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Abstract
Cross-site scripting (XSS) and SQL injection errors

are two prominent examples of taint-based vulnerabil-

ities that have been responsible for a large number of

security breaches in recent years. This paper presents

QED, a goal-directed model-checking system that auto-

matically generates attacks exploiting taint-based vulner-

abilities in large Java web applications. This is the first

time where model checking has been used successfully

on real-life Java programs to create attack sequences that

consist of multiple HTTP requests.

QED accepts any Java web application that is writ-

ten to the standard servlet specification. The analyst

specifies the vulnerability of interest in a specification

that looks like a Java code fragment, along with a range

of values for form parameters. QED then generates a

goal-directed analysis from the specification to perform

session-aware tests, optimizes to eliminate inputs that

are not of interest, and feeds the remainder to a model

checker. The checker will systematically explore the re-

maining state space and report example attacks if the vul-

nerability specification is matched.

QED provides better results than traditional analyses

because it does not generate any false positive warnings.

It proves the existence of errors by providing an exam-

ple attack and a program trace showing how the code is

compromised. Past experience suggests this is important

because it makes it easy for the application maintainer to

recognize the errors and to make the necessary fixes. In

addition, for a class of applications, QED can guarantee

that it has found all the potential bugs in the program.

We have run QED over 3 Java web applications totaling

130,000 lines of code. We found 10 SQL injections and

13 cross-site scripting errors.

1 Introduction

As more and more business applications migrate to the

Web, the nature of the most dangerous threats facing

users has changed. Web applications are typically writ-

ten in languages that make classic exploits like buffer

overruns impossible, but new infrastructures bring new

vulnerabilities. Two of the most popular attacks in

this domain are SQL injection and cross site script-

ing (XSS) [12]. This paper presents a practical, pro-

grammable technique that can automatically generate at-

tacks for large web-based applications. The system also

shows the statements executed over the course of the at-

tack. This information can be used by application devel-

opers to close these security holes.

Many commercial systems, including Cenzic’s Hail-

storm [7] and Core Security’s Core Impact [9], rely on

black-box testing. In black-box testing of web applica-

tions, the tester only has the level of access available to

any external attacker—that is, it may only make HTTP

requests and examine the responses. This approach has

the advantage that any such analysis is independent of

the target application’s implementation language, mak-

ing it ideal for broad deployment. However, it cannot

take advantage of the logic of the program; it may not be

efficient, and it cannot provide any guarantee on cover-

age.

This paper presents a system called QED that auto-

matically finds attack vectors for a large class of vul-

nerabilities in web applications written in the same ap-

plication framework. This system is based on the ap-

proach of concrete model checking. This is a verifica-

tion technique based on systematic exploration of a pro-

gram’s state space. It is an attractive approach to security

problems because not only can it conclusively find vul-

nerabilities, if a systematic exploration proves exhaus-

tive, it can prove that no vulnerabilities exist. However,

this technique is generally not feasible for large, real-life

programs. In addition, a web application continuously

accepts inputs, so it seems impossible on the surface to

exhaust all possible paths. To make QED a practical tool

that works on real programs, we built the system based

on the design principles listed below.



1. Many web application vulnerabilities, such as SQL

injection and cross-site scripting, can be generalized

as taint-based problems. By focusing on this class

rather than one vulnerability at a time, the QED sys-

tem is much more general. Users can specify taint-

based vulnerabilities in a language called PQL [22].

In fact, PQL extends beyond even taint-based anal-

ysis as it includes execution patterns involving any

sequence of methods on a set of objects that is de-

scribable via a context-free language.

Users can use QED for finding different vulnera-

bilities, and even vulnerabilities that are specific to

their own applications. It is very important that or-

dinary developers be able to generate these analyses

on their own.

2. Today, application frameworks are heavily used in

web application development as they greatly re-

duce software engineering time. We advocate ex-

tending the notion of frameworks beyond software

development to include code auditing. Exploiting

higher level semantic information about the frame-

work makes it possible to generate more effective

static analyses. Furthermore, by abstracting away

the guts of a framework, we can concentrate our

model checker’s effort on the application code it-

self. This abstraction step needs only to be per-

formed once for each framework, as the abstracted

code is reusable. For this research, we have picked

the following popular core frameworks for web ap-

plications:

• Java servlets [27], which is a standard exten-

sion to the Java platform for writing web ap-

plications.

• JSPs (Java Server Pages) [28], which allow

page design to be commingled with database

accesses.

• Apache Struts [1], which is a web appli-

cation framework that uses the model-view-

controller paradigm. In this paradigm, a con-

troller decouples the data model from the user

view so they can easily be changed indepen-

dently.

Any Java web application intended for deployment

in a standard application server conforms to the

servlet specification. If a Java web application also

uses JSP or Struts, our framework will take advan-

tage of the additional semantics as well.

To demonstrate the effectiveness of this approach,

we report the result of applying our tool across three

different Java web applications developed on this

framework.

3. In model checking, we are simulating the pro-

gram execution on candidate input sequences. QED

uses JPF, the Java PathFinder model checking sys-

tem [29], to do this. It is important that we con-

centrate the model checking time on sequences that

are likely to identify vulnerabilities. Based on the

query, QED automatically compiles user-supplied

queries into static analyses for the web application

that prune out input sequences that are guaranteed

not to expose any vulnerability. The static analysis

generates a set of input vectors. If it is small, this set

can be tested exhaustively; if it is not, the static anal-

ysis’s results—directed by the user’s query—direct

the checker to test more promising results first.

