301.73

Off-by-one overflow EBP register 0.46/3.24 0.51/302.14

Uninitialized variable Function pointer 0.41/3.59 0.46/303.23

Format string Pointer 0.05/4.81 –

Average 0.35/3.67 0.47/302.67

All of the experiments were performed on a 2.66 GHz

Intel Core 2 Quad CPU with 4 GB of RAM, and the host

environment is Ubuntu 10.10 64-bit. The guest environment

was Debian 5.0 32-bit with default settings of QEMU, which

is a 266MHz Pentium II (Klamath) CPU with 128 MB of

RAM.

Most of the programs under test were compiled by GCC

4.3.2 and ran on Glibc 2.7, which are the default in Debian

5.0. The other programs used GCC 3.4.6 or Glibc 2.3.2 to

84

generate exploits since the default version of GCC protects

main functions against stack buffer overflow or performs heap

hardening integrity checks to stop heap overflow.

We used an end-to-end approach to generate exploits on

binary executables without modifying the source code, i.e. the

source code are not required. Our approach was to fork a

new process to execute the program under test and passing

the symbolic data to it from outside. In Debian 5.0, ASLR

is enabled by default so that the based address of stack and

heap is randomized. Therefore, ASLR was disabled in our

experiments for generating and testing all exploits except

jump-to-register exploits.

B. Sample Code

Since our method is based on detection of symbolic EIP reg-

ister instead of specific vulnerabilities, it can handle different

types of vulnerabilities. In the first experiment, We designed

five sample code for five different vulnerabilities and four

corrupted data, and performed automated exploit generation

on them. The results are shown in Table II, where the wall

time is expressed by (exploit reason time / total time).
In this experiment, the source input of all sample code was

argument and its length was 100 characters. We compared

the efficiencies of concolic-mode simulation and traditional

symbolic execution. In symbolic execution, depth-first search

(DFS) was used to explore a symbolic execution tree. The heap

overflow code was executed on Glibc 2.3.2, because some

protections that check pointer consistency have included in

Glibc since version 2.3.6. In addition, this exploit generation

cooperated with libfmtb1 library to build format strings to

exploit format string vulnerabilities.

In the five vulnerabilities considered in the first experiment,

stack buffer overflow and uninitialized variable vulnerability

corrupt EIP register directly, and the other three vulnerabil-

ities taint EBP register or pointers to corrupt EIP register

indirectly. As the results show, the average of total time

was 3.67 seconds in concolic mode and the exploit reason

time was 0.35 seconds. On average, symbolic execution spent

302.67 seconds on generating an exploit and 0.47 seconds on

reasoning out it. Concolic mode was faster about 100 times

than symbolic execution because it just explored only one

suspicious path. In the experiments of symbolic execution,

format string vulnerability got an out-of-memory error because

symbolic execution attempted to explore all paths in snprintf()

function, which performs a complex behavior.

C. Return-to-libc and Jump-to-register Exploits

In the second experiment, we implemented return-to-libc

and jump-to-register exploit generation, and the generated ex-

ploits could bypass non-executable stacks or ASLR protection.

Since return-to-libc and jump-to-register exploit generation

do not apply to all cases, i.e. only suitable for some special

cases, we chose the sample code of stack buffer overflow

vulnerability to conduct the experiment. Furthermore, the

experiment was conducted on concolic mode.

1http://packetstormsecurity.org/files/26173/

TABLE III
THE RUN-TIME INFORMATION OF RERUN-TO-LIBC EXPLOIT GENERATION

Run-time Information

EIP register (ReadLSB w32 54 arg)

ESP register 0xbffff8e0 (value:(ReadLSB w32 58 arg))

ESP register + 4 0xbffff8e4 (value:(ReadLSB w32 62 arg))

Address of system() 0xb7ebb7a0

0xbffffa8f (size:100 bytes)
Potential shellcode buffers

0xbffff8a6 (size:100 bytes)

TABLE IV
THE RUN-TIME INFORMATION OF JUMP-TO-REGISTER EXPLOIT

GENERATION

Run-time Information

EIP register (ReadLSB w32 54 arg)

Usable trampoline registers EAX

EAX register 0xbffff8a6 (value:(ReadLSB w32 0 arg))

Address of “call %eax” instruction 0x0804839f

0xbffffa8f (size:100)
Potential shellcode buffers

0xbffff8a6 (size:100)

In the experiment on return-to-libc exploits, we uses sys-

tem() function to execute “/bin/sh” command. The run-time

information at exploit generation is shown in Table III. The

locations where the ESP register pointed at and ESP register +

4, which is the address to insert argument, were all symbolic

and the potential shellcode buffers were large enough to

insert the string “/bin/sh”. Therefore, this vulnerable program

satisfied all the conditions for return-to-libc exploit generation.

