
Automatic Construction of Jump-Oriented Programming
Shellcode (on the x86)

Ping Chen†, Xiao Xing†, Bing Mao†, Li Xie†, Xiaobin Shen‡, Xinchun Yin‡

†State Key Laboratory for Novel Software Technology ‡ College of Information Engineering
Dept. of Computer Science and Technology Dept. of Computer Science

Nanjing University, China Yangzhou University, China
{chenping,xingxiao,maobing,xieli}@nju.edu.cn {xbshen,xcyin}@yzu.edu.cn

ABSTRACT
Return-Oriented Programming (ROP) is a technique which
leverages the instruction gadgets in existing libraries/exe-
cutables to construct Turing complete programs. However,
ROP attack is usually composed with gadgets which are
ending in ret instruction without the corresponding call

instruction. Based on this fact, several defense mechanisms
have been proposed to detect the ROP malicious code. To
circumvent these defenses, Return-Oriented Programming
without returns has been proposed recently, which uses the
gadgets ending in jmp instruction but with much diversity.
In this paper, we propose an improved ROP techniques to
construct the ROP shellcode without returns. Meanwhile
we implement a tool to automatically construct the real-
world Return-Oriented Programming without returns shell-
code, which as demonstrated in our experiment can bypass
most of the existing ROP defenses.

1. INTRODUCTION
Attackers often construct malicious code to gain unau-

thorized control and perform malicious actions. Traditional
method injects the malicious code into program’s memo-
ry space by exploiting software vulnerabilities, and hijacks
the control flow to execute the injected code. To preven-
t such code injection attacks, researchers have proposed a
large number of techniques, such as vulnerability-based sig-
nature (e.g., [1]), exploit-based signature [2, 3], and non-
executable memory (e.g, PAX [4]); and they all rely on the
fact that malicious executable code will be received from
outside. However, this hypothesis is broken by return-into-
libc attack [5–7], which uses the existing library functions to
construct the attack. Unfortunately, return-into-libc attack
leverages the very specific library functions, and it cannot
perform any arbitrary computations.
To get rid of the limitation of return-into-libc attack, Sha-

cham [8] proposed Return-Oriented Programming (ROP),
which reuses the short instruction sequences in existing li-
braries or executables. These instruction sequences end in
ret, and chain with each other to construct the malicious
code. ROP attack has become an actual threat in prac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

tice [9–11] and can be mounted on modern architectures [9,
10, 12–14]. There are several approaches for defeating the
ROP attack, from both hardware and software perspectives.
Francillon et al. [15] proposed a hardware-based approach
which uses an embedded microprocessor to prevent the cal-
l/ret stack from being maliciously damaged. ROPdefender
[16] is a software based approach. It uses the shadow mem-
ory to check the violation of the invariant of return address.
Davi et al. [17] and Chen et al. [18] propose the techniques
that detect ROP based on the assumption that ROP lever-
ages the contiguous gadgets ending in ret, which contain
short instructions. To eliminate the ret instruction, Li et
al. [19] propose a compiler based approach.

Most recently, Checkoway et al. [20] proposed the ad-
vanced Return-Oriented Programming, which leverages no
return instruction at all, to circumvent the ROP defenses.
They demonstrate the Return-Oriented Programming with-
out return is feasible on both x86 [21] and ARM [22]. Howev-
er, the techniques proposed by Checkoway et al. [20] must be
manually designed to construct the shellcode or even infeasi-
ble for constructing the sophisticated shellcode. As such the
work is time-consuming and tedious. In this paper, based
on more sufficient and carefully designed gadgets in the li-
braries, we proposed a Jump-Oriented Programming (JOP)
to improve existing Return-Oriented Programming without
returns techniques. Based on the new techniques, we present
a tool which can automatically construct the Jump-Oriented
Programming shellcode. In particular, we make the follow-
ing contributions in this paper:

• We proposed an improved ROP techniques. Compared
to the state-of-the-art Return-Oriented Programming
without returns [20], our method is more feasible to
construct the programs, without the manual tedious
work. Particularly, we use the combinational gadget
to invoke the system calls (Section 2.1) and the control
gadget to set the jump register (Section 3.1).

• We propose techniques to automatically construct the
gadgets, the basic building block in Jump-Oriented
Programming, and show these gadgets are also Tur-
ing complete [23].

• We have implemented these techniques into a tool, and
applied it to automatically construct a large number
of real world Jump-Oriented Programming shellcode
from milw0rm [24]. Experimental results show that
our tool can efficiently construct the shellcode within
few seconds.

20

inst

ret

(a) ROP Shellcode

inst

ret

inst

jmp

(b) JOP Shellcode

inst

call

inst

ret
jmp

Combinational Gadgets

A B

inst

ret

inst

jmp

Figure 1: The structure of ROP and JOP Code

2. OVERVIEW

2.1 The Building Blocks– JOP Gadget
The structure of the traditional ROP shellcode is that the

gadgets are chained together by ret instructions [8]. As Fig-
ure 1(a) shows, traditional ROP shellcode is quite different
from the normal program: it executes several small instruc-
tion snippets with an independent ret instruction. Similar-
ly (but with more challenges) as shown in Figure 1(b), we
could have a “Jump-Oriented Programming(JOP)”: rather
than using the independent ret instruction to construct the
gadget, control can be passed to the next gadget by the jmp
instruction or by combinational call and ret instructions.
Compared to existing Return-Oriented Programming with-

out returns [20], there are at least two differences. First, al-
though JOP shares the same idea of using the gadgets which
end in indirect jump, we propose the control gadget to specif-
ically set the jump register, which is the key of control flow
automatic transfer. We will illustrate the gadgets in Section
3. Second, we introduce a special gadget, combinational gad-
get, which ends in combinational call and ret instruction.
Because certain functional code snippet ending in indirect
jump (e.g., kernel trapping gadget) can not be found in x86
code. The work flow of the combinational gadget is that,
if gadget A (Figure 1(b)) ends in the instruction sequence
“call, jmp” and gadget B ends in ret, gadget A can call
gadget B (3⃝ in Figure 1(b)), which will return to gadget
A’s jmp instruction (4⃝ in Figure 1(b)), and then it jumps
to next gadget (5⃝ in Figure 1(b)). Combinational gadget
is useful in constructing the shellcode, because shellcode of-
ten leverages the system call to achieve its goal, and we can
construct the kernel trapping gadget by using combinational
gadget to invoke the system call (Section 3.2.5).

