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Abstract

We take the first step to address the task of au-
tomatically generating shellcodes, i.e., small
pieces of code used as a payload in the ex-
ploitation of a software vulnerability, start-
ing from natural language comments. We
assemble and release a novel dataset (Shell-
code IA32), consisting of challenging but com-
mon assembly instructions with their natural
language descriptions. We experiment with
standard methods in neural machine transla-
tion (NMT) to establish baseline performance
levels on this task.

1 Introduction and Related Work

A growing body of research has dealt with auto-
mated code generation: given a natural language
description, a code comment or intent, the task is
to generate a piece of code in a programming lan-
guage (Yin and Neubig, 2017; Ling et al., 2016).
The task of generating programming code snip-
pets, also referred to as semantic parsing (Yin and
Neubig, 2019; Xu et al., 2020), has been previ-
ously addressed to generate executable snippets in
domain-specific languages (Guu et al., 2017; Long
et al., 2016), and several programming languages,
including Python (Yin and Neubig, 2017) and Java
(Ling et al., 2016).

We consider the task of generating shellcodes,
i.e., small pieces of code used as a payload to ex-
ploit software vulnerabilities. Shellcoding, in its
most literal sense, means writing code that will re-
turn a remote shell when executed. It can represent
any byte code that will be inserted into an exploit
to accomplish the desired, malicious, task (Mason
et al., 2009). An example of a shellcode program in
assembly language and the corresponding natural
language comments are shown in Listing 1.

Shellcodes are important because they are the
key element of security attacks: they represent code
injected into victim software to take control of

1 global _start; Declare global _start.
2 section .text; Declare the text section.

3 _start:; Define the _start label.
4 xor eax, eax; Zero out the eax

register
5 push eax; and push its contents

on the stack.
6 push 0x68732f2f;Move /bin//sh
7 push 0x6e69622f;into the ebx register.
8 mov ebx, esp
9 push eax; Push the contents of eax

onto the stack
10 mov edx, esp; and point edx to the

stack register.
11 push ebx; Push the contents of ebx

onto the stack
12 mov ecx, esp; and point ecx to the

stack register.
13 mov al, 11; Put the system call 11

into the al register.
14 int 0x80; Make the kernel call.

Listing 1: x86 assembly code used to spawn /bin/sh
shell on Linux OS. Lines 4-5, 6-7-8, 9-10, 11-12 are
multi-line snippets generated by four different intents.

a machine, to escalate privileges, and to use the
machine for malicious purposes such as DDoS at-
tacks, data theft, and running malware (Arce, 2004).
Well-intentioned actors (security practitioners and
product vendors) also develop shellcodes to run
non-harmful proof-of-concept attacks, to show how
security weaknesses can be exploited to identify
vulnerabilities and patch systems. Thus, shellcode
generation using (semi-) automated techniques has
become a popular and very active research topic
(Bao et al., 2017). However, writing shellcodes
is technically challenging since they are typically
written in assembly language (c.f. Listing 1). The
most sophisticated shellcodes can reach hundreds
of assembly lines of code.

The task of the shellcode generation has been
addressed by several works and tools. Bao et al.
(2017) designed ShellSwap, a system that can mod-
ify an observed exploit and replace the original
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shellcode with an arbitrary replacement shellcode.
The system uses symbolic tracing, with a combi-
nation of shellcode layout remediation and path
kneading to achieve shellcode transplants. Pwn-
tools (pwntools, Accessed: 2021-05-29) is a CTF
framework and exploit development library written
in Python. It is designed for rapid prototyping and
development and intended to make exploit writing
as simple as possible.