The time spent on exploit reason was 0.34 seconds, while the

total time of this experiment was 3.25 seconds.

Table IV shows the run-time information at jump-to-register

exploit generation. A “call %eax” instruction was found at

address 0x0804839f, and the EAX register pointed to the

starting location of a symbolic region exactly. Therefore, this

vulnerable program can generate jump-to-register exploit to

bypass ASLR. Only 0.06 seconds were spent on reasoning out

the exploit, while the total execution time was 3.16 seconds.

D. Real-world Programs

In the final part of experiments, we generated exploits for

real-world programs. Because real-world programs are more

large and complex than the sample code, this experiment

demonstrated that our method is effective and practical in real-

world applications.

We chose several programs from benchmarks of AEG

and found three new vulnerable programs released in recent

years to perform this experiment. The 16 real-world programs

were evaluated by an end-to-end approach, i.e. all programs

were tested in binary forms, and the vulnerabilities of these

programs were all stack buffer overflow. Concolic-mode simu-

lation was used to perform exploit generation on all programs,

and code selection intercepted functions associating with file-

related operations or pure error feedback, such as fopen() and

perror(), to speed up the process. Table V shows the results

of 16 real-word programs.

85

TABLE V
THE RESULTS OF EXPLOIT GENERATION FOR REAL-WORLD PROGRAMS

Input Wall
Program Version Input Source

Length Time(sec.)
Advisory ID.

aeon 0.2a Env. Var. 550 12.36/32.03 CVE-2005-1019

iwconfig V.26 Arguments 85 0.89/3.57 BID-8901

glftpd 1.24 Arguments 300 2.68/8.06 OSVDB-16373

ncompress 4.2.4 Arguments 1050 45.57/99.36 CVE-2001-1413

htget 0.93 Arguments 276 8.21/35.48 CVE-2004-0852

htget 0.93 Env. Var. 180 1.16/5.08 AEG’s 0-day

expect 5.43 Env. Var.(HOME) 300 5.84/29.35 OSVDB-60979

expect 5.43 Env. Var.(DOTDIR) 300 6.10/29.28 AEG’s 0-day

rsync 2.5.7 Env. Var. 201 2.17/9.92 CVE-2004-2093

acon 1.0.5 Env. Var. 1300 93.84/162.70 CVE-2008-1994

gif2png 2.5.3 Arguments 1080 65.24/154.67 CVE-2009-5018

hsolink 1.0.118 Arguments 1050 56.44/103.91 CVE-2010-2930

exim 4.41 Arguments 304 3.21/122.26 EDB-ID#796

aspell 0.50.5 Stdin 300 3.61/14.52 CVE-2004-0548

xserver 0.1a Socket 104 1.16/14.35 CVE-2007-3957

xmail 1.21 Stdin 307 20.23/371.65 CVE-2005-2943

As the results show, iwconfig spent 3.57 seconds on exploit

generation, and it was the shortest one. On the other hand, the

slowest was xmail which spent about six minutes. According to

the results, the speed was proportional to the length of program

input, because the more symbolic data exist, the more code

may perform on symbolic execution. In addition, the longer

symbolic data will bring huge and complex constraints, and

SMT solvers must spend a lot of time on constraint solving.

In order to reduce the overhead of SMT solvers and speed

up the process, code selection was used to concretize argu-

ments of irrelevant functions. In this experiment, aeon, htget
and acon intercepted fopen(); ncompress intercepted lxstat()

and perror(); gif2png intercepted fopen() and perror(); expect
intercepted open(); rsync intercepted vsnprintf(); hsolink inter-

cepted system(). Those functions related with file operations

were often make constraint solvers stick, and perror() function

just printed error messages without return value and doesn’t

influence exploit generation, so we filtered these functions to

speed up the process.