2.2 Where is the JOP Gadget
As JOP gadget ends with a jump instruction, we should

search the libraries or executables to find out those instruc-
tions which end with a jmp. There are two types of jump
instructions: direct jump and indirect jump. In JOP, we
would like to use the indirect jump instead of direct jump,
because it is often the register value (used in indirect jump)
rather than constant value (direct jump) that can be con-
trolled by the shellcode. Also, there are two types of indi-
rect jumps: near jump and far jump. In practice, we find
the gadgets ending in the near indirect jump are sufficient
to construct the JOP shellcode. However, for far indirect
jump, we have to make the appropriate choice of segment
selector when constructing far jump code. As such, in this
paper, we mainly focus on how to construct near indirect
jump shell code.
There are 32 cases of near indirect jumps, which have

the following hexadecimal values: 0xff 0x20-0x27, 0xff 0x60-
0x67, 0xff 0xa0-0xa7, 0xff 0xe0-0xe7. Based on these hex-

adecimal values, we could hence select the gadgets from ex-
isting executables and libraries. Algorithm 1 shows the ap-
proach on how to find the gadgets ending in near jmp instruc-
tion. Note “Gadget” represents a JOP gadget, “Lt” indicates
the size of the text segment of the libraries or executables,
“δm” indicates the maximum length of the instruction (20
bytes in x86 [8]), and “Jr” is the register used by the jm-

p instruction. Given a library or executable, the searching
algorithm can be divided into two procedures: the first pro-
cedure Create Gadget is to search the jmp instruction in the
whole text segment of the library or executable (line 3-4).
If it finds such an instruction, it creates two sets: Gadget

which contains the jump instruction and Jr which contains
the jump registers(line 5). Then it runs into the second pro-
cedure Build Subgadget (line 6). In the second procedure,
it searches the valid instruction before the jmp instruction,
and puts the instructions into the Gadget one by one (line
11-15). The algorithm stops searching in either of the two
cases (line 13): (1) when it encounters return instruction,
jump instruction and direct call instruction, note that indi-
rect call instruction can be used to construct the combina-
tional gadget ending with call-jmp instructions; (2) when
it encounters the instruction, which contains the register of
jmp instruction but does not use it as destination operand
(jump register conflicts). Note that the suffix of Gadget may
also be an useful instruction sequence, and it will have a d-
ifferent function. For example, if Gadget is in the form of
“a;b;jmp”, then “b;jmp” is also a JOP gadget.

Algorithm 1 Gadget Searching Algorithm

1: /* Gadget: a JOP gadget; Lt: the size of the text segment of
the libraries or executables; δm: the maximum length of the in-
struction; Jr: the register used by the jmp instruction. insn.Reg
represents the registers used in instruction insn.*/

2: Create Gadget() {
3: for (pos=1; pos < Lt; pos++){
4: if(the word at pos is indirect jump instruction){
5: Gadget ={jmp}; Jr ={jump registers};
6: Build Subgadget(pos,jmp,Gadget);
7: }
8: }
9: }

10: Build Subgadget(pos, pre insn, Gadget){
11: for (step=1; step < δm; step++){
12: if (bytes [(pos-step)...(pos-1)] decode as a valid instruction

insn){
13: if (¬(insn == “ret”/“jmp” /“direct call”) ∧¬ (insn.Reg ⊂

Jr ∧ Reg is not set by insn) {
14: Put insn after pre insn in the Gadget;
15: Build Subgadget(pos-step,insn,Gadget);
16: }
17: }
18: }
19: }

3. DISCOVERING TURING COMPLETE JOP
GADGETS

Once we have understood the basic forms of JOP gad-
get, in this section we examine what kind of instruction se-
quences can be leveraged to construct the JOP gadget, and
whether JOP gadget could have the same power as ROP in
terms of Turing completeness. We use two widely used li-
braries, libc-2.3.5.so (C library) and libgcj.so.5.0.0 (a
Java runtime library), as the code base. Note that the code
base can use any libraries or executable code, here we select
these two representative libraries to show the feasibility of
our approach.

21

Control Gadgets

Function Gadgets

pop esi; jmp [esi]/

pop esi; fdivr st,st(7); jmp [esi-7bh]

EAX,EBX,ECX,EDX,ESI,EDI,EBP

pop ebp

xchg esi,esp

jmp [esi]

pop edi

mov ebx,edi

jmp [esi-77h]

pop ebx

and eax,ff432ac4

jmp [esi]

pop edx

cmc

jmp [esi-7dh]

mov ecx,[ebx-11h]

jmp [esi-39h]

pop eax

jmp [edi]

insn

jmp

eax/[eax]/

[eax+offset]

insn

jmp

ecx/[ecx]/

[ecx+offset]

insn

jmp

ebx/[ebx]/

[ebx+offset]

insn

jmp

esi/[esi]/

[esi+offset]

insn

jmp

edx/[edx]/

[edx+offset]

insn

jmp

ebp/[ebp]/

[ebp+offset]

...
insn

jmp

edi/[edi]/

[edi+offset]

popad

xor al,62

jmp [esi-10h]

...

Figure 2: An Overview of the Design of Jump-Oriented Programming Gadget

3.1 Control Gadget
In JOP gadget design, we leverage the jump instruction

to connect the gadgets. Different from the ret instruction,
indirect jump instruction uses the registers (except ESP),
which are called jump register. Jump register can be as-
signed as the gadget address (e.g., jmp esi), the memory
location (e.g., jmp [esi]), or the memory location with an
offset (e.g., jmp [esi+offset]). In our design, we primar-
ily select the control gadgets in the form of “pop-jmp” or
“mov-jmp” to set the jump register. Note that the “pop/mov”
instruction and jmp instruction may use different registers
(e.g., pop ebp; jmp [esi]). If this is the case, we must
use more than one register to construct the control gad-
get. However, there could exist the data dependency be-
tween the jump registers and it may lead to the circles (e.g.,
EAX→EBX→EAX from “pop eax; jmp [ebx]” and “pop ebx;

jmp eax”). The first gadget can set jump register EAX, but it
needs its jump register EBX to be set earlier, whereas in the
second gadget, EAX should be set earlier than EBX. In order to
break the circle and control all the jump registers, we release
ESI and use it specifically as jump register in the control gad-
get. We choose ESI based on the following considerations.
First, ESI is the callee-saved register. Second, in experience
of writing the shellcode in milw0rm [24], we find shellcode
often uses the system call with less than four arguments,
therefore ESI will not be used to set arguments [25]. Third,
we find ESI occurs with the high frequency as the jump reg-
ister in the gadgets, and other gadgets, whose jump register
is not ESI, can also be indirectly set by the control gadgets
whose jump register is ESI. To set ESI, we find two alter-
native control gadgets, Gadget-1 (libgcj.so.5.0.0) and
Gadget-2 (libc-2.3.5.so).

1 pop esi (1) 1 pop esi (2)
2 jmp [esi] 2 fdivr st,st(7)

3 jmp [esi -7Bh]

For the other jump registers, we select the control gadgets
which can set the register and use ESI as jump register. For
example, Gadget-3 (shown below) is used to set EDI. We
also find similar control gadgets for EBP, EBX, ECX and EDX,
as shown in Figure 2. To set jump register EAX, we use
“pop eax; jmp [edi]”, in which EDI can be set by Gadget-
3. To set the jump registers ESI in these control gadgets,
we use Gadget-1 and Gadget-2. Combined with the gadgets
mentioned above, we can control any jump register. But this
is not an absolute requirement. Control gadget can also be
the gadget which not only sets other register but also its own

jump register, such as Gadget-5, which will be illustrated in
section 3.2.1.

1 pop edi (3) 1 pop esp (4)
2 mov ebx , edi 2 jmp [esi]
3 jmp [esi -77h]

Since most of the control gadgets use “pop/mov” instruc-
tions to set the jump register from the stack. The gadget
address should be fetched by ESP. In addition, several func-
tion gadgets use the“pop/mov” instruction to get the address
or the data from stack. Thus, we require the gadget that
can set ESP. To achieve this goal, we select Gadget-4 (libc-
2.3.5.so).

3.2 Function Gadget
Function gadgets can be used to achieve data movemen-

t, data arithmetic operation, logic operation, unconditional
branch, conditional branch, system call, and function call.

3.2.1 Data Movement
Load gadgets play a critical role in setting registers. “Con-

trol gadgets” described in Section 3.1 can also be used as
load gadgets. In order to set a pile of registers, alternatively,
we introduce Gadget-5 (libgcj.so.5.0.0) to set them. In
practice, we also use Gadget-5 to set the jump registers.