1.1 Contributions

This paper makes the following contributions.

• A session-based model for user input in web appli-

cations. Much work in testing web applications fo-

cuses on either analyzing individual pages [31] or

simulating a browser user with a sophisticated spi-

der [3]. We present a technique that bases its user

model on data flow information across requests in a

session. This helps restrict the search space while

also exposing possible vulnerabilities that a spider

or nonmalicious end user might never produce.

• A programmable approach to checking event-driven

applications. QED is extremely flexible; its concept

of vulnerability is merely “anything that matches a

specification”, and the permissible specifications in-

clude any context-free language of method calls on

a consistent set of run-time objects. Though this

paper focuses on taint vulnerabilities in web appli-

cations, the technique generalizes to other error pat-

terns as well as other event-based systems such as

GUI applications or file systems.

• A model-checking framework to systematically ex-

plore standard Java web applications. We have

implemented a simulated environment for the Java

PathFinder model checker that will systematically

explore programs based on the Java Servlet Spec-

ification. We have refined it further to work more

effectively with the popular Apache Struts frame-

work.

• Experimental validation of our approach. We sup-

plied specifications for two major security vulnera-

bilities (cross-site scripting and SQL injections) and

applied the QED system to three largeWeb applica-

tions. These applications totaled roughly 130,000

lines of non-library code. QED detected 10 SQL

injection vulnerabilities and 13 XSS vulnerabilities.



1.2 Paper Organization

Section 2 describes the class of vulnerabilities of interest.

Section 3 describes howwe applymodel checking to web

applications to generate the attack vectors and get the ex-

ecution trace. Section 4 describes howwe use static anal-

ysis to reduce the search space of model checking. Sec-

tion 5 demonstrates the QED algorithm step by step on

an example application. Section 6 details experimental

results. Section 7 discusses related work, and Section 8

concludes.

2 Problem Statement

Our algorithm accepts a web application and a vulner-

ability specification, then generates a set of attack path

components with corresponding execution traces. This

section describes the class of applications and vulnera-

bilities our system addresses.

2.1 Taint Vulnerabilities

SQL injection and cross-site scripting are both instances

of taint vulnerabilities. All such vulnerabilities are de-

tected in a similar manner: untrusted data from the user

is tracked as it flows through the system, and if it flows

unsafely into a security-critical operation, a vulnerabil-

ity is flagged. In SQL injection, the user can add addi-

tional conditions or commands to a database query, thus

allowing the user to bypass authentication or alter data.

With XSS, an attacker can inject his own HTML (includ-

ing JavaScript or other executable code) into a web page;

this is exploitable in many ways, up to complete com-

promise of the browser. In the so-called “reflection at-

tack” [12] XSS is used by a phisher to inject credential-

stealing code into official sites without having to redirect

the user to a copy of the site. This means that any secu-

rity credentials will be valid on the attack site, and even

whitelisting will not prevent the attack.

Given the gravity of the vulnerabilities, we would like

to eliminate their existence before deploying our applica-

tions. Some of these vulnerabilities can be subtle, how-

ever. It is not sufficient to just consider URLs in isolation

because an attack may consist of a sequence of URLs.

Consider a scenario with the example web application in

Figures 1 and 2. An attack on this application can go

as follows: the attacker sends the victim an email con-

taining the URL http://example.com/search_

begin.jsp?s=<script... where the s parameter

carries a JavaScript payload crafted to log users’ key-

board entries. The victim clicks on the link. Since this

is the user’s first interaction with example.com, a new

session is created by the web server, and when the JSP

checks the value of login, it finds nothing. It thus stores

<html>

<head>

<% HttpSession s = getSession();

if (s.getAttribute("login") == null) {
s.setAttribute("text",

getParameter("s"); %>

<meta http-equiv="refresh"

content="10;URL=search login.jsp">

</head>

<body></body>

</html>

<% } else { %>

<!-- rest of page... -->

Figure 1: Snippet from search begin.jsp.

<html>

<body>

<h1>Login required</h1>

<p>To search for

<%=getSession().getAttribute("text")%>,

you must first log in.</p>

<form>

<!-- rest of page... -->

Figure 2: Snippet from search login.jsp.

the search string in the session and generates a redirect

page to search login.jsp. That page then generates

an error and requests login information. However, at this

point it echoes the value from the session blindly, thus

injecting the script and allowing the attacker to log the

user’s password. This example illustrates that we need to

analyze more than just individual requests to be sure we

have found all vulnerabilities in a web application.

We model the behavior of a web application as a series

of request-response events; each URL corresponds to an

HTTP request, and this request is processed to produce

a response. We may characterize an attack vector by a

sequence of URL requests in a session where untrusted

input data propagates into security-critical operations.

2.2 Domain of Web Applications

We model a web application as a reactive system that

operates on a session at a time. A session consists of a

series of events, with each event being an HTTP request

submitted by the same user. Note that while the request

originates from the same user, its contents may actually

be manipulated by an attacker. We do not place any re-

striction on the ordering of events. In particular, it is not

necessary that requests be constrained by the links avail-

able on the last page viewed. This is necessary because

an attacker can construct and send malicious requests di-



rectly. This also argues against using web-spider tech-

niques to collect potential attack vectors.