In this experiment, we performed exploit generation on real-

world programs and produced exploits for those applications

successfully. The results show that the worst total time was

about six minutes to generate an exploit for real-world pro-

grams, and the quality of exploits was good because they

contained the longest NOP sled to increase the chances of

successful attacks.

E. Constraint Optimization and Large Applications

In the ordinary concolic execution (as used by AEG),

the path constraints and the input constraint, along with the

exploit constraints are combined together to be solved. We

have tried to separate the constraint resolving processes, with

two exclusive conditions: (1) path constraints and branch

constraint, (2) input constraint and the branch constraint. After

this separation, the performance speedup can achieve as high

as 50 times, as shown in the Table VI and Figure 11.

After the success of the constraint reducing, we apply

TABLE VI
THE COMPARISONS OF SPEEDUP AFTER CONSTRAINT REDUCING

Input Old Optimization
Program Version

Length Exploring Time(sec.) Exploring Time(sec.)
Speed Up

aeon 0.2a 550 298.12 19.67 15.10x

iwconfig V.26 85 4.21 2.68 1.57x

glftpd 1.24 300 50.07 4.71 10.63x

ncompress 4.2.4 1050 2000.41 53.79 37.18x

htget 0.93 276 146.72 27.19 5.39x

expect 5.43 300 172.50 23.51 7.33x

rsync 2.5.7 201 210.53 7.75 27.16x

acon 1.0.5 1300 3782.50 68.86 54.93x

gif2png 2.5.3 1080 2254.87 89.43 25.21x

hsolink 1.0.118 1050 2422.07 47.47 51.02x

0

500

1000

1500

2000

2500

3000

3500

4000

Optimization

Old

Fig. 11. The speedup after constraint reducing

the exploit generation process to large programs and web

applications. We exploit mplayer in 80 minutes and 255

minutes for foxit pdf reader, as shown in Table VII.

TABLE VII
THE RESULTS OF EXPLOIT GENERATION FOR LARGE PROGRAMS

Executed Constraint Size Path Exploit
Program Version

Symbolic LOC (bytes) Exploring Time Gen. Time

2.90 beta 2
Unrar

(linux 2.6.26) 1177301 2.91M 1388.45 2569.83

SVN-r33064
Mplayer

(Windows-XP) 1146887 3.89M 1713.76 2939.43

3.0 BUild 1301
Foxit pdf reader

(Windows-XP) 1825260 3.91M 5211.13 10094.17

V. RELATED WORK

APEG (Automatic Patch-based Exploit Generation) [4]

compares the differences of a program between its buggy

version and a patched version, and generates the exploits to

fail the added check in the patched version program. This work

needs a patched version program and is feasible only when the

patch is to fix by adding input sanitization logic. In addition,

most of the exploits generated by APEG are DoS (Denial-Of-

Service) attacks, which just crash a program, without executing

86

shellcode or malicious tasks.

AEG (Automatic Exploit Generation) [2] generates exploits

by two stages, which are finding bugs on symbolic execution

and then collecting run-time information on concrete execu-

tion. AEG only deals with stack buffer overflow and format

string vulnerability because it has to add individual safety

check constraints to detect each bug. Furthermore, AEG imple-

ments an end-to-end approach for exploit generation, including

symbolic files, symbolic sockets, etc., and uses return oriented

programming to bypass both W⊕X and ASLR[13].

Heelan et al. [8] use binary instrumentation to perform

taint propagation and collect runtime information. Their work

generates exploits by checking whether the EIP register is cor-

rupted by a tainted value, and also handles pointer corruption

that corrupts the EIP register indirectly. Similar to our work,

a crashing input is needed for taint analysis.

In addition, some work do not generate exploits explicitly,

but aim to report a bug which is probably exploitable. For

example, !exploitable[1] and some projects [11] of BitBlaze

analyze a crash and determine whether it is exploitable.

VI. CONCLUSION

In this paper, we implemented an automated exploit gen-

eration framework, called CRAX, which is built on S2E, a

new platform for symbolic execution. In order to generate

control flow hijacking attacks, we focus on detection of the

symbolic EIP, other continuation based registers and pointers,

and propose a systematic method for searching maximum

contiguous symbolic memory for payload injection. Detection

of symbolic registers is a comprehensive and easier way to

deal with all kinds of control flow hijacking vulnerabilities.