Differently from previous work in the security
literature, we approach this problem as a machine
translation (NMT) task. We apply neural machine
translation (Goodfellow et al., 2016), which un-
like the traditional phrase-based translation system
consisting of many small sub-components tuned
separately, attempts to build and train a single, large
neural network that reads a sentence and outputs a
correct translation (Bahdanau et al., 2015). NMT
has emerged as a promising machine translation
approach, showing superior performance on public
benchmarks (Bojar et al., 2016), and it is widely
recognized as the premier method for the transla-
tion of different languages (Wu et al., 2016). NMT
has also been used to perform complex tasks on the
UNIX operating system shell (Lin et al., 2017) (e.g.
file manipulation and search), by stating goals in
English (Lin et al., 2018), to automatically gener-
ate commit messages (Liu et al., 2018), etc. How-
ever, the NMT techniques have not heretofore been
adopted to automatically generate software exploits
from natural language comments.

Since NMT is a data-driven approach to code
generation, we need a dataset of intents in natu-
ral language, and their corresponding translation
(in our context, in assembly language) for shell-
code generation. In this preliminary work, we
address the lack of such a dataset by presenting
Shellcode IA32, a dataset containing 3, 200 lines of
assembly code extracted from real shellcodes and
described in the English language. Moreover, we
present experiments on our dataset using a baseline
technique, in order to establish performance levels
for evaluating shellcode generation techniques.

2 Dataset

We compiled a dataset, Shellcode IA32, specific
to our task. This dataset consists of 3,200 examples
of instructions in assembly language for IA-32 (the
32-bit version of the x86 Intel Architecture) from
publicly-available security exploits. We collected
assembly programs used to generate shellcode from

shell-storm (Shellcodes database for study cases,
Accessed: 2021-04-22) and from Exploit Database
(Exploit Database Shellcodes , Accessed: 2021-04-
22), in the period between 2000 and 2020.

Our focus is on Linux, the most common OS for
security-critical network services. Accordingly, we
added assembly instructions written with Netwide
Assembler (NASM) for Linux (Duntemann, 2000).
NASM is line-based. Figure 1 shows a simple ex-
ample of a NASM source line. Every source line
contains a combination of four fields: an optional
label used to represent either an identifier or a con-
stant, a mnemonic or instruction, which identifies
the purpose of the statement and followed by zero
or more operands specifying the data to be manip-
ulated, and an optional comment, i.e., text ignored
by the compiler. A mnemonic is not required if a
line contains only a label or a comment.

wordvar: resw 1 ; reserve a word for wordvar

label instruction operand comment 

Figure 1: Layout of NASM source line

Each line of Shellcode IA32 dataset represents
a snippet – intent pair. The snippet is a line or a
combination of multiple lines of assembly code,
built by following the NASM syntax. The intent is
a comment in the English language (c.f. Listing 1).

To take into account the variability of descrip-
tions in natural language, multiple authors de-
scribed independently different samples of the
dataset in the English language. Where available,
we used as natural language descriptions the com-
ments written by developers of the collected pro-
grams. We enriched the dataset by adding exam-
ples of assembly programs for the IA-32 architec-
ture from popular tutorials and books (Duntemann,
2011; Kusswurm, 2014; Tutorialspoint, Accessed:
2021-04-22) to understand how different authors
and assembly experts describe the code and, thus,
how to deal with the ambiguity of natural language
in this specific context. Our dataset consists of
∼ 10% of instructions collected from books and
guidelines and the rest from real shellcodes.
Multi-line Snippets: To automatically generate
shellcodes, we need to look beyond a one-to-one
mapping between a line of code and its commen-
t/intent. For example, a common operation in shell-
codes is to save the ASCII “/bin/sh” into a regis-
ter. This operation requires three distinct assembly



Intent: jump short to the decode label if the contents of the
al register is not equal to the contents of the cl register
else jump to the shellcode label
Multi-line Snippets: cmp al, cl \n
jne short decode \n jmp shellcode

Intent: jump to the label recv http request
if the contents of the eax register is not zero else subtract
the value 0x6 from the contents of the ecx register
Multi-line Snippets: test eax, eax \n
jnz recv http request \n sub ecx, 0x6