1 popad (5) 1 pushad (6)
2 xor al ,62 2 aam
3 jmp [esi -10h] 3 jmp [esi -70h]

Store gadgets are used to put the content of a register
into a memory location. We find the gadgets which can s-
tore EBX, ECX, EDX, ESI, EDI, and EBP into the memory from
our code base. But no gadget can set EAX into the mem-
ory. Thus, to store the return value (EAX) of system call
to memory, we use the gadgets “xchg eax, edi; cmp ah,

dh; jmp [esi-77h]” to exchange the return value to edi

and the store gadget “mov [ebx-2],edi;jmp [esi-77h]” to
save edi to memory. In addition, sometimes, when invok-
ing the function call or executing the loop body, we need
to save registers (caller-saved registers or registers used in
loop body) in the memory, we could select Gadget-6, which
is from libc-2.3.5.so, to save all the registers.

The shellcode should not contain any NULL bytes, howev-
er it often needs to get the value with NULL bytes (e.g., sys-
tem call index) from the memory during execution. In prac-
tice, we use Gadget-7 (libgcj.so.5.0.0) to compute arbi-

22

trary constant value and store it in the memory by adding
two values without NULL bytes, which can be naturally pre-
set in JOP shellcode. For example, if we want to set system
call number (0xb) of execve in the memory, we can store the
two values (e.g., 0x1111111f and 0xeeeeeeec) in the JOP
shellcode, then we ensure one value in the memory [ebx]

and load the other value to edi, finally the memory [ebx]

will get the addition result (0xb).

1 add [ebx],edi 2 jmp ebp (7)

3.2.2 Data Arithmetic and Logic Operation
For data arithmetic and logic operations, we put the cor-

responding operands into register or memory by load/store
gadgets. Then we can compute any arithmetic/logic oper-
ations in a simple way: we load the operands into register
as needed by using load gadgets; if the result is now held in
register, we write it to memory, using the store gadgets. We
searched libc-2.3.5.so and libgcj.so.5.0.0 and found
115 gadgets, which achieve the arithmetic/logic operations
(e.g., add, sub, inc, dec, xor, and, or, not, neg, rol).

3.2.3 Control Flow
Unconditional branch uses the Gadget-2 and Gadget-4 to

direct the control to the destination gadget and change the
ESP to make the successive gadgets fetch their data from the
stack.
Conditional branch uses the flags in EFLAGS to drive the

direction of the control flow. The strategy we developed has
four steps, (1) Undertake arithmetic or logical gadget that
sets (or clears) flag of interest. (2) Store EFLAGS on the s-
tack by pushfd instruction. (3) Get the flag from the stack.
To achieve this goal, we use the gadget “or edx, ebp;jmp

[eax]”, which is extracted from libgcj.so.5.0.0. EBP is set
by all“1”except for the flag bit (e.g.,ZF=0, EBP=0xffffffbf),
and EDX is set as the EFLAGS. If the flag of interest equals
to “1”, then EDX will get -1, on the other hand, EDX will be
equal to EBP. (4) Use the flag of interest to perturb jump
target conditionally. We use the gadget “jmp [edx+esi]”,
which is from libgcj.so.5.0.0, to change the flow. If we
store the different addresses in memory [esi-1] and [es-

i+ebp], EDX+ESI will point to the different gadgets. There
is an exception that, because CF is the last bit in EFLAGS,
after executing “or edx, ebp;jmp [eax]”, the value of EDX
will be 1 distance depending on the flag is set or cleared
(CF=0, EDX=-2; CF=1, EDX=-1). In this scenario, there ex-
ists a memory usage conflicts because the address of the
next gadget is 4 bytes. To solve the problem, we use “rcl
edx,cl; jmp [eax]” to change the EFLAGS before executing
“or edx, ebp;jmp [eax]”.

3.2.4 Finite Loop
We can achieve the finite loop by the gadgets in Listing

1. In JOP shellcode, “loop body” can be a series of gadgets
which achieve the specific functions such as decoding the
malicious code. To be simple, we represent it as gadget 2 in
Listing 1. Suppose iterate number “ count” has been stored
in the memory, first we regulate the ESP (gadget 4 in Listing
1). Then we subtract “count”by 1 (gadget 5, 6 in Listing 1),
if the zero flag ZF is set, it indicates that “count” equals to
0; otherwise, it indicates “count” is larger than 0. Then we
drive the control flow based on ZF using conditional branch
gadgets (gadget 8-11 in Listing 1). Because the conditional

branch gadget uses the EAX, EDX, EBX, and EBP. They may be
reused in the “loop body”. Thus, we save the registers after
the loop body, and restore the registers before it (gadget 1,
3 in Listing 1).

Listing 1: Finite Loop Gadget
// restore registers 4 pop esp jmp [esi -10h]

1 popad jmp [esi] // conditional branch
xor al ,62 5 pop edx 8 pushfd
jmp [esi -10h] cmc jmp ebx

2 loop body jmp[esi -7dh] 9 pop edx
//save registers //count -- cmc

3 pushad 6 dec [edi] jmp [esi -7dh]
aam jmp [edx] 10 or edx ,ebp
jmp [esi -70h] 7 popad jmp [eax]

xor al ,62 11 jmp [edx+esi]

3.2.5 Kernel Trapping Gadget
We leverage the combinational gadget, which is defined

in Section 2.1, to construct kernel trapping gadget in JOP
shellcode. Considering that the system call in shellcode
needs to set register EAX, EBX, ECX and EDX for the system
call index and arguments, we have to use the rest regis-
ters in the gadget. For this purpose, we select Gadget-8,
which contains two parts: “Gadget-8a” (libgcj.so.5.0.0)
and “Gadget-8b” (libc-2.3.5.so). If we need to invoke the
function call, we use Gadget-8a by storing function address
in the memory [ESI+54h] .

1 call [esi+54h] (8a)
2 jmp [ebp -18h]

1 call large dword ptr gs:10h (8b)
2 ret

3.3 Turing Completeness
The JOP gadgets, which are illustrated in this section,

are as powerful as the ROP gadgets [8]. It is a hard issue
to directly prove our JOP is Turing complete: being able to
compute every Turing-computable function on Turing Ma-
chine [23]. However, we could find our gadget has identical
functionality as ROP gadget proposed in [8]. We hence be-
lieve our JOP gadget is Turing complete.

Automatic Tool for constructing JOP shellcode

Gadget Collector

Libraries/Executables

libc-2.3.5.so

libgcj.so.5.0.0

Gadget Set

Shellcode

Gadget Arrangement

Memory Arrangement

JOP shellcode

.
.
.

.
.
.

.
.
.

Figure 3: An Overview of Our Automatic Tool for
Constructing the JOP shellcode

23

4. AUTOMATIC TOOL FOR JOP SHELL-
CODE CONSTRUCTION

4.1 Challenges
Challenge I. In a typical shellcode, attackers usually use

several system calls to achieve their goal [26]. Thus, we
should design a method which can achieve not only the in-
tra arrangement of system call but also the inter arrange-
ment between system calls. Intra arrangement reflects the
setting of stack layout, arguments and system call index of
the system call. Inter arrangement indicates the connection
between the system calls, for example, the return value(EAX)
of former system call will be used to set the arguments for
the later one.
Challenge II. We should provide a method to solve the

data dependency and side effect between gadgets. If one
gadget contains the register which need to be set by oth-
er gadgets, there exists data dependency between them. If
one gadget unintendedly sets one register and may affect the
subsequent gadgets, it will cause side effect. Take the gad-
get “mov ecx, [ebx]; mov eax, 0xffff0983; jmp [esi]”
for instance, the function of this gadget is to set the value of
ECX. There exists a data dependency that EBX should be set
by previous gadget, and also the side effect caused by the
gadget unintendedly changing the value of EAX.
Challenge III. Similar to the data dependency and side

effect among registers, data in memory could have depen-
dency and side effect as well. As such, we should elaborately
arrange the memory layout, and the order of the memory ac-
cess of the JOP shellcode to avoid the memory conflict usage.
If, for example, “mov eax,[ebx-10h]; jmp [esi]” and“mov
ecx,[ebx-11h];jmp edi” are the contigeous gadgets, there
exists the memory conflict usage between “[ebx-10h]” and
“[ebx-11h]”.