In response to an event, a web application may modify

the session data. This is information that is user-specific

but maintained temporarily on the webserver over the

course of a user’s interaction with the machine. In a web-

server, a separate data structure is normally maintained

for each user, and cookies or special arguments would be

set to match each users to their sessions.

Sessions are assumed to be independent of each other.

An attack may consist of a sequence of events within a

session, but cannot span multiple sessions. Our reason-

ing here is that any attack usable against another user

should also be usable against oneself, and so the attack

will still manifest.

2.3 Vulnerability Specifications

The set of taint-based vulnerabilities addressed by our

technique consists of all attacks that match the following

pattern:

1. Untrusted data is read in from some taint source,

such as a user-controlled file, URL request, cookie

value, or network source. It may subsequently be

stored in arbitrary objects and passed in and out as

parameters or returned results.

2. Some methods may derive new objects from old.

Some of these, if passed an untrusted object, will

produce an untrusted object. Examples include

methods that parse a request and create subobjects

from the untrusted data, or methods that create

larger strings by appending characters to the un-

trusted data. We call these methods propagators.

3. No untrusted data, whether from the original taint

source or derived via propagators, may be used in

any taint sink, such as a database access routine.

4. The previous rule does not apply if the object has

been passed through one of several sanitizers, that

quote or escape the contents of the object.

This is an abstraction of the general problem of in-

formation flow control. Information is tracked from the

source, through propagators, until it either hits a sanitizer

and becomes safe, or hits a taint sink and possibly does

damage. Once the tracker can confirm that all dangerous

data only reaches sanitizers, a proof of the correctness

of these sanitizers will suffice to prove the correctness of

the entire program.

Our vulnerability specification consists of four pat-

terns, one for each of the previously enumerated compo-

nents. These patterns are expressed as PQL queries. PQL

is a powerful specification language that permits one to

query source(object * x)

matches

HttpServletRequest.getParameter(x)

| x = Cookie.getValue();

query prop(object * x, object *y)

matches

(StringBuilder) y.append(x)

| y = (StringBuilder) x.toString();

query sink(object * x)

matches

JspWriter.print*(x)

| JspWriter.write(x, ...);

Figure 3: XSS vulnerability specification.

specify patterns of events on objects in a manner simi-

lar to program snippets. It permits subqueries to be de-

fined and then matched against as well. We can exploit

this by defining the components of our specification as

subqueries and then linking them together with a generic

main query that works for any taint problem.

A simple example for XSS in JSPs is shown in Fig-

ure 3. All three of its defined subqueries are a logical

OR between individual method calls. Its taint sources,

HttpRequest.getParameter and Cookie.getValue,
are defined for all Java web applications [27]. Likewise,

the JspWriter class in the taint sink is defined in the

JSP specification [28]. PQL permits method names to

be regular expressions, and so we collect all print and

printlnmethod calls within a single clause.

The propagation rules in the prop query handle string

concatenation in Java 1.5. In the full specification, other

versions of Java and other modes of string propagation

are also handled. These are simply added as additional

OR clauses; we omit them here for clarity.

Care must be taken when developing the

specification—missing a propagator may lead to

false negatives in the final result, while missing san-

itizers is likely to lead to many false positives. A

suitably crafted general specification, however, can

apply to many applications directly or with only minor

modifications to specify details and application-specific

sanitizers. Furthermore, the operation of the model

checker will suggest which modifications need to be

made to refine the query.

Due to the design of the Java libraries, web application

queries will rarely need to explicitly specify sanitizers.

Java’s String class is immutable, and it is also the class

that represents the beginning and end points of any web

transaction. Since the sanitization process will generally

create an entirely new String, this freshly created object

would thus be considered safe. This is another reason we

must be particularly careful not to miss any propagators:

any propagator we fail to specify will be treated as a san-
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itizer.

It is also possible that a sanitizer might perform its

transforms using propagator methods. This would re-

quire explicitly marking the result as sanitized. How-

ever, this situation never occurred in our experiments.

We never found it necessary to explicitly specify sani-

tizers, and our XSS query worked unmodified with all

applications.

2.4 PQL Instrumentation and Matching

The vulnerability specification is translated by the PQL

compiler into a set of instrumentation directives. When

applied to the target application, they weave in monitor-

ing code to detect matches to the query, and to report on

the objects involved [22]. When a match is found by the

monitor, it signals the model checker to report that a fail-

ure condition has been found. If no match occurs, the

model checker’s backtracking mechanism will also roll

back the matching machinery to the appropriate state.

3 Input Generation

In this section, we describe how QED enumerates attack

vectors for a target web application. An analyst must

provide two components: the PQL query specifying the

vulnerability, and a set of input values for any form pa-

rameters. Given these, QED will do the rest. A diagram

of the process is shown in Figure 4.

The input application is first instrumented according

to the provided PQL query, as described in Section 2.4.