We implemented concolic-mode simulation to perform con-

colic testing on symbolic execution so that switching between

symbolic execution and concolic testing mode is easy without

modifying the memory model. In addition, code selection help

S2E to filter irrelevant functions and thus enables symbolic

execution to explore interested code more effectively and

speedup the process of exploit generation.

In order to evaluate CRAX, we conducted experiments on

a variety of vulnerable sample code to demonstrate that it can

tackle different kinds of control flow hijacking vulnerabilities.

We also experimented on real-world large programs and gen-

erated return-to-libc and jump-to-register exploits to bypass

mitigations of ALSR and W ⊕X in real-world software. The

successes on mplayer, and foxit pdf reader show that CRAX

is a feasible and powerful exploit generation tool for real

environments.

REFERENCES

[1] “!exploitable crash analyzer,” http://msecdbg.codeplex.com/.
[2] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG:

Automatic Exploit Generation,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS’11), San
Diego, California, USA, February 2011.

[3] F. Bellard, “QEMU, a fast and portable dynamic translator,”
in Proceedings of the FREENIX Track: 2005 USENIX Annual
Technical Conference, Anaheim, CA, USA, April 2005, pp. 41–
46.

[4] D. Brumley, P. Poosankam, D. X. Song, and J. Zheng, “Auto-
matic Patch-Based Exploit Generation is Possible: Techniques
and Implications,” in Proceedings of the 2008 IEEE Symposium
on Security and Privacy (S&P 2008), Oakland, California, USA,
May 2008, pp. 143–157.

[5] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Com-
plex Systems Programs,” in Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’08), San Diego, California, USA, December 2008, pp.
209–224.

[6] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: a platform
for in-vivo multi-path analysis of software systems,” in Pro-
ceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS’11), Newport Beach, CA, USA, March 2011, pp.
265–278.

[7] V. Ganesh and D. Dill, “A decision procedure for bit-vectors and
arrays,” in Proceedings of the 19th International Conference on
Computer Aided Verification (CAV’07), Berlin, Germany, 2007,
pp. 519–531.

[8] S. Heelan and D. Kroening, “Automatic Generation of Control
Flow Hijacking Exploits for Software Vulnerabilities,” MSc
Computer Science Dissertation, University of Oxford, UK, 2009.

[9] D. Kim, X. Wang, S. Kim, A. Zeller, S. Cheung, and S. Park,
“Which crashes should i fix first?: Predicting top crashes at an
early stage to prioritize debugging efforts,” Software Engineer-
ing, IEEE Transactions on, vol. 37, no. 3, pp. 430–447, 2011.

[10] M. Martin and M. Lam, “Automatic Generation of XSS and
SQL Injection Attacks with Goal-directed Model Checking,”
in Proceedings of the 17th conference on Security symposium,
U. Association, Ed., 2008, pp. 31–43.

[11] C. Miller, J. Caballero, N. M. Johnson, M. G. Kang, S. Mc-
Camant, P. Poosankam, and D. Song, “Crash Analysis using
BitBlaze,” in Proceedings of the Black Hat USA 2010, Las
Vegas, US, July 2010.

[12] D. A. Molnar and D. Wagner, “Catchconv: Symbolic execution
and run-time type inference for integer conversion errors,”
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2007-23, February 2007.

[13] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit
Hardening Made Easy,” in Proceedings of the 20th USENIX
Security Symposium (USENIX’11), San Francisco, CA, USA,
August 2011.

[14] E. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask),” in
Proceedings of the 31st IEEE Symposium on Security and
Privacy (SP 2010), Berleley/Oakland, California, USA, 2010,
pp. 317–331.

[15] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in Pro-
ceedings of the 14th ACM conference on Computer and com-
munications security, Acm, Ed., 2007, pp. 552–561.

[16] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze:
A new approach to computer security via binary analysis,” in
Proceedings of the 4th International Conference on Information
Systems Security. Keynote invited paper., Hyderabad, India,
2008.

[17] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force
vulnerabilty discovery. Addison-Wesley Professional, 2007.

[18] P. Team, “Pax address space layout randomization (ASLR),”
2003.

[19] ZZUF, “zzuf – multi-purpose fuzzer.”

87