4.2 Design and Implementation
Before describing our detailed approaches to solve these

challenges, we first describe the specifications of the Shell-
code (formula-1) and the Gadget (formula-2).
In general, shellcode uses system calls (“Sys Call”) to ex-

ecute the a complicated task [26]. System call usually main-
tains a fixed stack layout (Mem U) and register usage (Reg U),
“Reg U” represents the registers which point to the argu-
ments and system call index. We statistically analyzed the
130 pieces of shellcode from milw0rm [24], and found that
the system call used by shellcode has less than four argu-
ments. Thus the Reg U contains EAX, EBX, ECX, and EDX.
Note EAX is the system call index, EBX,ECX,EDX point to ar-
guments [25]. “Mem U” indicates the stack layout which
contains the arguments, system call index, return value as
well as the constant value. In addition, shellcode also con-
tains other operations (“OP”), including the “data” oper-
ations (Data OP) and “control” operations (Control OP).
“data”operation indicates the expression such as load/store,
arithmetic/logic associated with system call. For example,
in shellcode“setreuid(getuid(),getuid),execve(“/bin//sh”,0,0)”
[27], there is a “data” movement from the return value of
setreuid to the parameters of getuid. “control” operation
means the control flow branch. For example, in the shell-
code “Ho Detector” [28], there is a control flow branch to
exit which depends on the return value of read.
A gadget is the instruction sequence which reads a set

of register/memory, performs a well-defined operation on

these, and then writes the result into the destination reg-
ister/memory. We describe the Gadget in the quintuple
(formula-2): (1) Gadget Functionality (GF); (2) Register
Usage Set (US); (3) Register Constrain Set (CS); (4) Regis-
ter Attach Set (AS); (5) Memory Usage (MU). “GF” is the
functionality of the gadget, such as load gadget, store gad-
get and so on. To avoid possible ambiguity, one gadget has
only one functionality. “US” is the intended register which is
set by the gadget according to its functionality. For exam-
ple, “US” in load gadget is the registers which get the value
from the memory, whereas “US” in inc gadget is the register
increased. “CS” represents the registers read by the gad-
get, including the registers which hold the memory address,
jump register and so on. “AS” is the unintended registers
updated in the gadget excluding the one in “US”. “MU” is
the memory locations which are used by the gadget. Take
load gadget “mov ecx, [ebx]; mov eax, 0xffff0983; jmp [es-
i]” for instance, GF={load}, US={ECX}, CS={EBX,ESI},
AS={EAX},MU={[[EBX],[ESI]]}.

4.2.1 Gadget Arrangement
Gadget arrangement contains two main tasks. One is to

select gadgets to set the inter and intra arrangement of sys-
tem calls. The other is to eliminate the “data dependency”
and “side effect” between gadgets.

Algorithm 2 Load Gadgets Selection Algorithm

1: /* JOP : gadgets which have been selected; I : universal set con-
tains the eight general-purpose registers; R Set: the candidate
registers needed to be set; Tmp: gadget set which contains the
selected load gadgets for R Set; Pos: the index of gadget in JOP;
Load/Load’ : load gadget */

2: Load Gadgets Selection(JOP,R Set,Pos){
3: Tmp=∅;
4: while(R Set ̸=∅) {
5: if((Load.US ∩R Set)̸=∅ ∧Load.CS⊆(I -R Set)∧ Load.AS ⊆

(I -R Set)){
6: Put Load in Tmp;
7: if(Load’.US ⊆ Load.US ∧ Load’ ∈ Tmp)
8: remove Load’ from Tmp;
9: R Set=R Set-Load.US;
10: }
11: }
12: Insert Tmp before JOP[Pos];
13: }

We select the gadgets in five steps: steps 1-3 are used to
do intra arrangement of system call, step 4 is used to do
inter arrangement between system calls, while step 5 is used
for connecting all the selected gadgets by control gadgets.
Specifically,

1. Check the register usage (Reg U) and memory usage
(Mem U) of the system call, and use the “write con-
stant to memory”gadget (Section 3.2.1) to set the con-
stant value which has NULL bytes, including NULL
arguments, system call index, string buffer and any
other constant values.

2. Select the load gadgets (Section 3.2.1) to set the Reg U
of the system call in a consecutive order, including the
arguments and the system call index. This can be
achieved by Algorithm 2“Load Gadgets Selection Algo-
rithm”. R Set contains the candidate registers which
need to be set and at the start, it equals to Reg U.
The main idea is that, if one load gadget can set the
registers in R Set and its “AS” and “CS” are both in
the subset of “(I-R Set)”, it has priority to be selected
(line 5-6). The reason is the registers in “(I-R Set)”

24

Shellcode = {(Sys Call, OP)|Sys Call = Mem U ∪Reg U,OP = Data OP ∪ Control OP}; (1)

Gadget = {(GF,US,CS,AS,MU)}; (2)

are either the one which is not intended to be set or
the one which has been set. Note that the candidate
registers which have been set by load gadget (in “US”)
are removed from the R Set and thereby in“(I-R Set)”
(line 9), so we can use them to set the rest candidate
registers. If the later selected load gadget can set the
registers which have been set by former gadgets, we
remove the former gadgets (line 7-8). Note there may
be multiple choices to select the load gadgets, because
different load gadgets may set the same register, our al-
gorithm only adopts one of them. The algorithm stops
when the“R Set” is empty (line 4), and we insert the s-
elected load gadgets (in Tmp) into the gadget set JOP
(line 12). Further, we check each selected load gad-
get and guarantee that the register in “CS” or “AS”
is loaded after the register in “US”. For example, if
we select the gadget “mov ecx,[ebx-11h];jmp [esi-

39h]”to set“ECX”, in which the“CS” is {EBX,ESI}, and
the “US” is {ECX}, we should set EBX after this gadget.
Otherwise, the value of EBX will be overwritten by the
value for calculating the memory [ebx-11h]. Algo-
rithm 2 can be used not only for setting Reg U but
also in other scenarios for selecting the load gadget to
set registers, including selecting control gadget to set
jump registers.

3. Insert the “kernel trapping gadget” (Section 3.2.5) to
invoke the system call.

4. Select the gadgets to achieve other operations in shell-
code. For the data operation (Data OP), we select
the load/store gadgets and arithmetic/logic gadgets.
To be more specific, we store the return value of the
preceding system call to the memory, and then load
the value from the memory to destination registers for
the later system call (Section 3.2.1), if there are any
arithmetic/logic operations, we insert the arithmetic/-
logic gadgets (Section 3.2.2). For the control operation
(Control OP), we use the conditional branch, uncon-
ditional branch, or loop gadgets to connect the system
calls (Section 3.2.3 and Section 3.2.4).