The instrumented application is then combined with a

custom, automatically generated harness. This is a pro-

gram that will systematically explore the space of URL

requests. Each URL consists of a page request (the path,

covered in Section 3.1), and an optional set of input pa-

rameters (the query, discussed in Section 3.2). The har-

nessed application is then fed to the model checker, along

with stub implementations of the application server’s en-

vironment. The results of that model checker correspond

directly to sequences of URLs that demonstrate the at-

tack paths.

We may also optionally improve our search by opti-

mizing the harness before the model checking step; we

discuss these refinements in Section 4.

3.1 Generating Page Requests

An attack path is a sequence of URLs, each of which

consists of a page request (the path) and a set of input pa-

rameters (the query) [4]. The web application translates

a URL into a method invocation with a set of parameters.

Thus, a URL corresponding to our sample JSP earlier:

http : //www.example.com/search.jsp?s= foo

would translate into the method invocation

org.apache.jsp.search jsp.doGet(req, resp)

where the call req.getParameter(x) yields the value

“foo” if x is “s”, and yields null otherwise. The resp

parameter represents the response to be returned.

There is a simple correspondence between a URL and

a method invocation. We refer to the method invocation

as an event. An event consists of:

1. a reference to an event handler. The event handler

corresponds to the path of the URL. It identifies

the name of the Java method to be invoked when

a matching URL is received.

2. event handler parameters. These typically corre-

spond to the query part of the URL. They provide

extra parameters used by the handler, and generally

carry the more free-form data. They may include



cookies or information supplied by a user when fill-

ing out forms. They may also contain the pay-

load that an attacker wishes to inject into the sys-

tem. Thus, it is very important to model these inputs

carefully.

Most Java web applications are developed using a

framework that makes explicit the set of URLs it accepts

and its corresponding event handlers. Our system cur-

rently handles three popular frameworks, as discussed

below.

• Servlets are the most basic form of server-side Java,

and are the lowest level of abstraction available.

Any Java web application intended to be run in a

standard application server must ultimately use this

specification. Individual servlets are Java classes

that implement a well-specified API [27]. The

URL-to-servlet mapping is specified by an XML

file as part of the application’s metadata. QED sim-

ply interprets the XML file to determine the list of

event handlers in the application.

• Java Server Pages, or JSPs, provide a PHP-like in-

terface to Java [28]. They are compiled by a JSP

compiler such as Jasper into servlets. The URL-to-

servlet mapping in this case is specified by a trans-

formation of the JSP’s path in the file system, which

generates the class name.

• Apache Struts is a popular application platform

built on top of JSPs and the core servlet specifica-

tion [1, 13]. It implements its own ActionAPI sim-

ilar to the servlets API, but which forwards to JSP

files for actual HTML output. A URL in a Struts ap-

plication thus maps to two calls in sequence; a call

to an Action’s entry point, and a call to the associ-

ated JSP’s entry point. These mappings from URLs

to Actions and JSPs are specified in an XML file in

a manner similar to the specifications for servlets.

For each of these, QED can produce a comprehen-

sive list of paths understood by the application. To test

each sequence, it does, by default, a breadth-first search

through them - first checking all sequences of length 1,

then all of length 2, and so forth. This has no obvious

termination condition, however; our optimizations and

heuristics in Section 4 provide limits.

3.2 Parameters to Event Handlers

In Java web applications, data from the user is repre-

sented by a set of key-value pairs mapping strings to

strings. Applications conforming to the Java Servlet

Specification use a method called getParameter to re-

trieve a value for a given key. QED rewrites methods

corresponding to taint sources to call out to the model-

checker, indicating to the model checker that there is

non-determinism associated with the returned value of

the method. The model checker will cycle through the

possible values, including the option that no such key

was provided by the user.

We rely on the analyst to provide a sufficient pool of

values to test the application. It would be infeasible to

test every possible string that could be supplied to the

event handlers, but it is also not necessary. Our goal is

merely to show that it is possible for data from a taint

source to reach a taint sink. If a controlled string is dis-

played, this is a vulnerability.

In cases where the contents of an input string do mat-

ter, the data are often expected to be in a certain form:

if they do not conform to the expected type, some paths

may not be executable. For our experiments, we supplied

one of the common default types used by web applica-

tions in general: integers, booleans (“yes”, “true”, etc.)

and generic strings. We also included the null object to

represent the lack of an argument.

Applications may also require application-specific

“magic” values that influence control flow. The most

common case for this is an action variable or similar,

which holds one of several values depending on the value

of a list box or similar. In such cases, QED can usually

extract the information we need via a constant propaga-

tion analysis; this will tell us if an argument from the

query string is compared against constant strings. By

enumerating these strings and ensuring they are possi-

ble values for our keys, we search the input space more

exhaustively.

It would be possible to combine this work with an an-

alysis similar to EXE [6] to determine a set of inputs that

would exercise all predicates in the web application. For

our experiments so far, however, we have found that even

our simple constant-propagation analysis is overkill. Al-

most all data read from the user is processed and dumped

directly into a data sink. In these circumstances the con-

trol flow cannot change based on input.

4 Goal-Directed Optimization

In this section, we present several optimizations to re-

duce the search space of model checking. The key in-

sight is that the we should not treat all URL sequences as

equally likely to yield a new vulnerability, since we may

have already checked a shorter, equivalent sequence.

Since we check in increasing order of length, any match

it finds will have already been discovered. There are four

principles we apply to focus the search:

• The final request in the sequence must finish the

demonstration of a vulnerability (Section 4.1).



• Every request must, directly or indirectly, influence

the final result (Section 4.2).

• No sequence ever repeats a request (Section 4.3).

• A match can only occur in a sequence if there are

objects that would satisfy that match participating

in that sequence (Section 4.4).

4.1 Filtering Final Events

QED’s model checker searches through candidate se-

quences in length order. This means that for any given

vulnerability in the code, the shortest demonstration of it

will appear first. If it does not, any possible vulnerability

would have already been shown before the final request

was processed, so a prefix of the sequence would suffice,

and will in fact have already been checked. This condi-

tion is thus stronger than a simple breadth-first search,

which can only confidently eliminate sequences with a

prefix corresponding to a known vulnerability.

To perform the final event filter, we need two pieces of

information. First, we need to know which method calls

in the application can in fact complete a match. For a

taint problem, this is straightforward, as it is any method

listed as a taint sink. For PQL in general it may be nec-

essary to perform a simple control-flow analysis on the

query to determine the set of events that can occur last.

We then need to determine which URL requests can

lead to match completion. We do this by writing a sim-

ple harness program that calls each entry point in the ap-

plication in turn. We then compute a call graph of this

harness and determine which entry points can eventually

call a match-completing method.

Any sequence which does not end in a call to one of

these entry points is guaranteed to not affect the final re-

sult, and thus may be discarded.

4.2 Eliminating Redundant URL Se-

quences

HTTP is a stateless protocol. Web applications main-

tain state across requests either client-side with cook-

ies or server-side with session data. We treat cookies

as a source of user input, as cookie information may

be forged, deleted mid-session, or otherwise tampered

with. Session information remains under the control of

the server and can thus be tracked more precisely.

The motivation behind this optimization is that this

mechanism is the sole form of data-flow through the ses-

sion. If there is no data-flow contributed by a part of a

candidate sequence, we need not include that part. Fur-

thermore, since we are checking in increasing order of

length, removing this redundant part of the sequence pro-

duces a sequence that we have already either checked or

proven irrelevant.

To perform this optimization we need a way to char-

acterize the cross-request data-flow. We do this via a

dependence relation: an event handler m1 depends on

another event handler m2 if m1 can potentially read the

data written by m2. To compute the dependence relation,

we must determine the flow of data within a session.

The Java Servlet Specification provides an explicit

API to capture this. Data are passed between handlers via

a special object of type javax.servlet.HttpSession.
This session object functions as a string-to-object map.

For each request, we determine what string values can

be used as keys to the map for reads and writes. This

information is available via a call graph analysis as in

Section 4.1, supplemented with pointer and constant-

propagation information to determine which string val-

ues may be used as keys. If a nonconstant string is used

as a key, we assume that handler may access anything in

the session.

With this information we can compute the dependence

relation by treating each key as a storage location and

determining def-use information. We then take the tran-

sitive closure of the dependence relation, and eliminate

any sequence in which there are requests that do not in-

fluence the final request.

4.3 Removing Repetitive Cycles

If the dependency relation is cyclic, there will be a count-

ably infinite number of possible candidates to test. To

keep the test sequence finite, we restrict our sequences to

only call any given entry point once.

This heuristic would need to be refined for web appli-

cations where one physical page serves as multiple logi-

cal pages (controlled, say, by some action parameter);

however, this situation did not arise in any of our experi-

ments.

4.4 Statically Eliminating Sequences

We further reduce the search space by using a static an-

alysis to prune off sequences that cannot possibly match

our query. This is especially important for sequences

that use a large number of widely variable parameters,

as eliminating a single sequence can translate into thou-

sands or even millions of candidates that need not be

checked. The algorithm is described below.

1. QED constructs a new harness for the application

that iterates through all sequences that pass the pre-

ceding three criteria. The harness defines a method

for each input sequence, and the method calls the



entry point for each of the URL request in the se-

quence.

2. QED translates the PQL query specifying the defect

of interest into a sound context-sensitive interpro-

cedural analysis that determines if the query can be

satisfied. QED applies the analysis to the harness

to find the methods (input sequences) that can po-

tentially generate a match. The algorithm used has

been been described in a previous paper [22]. This

analysis tracks pointers in a context-sensitive but

flow-insensitive manner. The analysis is sound—

no approximation done by the pointer analysis will

produce false negatives. All sequences found by the

analysis to be incapable of generating a match may

be ignored without compromising the soundness of

the model checker.

The success of this step hinges on both the precision

and the conservativeness of the pointer analysis used. An

overly imprecise analysis will not be able to eliminate

any candidates, while a non-conservative analysis will

prune away candidates that might be valid. The QED

system applies the context-sensitive, conservative, inter-

procedural, and inclusion-based analysis of Whaley and

Lam [32], along with improvements by Livshits et al.

to handle reflection [21]. The results of this analysis

are stored in a deductive database which QED consults

throughout the optimization process [19].

5 Example

We will now show the operation of this algorithm by de-

tecting an XSS vulnerability in a simple three-page web

application. The pages in this application are as follows:

• search.jsp, which presents a search form to the

user and sends the results on to searching.jsp.

• searching.jsp, which reads a search parameter s

and stores it in the session. The display is a simple

timed redirect to result.jsp.