5. Select the control gadgets (Section 3.1) to chain the
gadgets together. First, we glean the consecutive se-
lected gadgets whose jump registers have not been set
and divide them into the groups, each group contains
no repeat gadget. For each group, we put the jump
registers in “R Set”, and adopt the Algorithm 2 to se-
lect the control gadgets. There are two tricks we would
like to point out. One is we select control gadget until
its jump register can set by itself, or its jump register
is ESI which can be set by the unified control gadgets
(Gadget-1 and Gadget-2). The other is, ESI is used
as the jump register in control gadgets and unavailable
for computation in function gadgets. Based on the fac-
t that ESI is often used to perform string load (LODS)
or movement (MOVS) in shellcode, we replace the ESI

with other registers (e.g., EAX), and perform the string
related operations by using the load/store gadgets.

Although we have selected the gadgets for the intra and
inter arrangement of system call in shellcode, we encounter
the second challenge: the “data dependency” and “side ef-
fect” between gadgets, and we should establish the policies
to identify the data dependency and eliminate the side ef-
fect. There are two cases. The first case is, if one register
belongs to the “AS” of certain gadget, after which, there
is a gadget contains the register in its “CS”, and between
these two gadgets, no gadget sets the register(in “US”). We
insert the load gadget to eliminate the “side effects” be-
tween gadgets based on Algorithm 2. For example, “mov
ecx, [ebx]; mov eax, 0xffff0983; jmp [esi]” and “mov
edx,[eax];jmp [esi-11h]“, EAX is in “AS” of the former
gadget, and in “CS” of the later gadget, if there is no gadget
between them to set EAX, we insert the load gadget immedi-
ately after the former gadget. The other case is that, if one
register belongs to the “CS” of certain gadget, and there is
no gadget to set it beforehand, then we insert the load gad-
get before the gadget to solve the “data dependency” based
on Algorithm 2.

4.2.2 Memory Arrangement
After the gadget arrangement, we encounter the third

challenge: there may exist the memory conflict usages be-
tween gadgets. In JOP shellcode, we fetch the address/data
from stack by MOV/POP instruction. Except some specific
usages with the same memory location, for example, to s-
tore the return value of one system call and load the value
from the same memory to set the arguments of the later
system call, the operations should load/store the value from
different memory locations. However, the memory conflicts
usages may occur at the following three cases. One case is
that “pop” operation may conflict with the “mov” operation.
For example, with the same ESP, the second “pop reg” con-
flicts with “mov reg,[esp+4]”. Thus, we translate the “pop
reg” into “mov reg,[esp+offset]”, here all the stack relat-
ed operands are represented in the form of “[espk+offset]”.
When the gadget changes the value of ESP, we will mark the
old and new value of “ESP” as “espk” and “espk+1”. We
ensure that there are no overlaps between “pop” and “mov”
operations. The second case is, we ensure the two memory
locations have more than 4 bytes distance and less than the
maximum distance limit (default 512 bytes). Otherwise, we
use the load gadget to reset the register. For example, if
two gadgets contain the memory locations which are based
on the same register (e.g., “mov eax, [esi-7dh]; ...” and
“mov, ebx, [esi-7bh]; ...”), and the register is set by the
same gadget, we need to insert the load gadget to reset the
register. The third case is that one register is used by two
gadgets for different purpose but no gadget resets it. For ex-
ample, if one register is used as operand in one gadget and
used in the memory operand in another gadget ((e.g., “...
;jmp edi”, “mov ecx,[edi]; ...”), or if one register is used
as operand in two gadgets (e.g., “mov ecx,edi; ...”, “... ;jmp
edi”), we need to insert the intervening load gadget between
the two gadgets, because the same value of the register can
only satisfy with one gadget.

After eliminating the memory usage conflicts, we assign

25

the address and data into the memory layout of JOP shell-
code. In our implementation, all the address and data are
stored on the stack, therefore, the address is directly re-
lated to ESP (e.g., mov ecx,[esp+4h]) or indirectly related
to ESP(e.g., pop eax;mov ecx,[eax]). We analyze all the
gadgets, and translate the memory operands into the ex-
pression of ESP. We properly set each updated value of ESP,
and therefore arrange the memory locations for the address
and data of JOP shellcode.

5. EVALUATION
We have implemented a prototype of our tool which au-

tomatically construct JOP shellcode. Specifically, we give
a user interface to define the stack layout (Mem U) and
register usage (Reg U) of the shellcode. Then our tool will
automatically select the gadgets from our gadget set and
construct the JOP shellcode. We have performed our ex-
periment on the two commonly used GNU libraries: libc-

2.3.5.so and libgcj.so.5.0.0. Our testing environment
is a 2.53GHz Intel Core 2 Duo CPU T9100 running Fedora
Core Release 5 with linux kernel version 2.6.15.

5.1 Analysis of the Effectiveness
We choose a number of pieces of shellcode from mil-

w0rm [24], and rewrite them into JOP shellcode by using
our automatic tool. Table 1 shows 22 JOP shellcode our
tool generated. In fact, we can automatically construct any
shellcode by our tool. Based on the behaviors of these shell-
code, we could classify them into three categories, sequential,
conditional branch and loop. “sequential” shellcode performs
their behaviors by a sequence of expressions at the unit of
system call. This kind of shellcode accounts for the majori-
ty of the shellcode. “conditional branch” shellcode performs
certain conditional branch to determine the malicious be-
haviors. “loop” shellcode often uses the loop operation to
modify or decode the second stage shellcode and then jump-
s to that shellcode, so it is often combined with other “se-
quential”or“conditional branch”shellcode. As such, we only
focus on the loop operation in “loop” shellcode. In the 130
shellcode from mil0wrm, there are 88 sequential shellcode,
29 conditional branch shellcode, and 13 loop shellcode. We
successfully construct all the three kinds of shellcode.
We show the Gadget Number of each JOP shellcodes in

Table 1. It includes the Jump Gadget (column 5) and Com-
binational Gadget (column 6). Since the shellcode have d-
ifferent stack layout and register usages, we construct the
JOP shellcode with different number of gadgets. Generally
speaking, the Gadget Number is in direct proportion with
the size of the shellcode, because larger shellcode has more
complex stack layout and register usages. Combinational
Gadgets (column 6) are used specifically as “kernel trapping
gadgets”, so the number of them equals to the number of
system calls in shellcode.
We also show the size of JOP shellcode (column 7-9), in-

cluding the Addr & Data (column 7), Padding (column 8),
and Total Size (column 9). JOP shellcode has two parts, one
part is Addr & Data, which contains the gadget address, s-
tack address, and the constant data; it occupies most of the
JOP shellcode’s space, accounting for an average 75.9% of
the JOP shellcodes listed in Table 1. The other part is the
Padding which is used to fill the gap between the Addr &
Data, because the gadgets often fetch the address/data from
non-continuous memory locations (e.g., [esi-77h] and [es-

0.00s

0.02s

0.04s

0.06s

0.08s

0.10s

0.12s

0.14s

0.16s

0.18s

0.20s

0

5

10

15

20

25

30

35

40

Figure 4: Performance Overhead

i]), and between these memory locations, we need to insert
the Padding. The size of the Padding is determined by the
selected gadgets and the strategy of Memory Arrangement.
To shorten the size of the Padding, we can choose the smaller
maximum distance limit between the two memory location
(in Section 4.2.2) and bring more load gadgets to reset the
register. For example, we can reset ESI to make [esi-77h]

and [esi] be the continuous memory locations. From Table
1, we can see that the size of JOP shellcode (column 9) is
larger than that of the original shellcode (column 3), and
usually with a few hundreds bytes length.

Unlike the traditional ROP shellcode, our method avoids
executing ret that is not matched with call, thus circum-
venting IDSes that rely on such behavior. In our experimen-
t, we leverage DROP [18], which can detect the traditional
ROP shellcode, to evaluate our JOP shellcode. The result is
JOP shellcode can bypass DROP. To the best of knowledge,
there are no specific tools particularly for detecting our JOP
shellcode.

5.2 Analysis of the Performance Overhead
We also analyzed the performance overhead of our tool

for constructing the JOP shellcode. Note that we ignored
the time costs on gadget collection. Experimental results in
Figure 4 shows, within one second, our tool can generate a
piece of JOP shellcode. The performance costs of JOP shell-
code generation is proportional to the gadget number, about
0.003s/gadget on the average. We believe such performance
overhead is acceptable. The main time costs are on gadget
regulation for data dependency and side effect, and mem-
ory arrangement. In Table 1, we can see that, the longer
of the shellcode, the more gadgets will be used to construct
it. Because of this, the performance overhead is in direct
proportion with the size of the shellcode.

There is an exception when the shellcode contains the con-
trol flow transfer. Because the control flow statement uses
at least 4 gadgets (in section 3.2.3), which correspond to
one conditional jump instruction in shellcode. Thus, if the
shellcode contains the control flow transfer, it will suffer rel-
atively high costs. Take the shellcode “dup2(0,0); dup2(0,1)
dup2(0,2);” for instance, it contains the conditional branch
and its original size is 15 bytes, 22 gadgets are used for
constructing it, while the shellcode “File unlinker”, which is
the “sequential” shellcode and its original size is 18 bytes,
it can be fulfilled solely with 12 gadgets. The former shell-
code costs 0.051 seconds, whereas the later one costs 0.036
seconds.

5.3 Case Study

5.3.1 Launch the JOP shellcode
Similar to the ROP attack [8], we leverage software vulner-

26

Categories Number Size (bytes) Description
JOP shellcode

JOP Gadget Number JOP Shellcode Size (bytes)
Jmp Gadget Comb Gadget Addr&Data Padding Total Size

Sequential

1 30 chmod(“//etc/shadow”,666) exit(0) 12 2 264 60 324
2 34 killall5 shellcode 8 1 188 74 262
3 30 PUSH reboot() 8 1 186 74 260
4 40 /sbin/iptables -F 12 1 268 32 300
5 45 execve(rm -rf /) shellcode 14 1 317 64 381
6 25 execve(“/bin//sh”, [“/bin/sh”, NULL]) shellcode 10 1 216 72 288
7 5 normal exit w/ random return value 3 1 52 120 172
8 34 setreuid(getuid(),getuid()),execve(“/bin//sh”,0,0) 24 3 424 79 503
9 86 edit /etc/sudoers for full access 30 4 604 91 695
10 45 system-beep shellcode 20 2 360 135 495
11 12 iopl(3); asm(cli); while(1) 8 1 116 88 204
12 7 forkbomb 5 1 88 84 172
13 36 write(0,“Hello core!”,12) 16 2 336 120 456
14 40 eject cd-rom (follows /dev/cdrom symlink) + exit() 22 3 412 119 531
15 39 anti-debug trick (INT 3h trap) + execve /bin/sh 8 1 128 76 204
16 12 set system time to 0 and exit 10 2 212 64 276
17 11 kill all processes 8 1 160 76 236
18 16 re-use of /bin/sh string in .rodata shellcode 6 1 132 80 212
19 18 File unlinker 10 2 212 64 276

Conditional 20 15 dup2(0,0); dup2(0,1); dup2(0,2); 21 1 268 129 397
Branch 21 56 Ho’ Detector 22 3 528 45 573

Loop 22 25 Radically Self Modifying Code 18 0 220 60 280

Table 1: Jump-Oriented Programming Shellcode

abilities to compromise the system, such as stack overflow,
format string and so on. In our experiment, by leverag-
ing the crafted stack overflow in our dedicated program, we
overwrite the return address with the first gadget’s address,
and next to the return address is the JOP shellcode. When
executing the first gadget, “esp”points to the JOP code, and
it will consecutively execute the next gadget. We modify the
vulnerable program in Shacham’s ROP work [8]. Figure 5
shows such a vulnerable program. The buffer overflow vul-
nerability of this program is “strcpy(buf,arg)” in function
“overFlow” (line 32). If the length of the buffer “arg” is larg-
er than the length of “buf”, it triggers the buffer overflow.
We store the JOP shellcode in buffer “JOP” (line 40). To be
simple, we map the libraries and stack in the fixed memory
(line 41-42). The return address of overFlow is stored at
address 0x4ffffefc. Details are shown in the source code in
Figure 5.

5.3.2 Shellcode of setreuid(getuid(),getuid()),execve(
“/bin//sh",0,0)

In this subsection, we take shellcode“setreuid(getuid(),get-
uid()),execve(“/bin//sh”,0,0)” [27] as an instance and show
how we automatically construct the JOP shellcode. There
are three system calls: getuid,setreuid,execve. “setreuid(
getuid(),getuid())” is used to set the real and effective user
IDs to the values specified by the return value of “getuid”.
We first set the EAX as “0x31” and invoke the system call
“getuid”, then the return value of “getuid” is used to set
the arguments EBX and ECX of “getreuid”. To achieve the
function of “execve(“/bin//sh”)”, we put the string parame-
ter “/bin//sh” in the shellcode. Then we set EAX as “0xb”,
ECX and EDX as the NULL pointer, EBX as the pointer to the
memory which contains the string “/bin//sh”.
Figure 6 shows the gadgets selected by our tool. For read-

ability, we assign each gadget (could be viewed as a ba-
sic block) with a sequential number, which is different from
the gadgets’ index in section 3. To achieve the Gadget Ar-
rangement, we follow the method in Section 4.2.1. First,
we find the constants which contain zero bytes: one ze-
ro byte on stack layout (NULL terminator for the string
“/bin//sh”) and four word-wise data in registers (system
call index “0x0000000b”, “0x00000046”,“0x00000031”, null-
pointer word for the arguments of “execve”). Then we select
the gadgets with number 2, 10, 17, 19, 21 in Figure 6 to gen-
erate the constant values into the memory. Next, according

to the register usage, we select the load gadgets to set EAX,
EBX, ECX, and EDX for each system call based on Algorithm
2. We give preference to the load gadgets “pop eax; jmp

[edi]” and “pop edx; cmc; jmp[esi-7dh]” to set EAX and
EDX respectively, because these two gadgets contain “AS”
and “CS” which both belong to “{ESI,EDI,EBP}”. For the
rest two registers, we set ECX before EBX according to “mov
ecx,[ebx-11h];jmp [esi-39h]”, and set EBX before EAX ac-
cording to “pop ebx; and eax,0xff432ac4; jmp [esi]”.
As a result, the order of setting registers is “ECX, EBX,

EDX, EAX” (gadget 4 for “getuid”, gadget 12, 13 and 14 for
“setreuid”, gadget 23, 24, 25 and 26 for “execve” in Figure
6). Third, we insert the kernel trapping gadget at the end
of each system call (gadget 5, 15, 27 in Figure 6). Fourth,
we select the gadgets to connect the system calls. There is a
“data dependency”between the“getuid”and“setreuid”, we
use the“store gadget”(gadget 6 and 8 in Figure 6) to put the
return value of “getuid” in the memory, and then load the
value from memory to EBX and ECX to set the arguments of
“setreuid” (gadget 12 and 13 in Figure 6). Fifth, we carry
out Algorithm 2 and select the control gadgets (gadget 1 sets
for gadget 2, 5-6, and 8; gadget 9 sets for gadget 10, 12-15;
and gadget 16 sets for gadget 17; gadget 18 sets for gadget
19; gadget 20 sets for 21, 23-27 in Figure 6). For example,
in order to set the jump registers EDI,ESI,EBP used by the
gadgets (2, 5, 6, 8 in Figure 6), we select the gadget 1 in
Figure 6, whose “US” is {EBX,ECX,EDX,EDI,ESI,EBP,ESP},
“AS” is {EAX}, and “CS” is {ESP}. Next, to eliminate “data
dependency” and “side effect” between the gadgets, we find
no load gadgets need to be inserted.