• result.jsp, which prints the results of the search.

It also echoes the initial input, retrieved from the

session. This represents a cross-site scripting vul-

nerability.

For our example, we use the stock XSS vulnerability

query from Figure 3. The PQL instrumenter will trans-

form the application, tracking all calls to sources, sinks,

and propagators.

For our model environment, we will only concern our-

selves with whether or not an argument is present, so we

will set null and “SampleString” as our input pool.

QED will generate a test harness for the application, pro-

viding these values as plausible results for the sources,

and calling all possible sequences of events. Since we

only concider non-repeating sequences, there are ten:

three of length 1, six of length 2, and one of length 3. The

entry points for these events will simply be the doGet

methods on the classes corresponding to each JSP.

In the optimization step, the final events filter has no

effect for this query. The sink for the XSS query is

JspWriter.print(), which all three pages call as part

of their output generation.

The dependency criterion is much more fruitful.

Our session-based def-use analysis concludes that

searching.jsp writes the session, while result.jsp
reads it with the same key. This yields a dependency re-

lation with one fact, and the dependency criterion elim-

inates all but four sequences—each page alone, and the

[searching.jsp, result.jsp] sequence. Factoring in

the choice of s in searching.jsp, this yields a grand

total of five test runs.

The pointer analysis phase shows that searching.jsp
is the only request handler with a source in it, thus elim-

inating two of the length-one sequences immediately. It

can then show that, as searching.jsp’s parameter is

only fed into a session and the handler itself only emits

constant strings, the lone searching.jsp request also

cannot complete a match. Thus, for our example appli-

cation, we are able to pre-prune every sequence of events

but one. The only task remaining for the model checker

is to demonstrate which values for s, if any, will actually

produce a vulnerability.

The model checker will return the following sequence

as a demonstration of an XSS attack path:

• searching.jsp?s = SampleString

• result.jsp

Despite the fact that a typical use case would derive

its input from search.jsp, the page does not actually

contribute anything to the vulnerability itself.

In general, the amount of search space that can be re-

moved by our optimizations will depend on several fac-

tors. The number and prevalence of taint sinks is one;

if there are more places where the path can end, there

will clearly be more paths. However, the dominant fac-

tor will be the fan-out from the session data-flow. With a

low fan-out, even a large number of sinks will not multi-

ply unduly.

6 Experimental Results

We applied QED to three Struts-based web applications

from the open-source repository Sourceforge. Basic in-

formation about these is shown in Figure 5. They are



Benchmark Description Lines of Classes Event Dependency

Code Handlers Pairs

PersonalBlog Blogging software 17,149 132 15 0

JOrganizer Address book 31,897 263 46 49

JGossip Forum system 79,685 556 80 267

Figure 5: Applications used in the experiments. (The lines of code do not include library classes)

Benchmark Non-redundant Ends in SQL SQL XSS XSS

URL Sequences SQL Sink Sessions Errors Sessions Errors

PersonalBlog 15 2 2 2 1 1

JOrganizer 356,358 260 153 8 86 3

JGossip 1,062,539 16,031 9,436 0 30 9

Figure 6: Analysis results.

listed in order of their size. For each application, we list

the number of classes defined in the program, the size of

the application itself (not counting library classes), and

the total number of event handlers specified by the appli-

cation’s deployment metadata. The last column of Fig-

ure 5 shows the number of dependency pairs found by

our dependence analysis described in Section 4.2.

We used QED to locate both cross-site scripting and

SQL injection vulnerabilities in each of these applica-

tions. Each of these applications depends on a database

backend. The JGossip application used JDBC directly;

the other two used object persistence libraries that we

modeled as stubs. All three applications, since they are

Struts-based, rely on JSPs for their output, and so the

XSS analysis dealt primarily with those.

Figure 6 presents some measurements of our experi-

ment. The first column (Non-redundantURL Sequences)

lists the number of sessions whose URLs are not re-

peated and not redundant according to their data depen-

dencies. Personalblog does not have cycles in its depen-

dence graph, so it is possible to exhaustivelymodel check

the program by testing the specified number of input se-

quences. The next column (Ends in SQL Sink) shows the

result of applying the full redundancy elimination anal-

ysis algorithm presented in Section 4.2. The next col-

umn (SQL Sessions) shows the number of sessions that

needs to be checked after the feasibility analysis from

Section 4.4 is also taken into account. The next column

gives the number of SQL injections QED discovered.

The final two columns provide similar information for

XSS. We do not provide an equivalent to the “Ends in

SQL Sink” column because the XSS sink is HTML out-

put, and so every HTTP response by definition includes

a sink. Between SQL injection and cross-site scripting,

we thus cover both rare and common sinks in our appli-

cations.

For comparison, even if we restrict ourselves to non-

repeating URL sequences, the naı̈ve approach of Sec-

tion 3 would test a number of sessions proportional to

the factorial of the number of event handlers. In JGossip,

this is approximately 10120 sequences.

6.1 PersonalBlog

The PersonalBlog system is a web application based on

Struts and the Hibernate 2 object persistence system [2].

It makes no interesting use of session objects, so there

are no dependencies between handlers. Thus, the depen-

dence analysis shows that we can consider each event

handler in isolation without compromising any guaran-

tee on security. Since there are only 15 event handlers

in the program, and each request has few parameters, the

model checker can run through all the cases quickly.

QED found one XSS attack vector and two SQL attack

vectors. Note that a single vector can have multiple vul-

nerabilities. In this case, one of the SQL vectors has two

SQL injection possibilities. Thus, there are actually three

SQL vulnerabilities that we have found. The static anal-

ysis in this case was accurate in identifying all the vul-

nerabilities, without generating any false positives. The

model checker generates the input vectors and a program

execution trace showing the details of their existence.

The results of running PQL itself, as a dynamic

checker, on PersonalBlog has also been reported previ-

ously [22]. Not only did QED find all the vulnerabilities

previously identified, it found an additional one. This

discrepancy is due to QED having a more inclusive spec-

ification than in the previous work, tracking information

from HTTP headers and not just from the URL proper.

6.2 JOrganizer

JOrganizer is a personal contact and appointment man-

ager of moderate size. Access to the backing database



is managed within the application by an “Object Query

Language” that reduces directly to SQL, much like Hi-

bernate 2.

The application has 46 event handlers in total. The de-

pendence analysis shows that there are 49 pairs of depen-

dent event handlers. The dependence relations are cyclic,

which means that we will have to restrict our attention to

acyclic sequences to keep the test space finite.

QED then further focuses the model checking effort

by using information specific to each vulnerability. We

found that 15 of the event handlers cannot touch the

database at all, and thus cannot be final events for SQL

injection. Furthermore, none of the single-event se-

quences exhibits a SQL vulnerability. The reason is that

no event is allowed to touch the database unless it is pre-

ceded by a “log-in” event. Our analysis shows a de-

pendence between these events and the “log-in” event.

QED ignores the independent pairs, and keeps testing

sequences with first a log-in event and then a database

access event.

QED is able to iterate through all the filtered, non-

redundant, and non-repeating sequences in this case,

finding three XSS vulnerabilities and eight SQL vulner-

abilities.

6.3 JGossip

JGossip is a large application with nearly 80,000 lines

of code in 80 actions. There are many cyclic dependen-

cies among event handlers in JGossip. Even if we restrict

the sequences under consideration to non-redundant and

non-repeating events, over a million sequences still re-

main. Furthermore, within these sequences, many re-

quests used enormous numbers of input parameters. One

event had 15 parameters, which, with a pool of 5 possible

inputs per parameter, would generate over 30 billion test

cases simply for that one URL. For event handlers such

as those we restricted our model checker’s input pool to

two possibilities per parameter, lowering the number of

test cases per handler to a more manageable 32,000.

Next QED tries to reduce the number of candidate vec-

tors based on the vulnerability specification. For SQL

injection, the taint sink method is database queries. A

majority of the 80 actions touch the database. However,

our static feasibility analysis shows that only seven of

these database accesses may touch tainted objects. Thus

we have only 7 final events to consider. Of the seven, five

have no dependency chains longer than length two. They

are responsible for a total of 37 potential attack vectors,

and they are all of length 2. The remaining two have

many dependencies, and the static analyzer can only nar-

row them to 9,436 candidate attack vectors. Once param-

eters are factored in, this still yields hundreds of millions

of candidates to check, so there are still too many to con-

sider. At the end, we managed to check only all the seven

sequences with a single taint-sink event, and the all 37

sequences of length 2. The model checker found no SQL

vulnerability.

As it happens, this lack of SQL injections is unsurpris-

ing, because JGossip is constructed to be independent

of its database backend. As such, all of its database re-

quests are ultimately constant strings; it uses a hash table

to look up which strings are appropriate for the appropri-

ate action, based on the SQL dialect used by the backend.

Since all SQL queries end up being constant strings, this

suggests that no injections are possible; however, its use

of hash tables forced the program analyzer to make con-

servative approximations on seven of the actions, thus

leading to the need for a model checking step.

The tests for XSSwere muchmore straightforward; all

of the actions corresponding to possibly dangerous out-

put JSPs had few inputs and few dependencies, leading

to a grand total of only 30 sessions to check. The XSS

vulnerabilities so found were also located immediately,

since session data did not affect their outputs.

6.4 Experimental Summary

The three web applications in our experimental study il-

lustrate a spectrum of effects we can get with QED. Per-

sonalBlog shows an example where QED is able to prove

that there are no vulnerabilities other than the ones found.

By proving that the events have no dependencies, QED

can simply check the URLs one at a time. JOrganizer

shows that in the presence of dependencies, our analyses

can greatly improve the effectiveness of model checking

and provides good coverage. QED was able to check all

the sequences without repeated URLs. Lastly, JGossip

shows that model checking for really large programs re-

mains a challenge. The static analyzer is useful as a way

of directing the model checking to focus on sequences

with higher payoffs.

7 Related Work

Systematic automated testing is not entirely novel, but

it is also not commonplace. Our work was informed by

both the FiSC system [34] and WebSSARI [17]. Web-

SSARI’s approach is much different from QED’s, in that

it focuses on abstract interpretation of PHP code looking

for violations of data flow control. QED, on the other

hand, owes more of its design philosophy to FiSC. FiSC

operated in an entirely different problem domain (filesys-

tem correctness) and simply searched for evidence of er-

rors rather than the cause. Its implementation was based

on the CMC model checker [23] which is also much

closer to our JPF-based system than WebSSARI’s run-

time solution.