To achieve the memory arrangement, we follow the method
in Section 4.2.2. In this example, there are seven memory
conflicts (gadget 2 and 4 use edi for different purposes: one
is for arithmetic operand, the other is for jump register, and
the same reason applies to gadget 10 and 14, 21 and 26; gad-
get 2 and 5 both use “ebp” as jump register, but the former
uses it directly as gadget address, and the later uses it to
compute the address, the same reason also applies to gadget
10 and 15, 21 and 27; gadget 6 and 8 conflict with “jump
[esi-77h]”), therefore we insert the load gadgets (gadget 3,
11, 22, 7 in Figure 6).

6. RELATED WORK

6.1 Return Oriented Programming

27

1 #include <sys/types.h>

2 #include <sys/stat.h>

3 #include <fcntl.h>

4 #include <sys/mman.h>

5 #include <string.h>

6 #include <stdlib.h>

7 #include <stdio.h>

8 #define LenOfShellCode 4500 #define LenOfBuffer 4400

9 void load_Libs(void)

10{

11 int fd;

12 int fd_libgcj = 0;

13 struct stat sb;

14 struct stat st_libgcj;

15 fd = open("libc-2.3.5.so", O_RDONLY, 0);

16 fstat(fd, &sb);

17 mmap((void*)0x03000000, sb.st_size, PROT_READ |

18 PROT_EXEC, MAP_FIXED | MAP_SHARED, fd, 0);

19 fd_libgcj = open("libgcj.so.5.0.0", O_RDONLY, 0);

20 fstat(fd_libgcj, &st_libgcj);

21 mmap((void*)0x04000000, st_libgcj.st_size, PROT_READ

22 | PROT_EXEC, MAP_FIXED | MAP_SHARED, fd_libgcj, 0);

23}

24 void do_map_stack(void){

25 int fd;

26 fd = open("/dev/zero", O_RDONLY, 0);

27 mmap((void*)0x4f000000, 0x01000000, PROT_READ |

28 PROT_WRITE, MAP_FIXED | MAP_PRIVATE, fd, 0);

29 }

30 void overFlow(char* arg){

31 char buf[LenOfBuffer];

32 strcpy(buf, arg);

33 }

34 void move_stack(char* arg){

35 __asm("mov $0x4fffff00, %esp\n");

36 overFlow(arg);

37 _Exit(0);

38 }

39 int main(int argc, char* argv[]){

40 char JOP[LenOfShellCode];

41 load_Libs();

42 do_map_stack();

43 move_stack(JOP);

44 }

Figure 5: Vulnerability Software

26

pop eax

jmp [edi]

//execve(/bin/

/sh ,0,0)

27(a)

call [esi+54h]

jmp [ebp-18h]

27(b)

call large dword

ptr gs:10h

ret

//set 0x31

1

popad

xor al, 62

jmp [esi-10h]

2

add [ebx],edi

jmp ebp

3

popad

xor al, 62

jmp [esi-10h]

//store getuid()

6

xchg eax,edi

cmp ah,dh

jmp [esi-77h]

7

pop esi

jmp [esi]

8

mov [ebx-2],edi

jmp [esi-77h]

//load ECX EBX,EAX

12

mov ecx, [ebx-11h]

jmp [esi-39h]

13

pop ebx

and eax,ff432ac4

jmp [esi]

14

pop eax

jmp [edi]

getuid() setreuid(getuid(),getuid()) execve(/bin//sh ,0 , 0)

19

add [ebx],edi

jmp ebp

20

popad

xor al, 62

jmp [esi-10h]

21

add [ebx],edi

jmp ebp

22

popad

xor al, 62

jmp [esi-10h]

//set 0xb and

two zero words

16

popad

xor al,62

jmp [esi-10h]

17

add [ebx],edi

jmp ebp

18

popad

xor al, 62

jmp [esi-10h]

//set 0x46

9

popad

xor al, 62

jmp [esi-10h]

10

add [ebx],edi

jmp ebp

11

popad

xor al, 62

jmp [esi-10h]

//load EAX

4

pop eax

jmp [edi]

//getuid()

5(a)

call [esi+54h]

jmp [ebp-18h]

5(b)

call large dword

ptr gs:10h

ret

//setreuid(getui

d(),getuid())

15(a)

call [esi+54h]

jmp [ebp-18h]

15(b)

call large dword

ptr gs:10h

ret

//load ECX,

EBX,EDX,EAX

23

mov ecx, [ebx-11h]

jmp [esi-39h]

24

pop ebx

and eax,ff432ac4

jmp [esi]

25

pop edx

cmc

jmp [esi-7dh]

Figure 6: JOP shellcode: setreuid(getuid(),getuid()),execve(“/bin//sh”,0,0)

Two other parallel and independent works in improving
traditional ROP techniques [20,29] have been proposed. Check-
oway et al. [20] proposed the techniques which construct
ROP shellcode without using the return instructions. In-
stead of ret, they construct the ROP attack by the pop-jmp
instruction sequence, which behaves like return instruction.
There are two disadvantage of their work. First, they did
not propose the method how to set the jump register. In
particular, they frequently use the edx as jump register, but
the gadget (e.g., pop %edx; jmp *x) which sets the edx may
lead to the circle problem as mentioned in Section 3.1. Sec-
ond, they do not provide the kernel trapping gadget, which
is the key to construct the shellcode.
In addition, Bletsch et al. [29] proposed the technique

“Jump-Oriented Programming (JOP)”. There are two d-
ifferences between our methods. First, they leverage the
gadget ending in independent call instruction, which has
no corresponding ret instruction. Existing ROP defending
tools (e.g., ROPdefender [16]) can be easily modified to de-
tect their JOP shellcode with independent call instruction
by monitoring the imbalance in the ratio of executed call
and ret. In our work, we use the combinational gadgets to
eliminate the independent call or ret. Second, the Dis-
patcher Gadgets proposed by Bletsh et al. can connect only
a few gadgets, because they do not provide the method how
to set up the jump registers other than those in Dispatcher
Gadgets. In this paper, we propose the Control Gadgets to
set the jump registers. Moreover, neither of them ([21,29])
provides the techniques to eliminate such as the side effect
of gadget and memory usage, which are actually important

techniques in JOP.

6.2 Binary Code-reuse Methods
Researchers create several interesting binary code-reuse

techniques to construct the binary program without bring-
ing new code. Caballero et al. [30] proposed a code reuse
method called BCR, which extracts an assembly function
from a program binary (e.g.,malware), based on which, the
attacker constructs the self-contained binary program. In
addition, Inspector [31] generates a so-called gadget from
a binary and reuses it to achieve the malicious behavior.
Lin et al. [32] proposed a new trojan construction method
which reuses malicious function in a legitimate binary code
and performs malicious activities. All the works mentioned
above use the existing binary code, and try to find the useful
code snippet to do malicious behavior. Most recently, Blaza-
kis [33] proposes a method which uses the code dynamically
generated by flash VM to construct the shellcode.

7. CONCLUSION
In this paper, we have presented a new type of shellcode

which is based on Jump-Oriented Programming gadgets.
Such new JOP shellcode can bypass most of the existing
ROP defenses. Statically, it appears like legal program ba-
sic blocks, and dynamically it does not have the statistic
behavior such as ret without call. Moreover, it can pro-
vide new polymorphism capabilities in the ending instruc-
tion compared with ROP. We have presented techniques to
find out the JOP gadgets, and show these gadgets are Tur-
ing complete. Further, we have implemented an automatic
tool which is capable of generating JOP shellcode. Also

28

we discuss that JOP can be used to construct JOP rootkit.
Similar to ROP attacks, we believe JOP based attacks will
be a new threat shortly.

8. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive

and helpful feedbacks and suggestions. This work was sup-
ported in part by grants from the Chinese National Natu-
ral Science Foundation (60773171, 61073027, 90818022, and
60721002), the Chinese National 863 High-Tech Program
(2007AA01Z448), and the Chinese 973 Major State Basic
Program(2009CB320705)

9. REFERENCES[1] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha,
“Towards automatic generation of vulnerability-based
signatures,” in Proceedings of the 2006 IEEE Symposium
on Security and Privacy, 2006, pp. 2–16.

[2] M. Roesch, “Snort - lightweight intrusion detection for
networks,” in Proceedings of the 13th USENIX Conference
on System Administration. Berkeley, CA, USA: USENIX
Association, 1999, pp. 229–238.

[3] H.-A. Kim and B. Karp, “Autograph: toward automated,
distributed worm signature detection,” in Proceedings of the
13th Conference on USENIX Security Symposium.
Berkeley, CA, USA: USENIX Association, 2004, pp.
271–286.

[4] “The pax project,” 2004. [Online]. Available:
http://pax.grsecurity.net/

[5] J. McDonald, “Defeating solaris/sparc non-executable stack
protection,” Bugtraq, 1999.

[6] Nergal, “The advanced return-into-lib(c) exploits (pax case
study),” Phrack Magazine, 2001. [Online]. Available:
http://www.phrack.com/issues.html?issue=58&id=4

[7] S. Krahmer, “X86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique,” Phrack
Magazine, 2005. [Online]. Available:
http://www.suse.de/krahmer/no-nx.pdf

[8] H. Shacham, “The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86),” in
Proceedings of the 14th ACM Conference on Computer and
Communications Security(CCS). New York, NY, USA:
ACM, 2007, pp. 552–561.

[9] A. Francillon and C. Castelluccia, “Code injection attacks
on harvard-architecture devices,” in Proceedings of the 15th
ACM conference on Computer and communications
security. New York, NY, USA: ACM, 2008, pp. 15–26.

[10] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman,
E. W. Felten, and H. Shacham, “Can dres provide
long-lasting security?the case of return-oriented
programming and the avc advantage,” in Proceedings of
EVT/WOTE 2009.USENIX/ACCURATE/IAVoSS, 2009.

[11] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented
rootkits: Bypassing kernel code integrity protection
mechanisms,” in Proceedings of 18th USENIX Security
Symposium, San Jose, CA, USA, 2009, pp. 383–398.

[12] E. Buchanan, R. Roemer, H. Shacham, and S. Savage,
“When good instructions go bad: generalizing
return-oriented programming to risc,” in Proceedings of the
15th ACM Conference on Computer and Communications
Security. New York, NY, USA: ACM, 2008, pp. 27–38.

[13] “Felix “fx” lidner.developments in cisco ios forensics,”
CONFidence 2.0., http://www.recurity-
labs.com/content/pub/FX Router Exploitation.pdf.

[14] T. Kornau, “Return oriented programming for the arm
architecture,”Master’s thesis, Ruhr-Universitat Bochum,
2010.

[15] A. Francillon, D. Perito, and C. Castelluccia, “Defending
embedded systems against control flow attacks,” in
SecuCode ’09: Proceedings of the first ACM workshop on

Secure execution of untrusted code. New York, NY, USA:
ACM, 2009, pp. 19–26.

[16] L. David, A.-R. Ssadeghi, and M. Winandy, “Ropdefender:a
detection tool to defend against return-oriented
programming attacks,”Technical Report TR-2010-001,
2010.

[17] L. Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic
integrity measurement and attestation: towards defense
against return-oriented programming attacks,” in
Proceedings of the 2009 ACM workshop on Scalable trusted
computing, 2009, pp. 49–54.

[18] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie,
“Drop: Detecting return-oriented programming malicious
code.” in ICISS, ser. Lecture Notes in Computer Science,
A. Prakash and I. Gupta, Eds., vol. 5905. Springer, 2009,
pp. 163–177.

[19] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram,
“Defeating return-oriented rootkits with ”return-less”
kernels,” in EuroSys ’10: Proceedings of the 5th European
conference on Computer systems. New York, NY, USA:
ACM, 2010, pp. 195–208.

[20] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy, “Return-oriented
programming without returns,” in Proceedings of CCS
2010, A. Keromytis and V. Shmatikov, Eds. ACM Press,
Oct. 2010, pp. 559–72.

[21] S. Checkwway and H. Shacham, “Escape from
return-oriented programming: Return-oriented
programming without returns(on the x86),”Technical
Report, 2010.

[22] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy,
“Return-oriented programming without returns on arm,”
Technical Report HGI-TR-2010-002, Ruhr-University
Bochum, 2010.

[23] A. M. Turing, “On computable numbers, with an
application to the entscheidungsproblem,” Proc. London
Math. Soc., pp. 230–265, 1936.

[24] milw0rm. [Online]. Available:
http://www.milw0rm.com/shellcode/linux/x86

[25] “Implementing linux system calls,” Linux Journal, 1999.
[Online]. Available:
http://www.linuxjournal.com/article/3326

[26] D. Mazzocchio, “Writing shellcode for linux and *bsd,”
2005. [Online]. Available:
http://www.shell-storm.org/papers/files/442.pdf

[27] ““linux/x86
setreuid(geteuid(),geteuid()),execve(“/bin/sh”,0,0)”,”
milw0rm, 2009, http://www.milw0rm.com/shellcode/8972.

[28] ““linux/x86 /ho detector”,”milw0rm, 2008. [Online].
Available: http://www.milw0rm.com/shellcode/7154

[29] V. F. Tyler Bletsch, Xuxian Jiang, “Jump-oriented
programming: A new class of code-reuse attack,”Technical
Report TR-2010-8, 2010.

[30] J. Caballero, N. M. Johnson, S. McCamant, and D. Song,
“Binary code extraction and interface identification for
security applications,” Proceedings of the 17th Annual
Network and Distributed System Security Symposium, 2010.

[31] C. K. C. Kolbitsch, T. Holz and E. Kirda, “Inspector
gadget: Automated extraction of proprietary gadgets from
malware binaries,” Proceedings of the 30th IEEE
Symposium on Security and Privacy, 2010.

[32] Z. Lin, X. Zhang, and D. Xu, “Reuse-oriented camouflaging
trojan: Vulnerability detection and attack construction,” in
Proceedings of the 40th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN-DCCS 2010), Chicago, IL, USA, June 2010.

[33] D. Blazakis, “interpreter exploitation: pointer inference and
jit spraying,” BHDC, 2010,
http://www.semantiscope.com/research/BHDC2010/BHDC-
2010-Paper.pdf.

29