The techniques described in this paper touch upon a

wide variety of disciplines. Model checking is the most

directly obvious of these. Our system uses the Java

PathFinder system [29]. JPF was suitable for our system

primarily due to the ability to directly run sizable Java ap-

plications as bytecode; this permitted us to treat our dy-

namic analysis as just another part of the application be-

ing checked. Classical model checkers such as SPIN [14]

require a special specification language which abstracts

the application greatly. Other model checking systems

such as Bandera [8] also directly abstract the Java source,

which complicates its utility for our purposes.

The more general field of bugfinding comprises an

enormous amount of work. In recent years, web ap-

plications have received a good deal of attention due

to their unique vulnerabilities and flaws. SABER is

a static tool that detects flaws based on pattern tem-

plates [25]. Livshits and Lam made progress in creat-

ing a sound analysis on web applications that produced

a usably low false positive rate [20]. The WebSSARI

system, in its pre-model-checkingwork, allows the spec-

ification of taint-style data-flow problems on PHP-based

applications, and systematically searches for dangerous

information flows [16]. Nguyen-Tuong et al. use similar

approaches, also for PHP [24]. In a more general con-

text FindBugs attempts to locate a broad class of bugs

in Java applications of all kinds [15], and the Metal sys-

tem let the user specify state machines to represent error

conditions [11]. The SQLCHECK system uses a much

more precise technique to detect grammatical changes in

commands as a result of user input [26]. The QED sys-

tem provides a general analysis that the user specializes,

while SQLCHECK is SQL-injection specific and Find-

Bugs is a battery of unrelated analyses. Taint flow within

an application is tracked incidentally, and only if the PQL

specification demands it.

Our characterization of inputs, when combined with

model checking, can be seen as a form of testing, and all

testing techniques perform better with a better set of in-

puts. Some work has been done on systematically deduc-

ing inputs that will explore the state space of an applica-

tion. Systems such as Korat [5] attempt to systematically

produce only consistent inputs; this is rarely relevant

to web applications, whose arguments can be nearly-

arbitrary strings. Korat’s general principle of deducing

input sets from execution constraints, however, may still

be applicable. Symbolic execution techniques, such as

DART [10] and EXE [33], suitably adapted to deal with

string and URL data, are more likely to be a fruitful ad-

junct to the techniques in this paper. Some work has been

done already to provide these techniques for JPF but the

results given seem to indicate that at present it scales only

to smaller applications [30].

For the specific problem of cross-site scripting, re-

cent work has focused on extending the DOM to per-

mit browser extensions to block out any unauthorized

scripts [18]. While, if fully implemented, this system

will block out any possible attacks, it requires cooper-

ation between both site authors and clients. Client-side

protection is also of limited use against taint problems

such as SQL injection that attack the server.

8 Summary and Conclusions

Security concerns regarding web applications are here to

stay, and likely only to grow in importance. Cross-site

scripting and SQL injection are two of the most popular

kinds of vulnerabilities. This paper presented a technique

called goal-directed model checking that can find attack

vectors for these vulnerabilities automatically and effi-

ciently. Armed with actual attack vectors and their cor-

responding execution trace, it is easier to convince the

developers that it is necessary to change the code, and

also to pinpoint how the problem can be fixed.

Our technique is implemented in a system called QED.

Users can use the system for any taint-based vulnerabil-

ity on Java applications developed using servlets, JSPs,

or Struts. We applied QED to three programs and found

errors in every one of them, yielding a total of 10 SQL

injection and 13 XSS vulnerabilities. This result is wor-

risome, suggesting that there are plenty of security risks

in using web applications.

This work also shows for the first time how we can

combine techniques from three approaches to generate a

useful and powerful system:

Sound, sophisticated program analysis. Sophisticated

analysis based on context-sensitive pointer alias an-

alysis is precise enough to use on production soft-

ware, despite being conservative to retain sound-

ness. Nonetheless, false positives are still bound to

occur with a conservative analysis.

Dynamic monitoring. Dynamic analysis does not have

false positives, but it can only spot problems that its

input happens to trigger.

Model checking. Model checking has many advantages:

it executes all the paths in a program; it has no false

positives; it has no false negatives with respect to

the set of possible inputs tried; it identifies actual at-

tack vectors; and it can generates an execution trace

for any input. However, it is too slow.

QED combines the advantages of all the three ap-

proaches. It uses sound analysis to optimize both dy-

namic monitoring and model checking, dynamic mon-

itoring to follow the flow of taint, and finally model

checking to generate the actual attack vectors.



Cross-site scripting and SQL injection are examples of

errors that exist at the application layer and that are not

due to simple language deficiencies like buffer overruns.

We can expect to see many more varieties of errors that

operate at this higher semantic level. This suggests that

programmable systems like bddbddb, PQL, and QED are

important so that developers can utilize the technology,

without being analysis experts, for their own programs.

The widespread adoption of application frameworks

in software development opens up a new opportunity for

managing software complexity. These software frame-

works should come with testing, model checking, static

analysis, and dynamic monitoring submodules; they

should be programmable and specialized for that frame-

work. Perfecting them as part of the framework will put

these advanced technologies in the hands of many more

developers.
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