Table 1: Examples of multi-line snippets

instructions: push the hexadecimal values of the
words “/bin” and “//sh” onto the stack register be-
fore moving the contents of the stack register into
the destination register (lines 6-8 in Listing 1). It
would be meaningless to consider these three in-
structions as separate. To address such situations,
we include 510 lines (∼ 16% of the dataset) of
intents that generate multiple lines of shellcodes
(separated by the newline character \n). Table 1
shows two further examples of multi-line snippets
with their natural language intent.
Statistics: Table 2 presents the descriptive statis-
tics of the Shellcode IA32 dataset. The dataset
contains 52 distinct assembly instructions (exclud-
ing function, section, and label declaration). The
two most frequent assembly instructions are mov
(∼ 30% frequency), used to move data into/from
registers/memory or to invoke a system call, and
push (∼ 22% frequency), which is used to push
a value onto the stack. The next most frequent
instructions are the cmp (∼ 7% frequency), xor
and jmp instructions (∼ 4% frequency). The low-
frequency words (i.e., the words that appear only
once or twice in the dataset) contribute to the 3.6%
and 7.3% of the natural language and the assembly
language, resp. Figure 2 shows the distribution of
the number of tokens across the intents and snip-
pets in the dataset. We publicly share our entire
Shellcode IA32 dataset on a GitHub repository.1

Size of our dataset: Our dataset contains 3, 200
instances, which may seem relatively small com-
pared to training data available for most common
NLP tasks. We note, however, that our dataset is
comparable in size to the CoNaLa annotated dataset
(2, 379 training and 500 test examples), which is
one of the standard datasets in code generation (for
English-Python code generation) (Yin et al., 2018).
Further, Shellcode IA32 contains a higher percent-

1The dataset can be found here: https://github.
com/dessertlab/Shellcode_IA32

Statistics Natural
Language

Assembly
Language

Unique Statements 3,184 2,248

Unique Tokens 1,498 1,244

Avg. tokens per
statement 9.22 4.38

Min tokens per
statement 1 2

Max tokens per
statement 46 30

Table 2: Shellcode IA32 statistics

≥

≥

Figure 2: Histogram of the Shellcode IA32 dataset
showcasing the distribution of token counts across in-
tents and snippets.

age of multi-line snippets (∼ 16% vs. ∼ 4%).
We also note here that existing code generation
datasets do contain a larger, potentially noisy, sub-
set of training examples (ranging in several thou-
sand) obtained by mining the web. For example,
the CoNaLa mined (as opposed to the CoNaLa
annotated) dataset contains 598,237 training exam-
ples mined directly from Stack Overflow (Yin et al.,
2018). In our case, although shellcodes are written
in assembly language, it is not feasible to simply
mine examples of natural language–assembly from
the web: not all assembly programs are shellcodes.
Thus, our Shellcode IA32 dataset, which contains
∼ 20 years of shellcodes from a variety of sources
is the largest collection of shellcodes in assembly
available to date.

3 Preliminary Evaluation

We performed a set of preliminary experiments
with our dataset, in order to assess the applicability

https://github.com/dessertlab/Shellcode_IA32
https://github.com/dessertlab/Shellcode_IA32


Number
Layers

Layer
Dimension

BLEU-1
(%)

BLEU-2
(%)

BLEU-3
(%)

BLEU-4
(%) ACC (%)

1

64 75.75 69.76 65.14 60.8 34.69
128 80.80 76.29 73.10 69.69 42.5
256 75.50 70.50 66.65 62.86 43.75
512 83.55 80.08 78.06 76.12 51.25

2

64 63.25 53.24 46.12 39.46 15.62
128 71.79 64.24 58.25 51.65 26.25
256 75.13 68.63 63.94 58.93 25.62
512 80.22 75.00 71.11 67.24 43.44

3

64 61.98 50.68 43.02 36.15 9.38
128 69.75 61.08 55.09 49.18 19.06
256 76.93 71.32 67.41 63.50 31.87
512 74.99 68.58 64.23 60.36 29.38

4

64 61.41 50.68 43.58 37.33 10.00
128 63.26 51.98 44.62 37.57 10.94
256 66.94 57.85 51.97 46.87 15.31
512 70.51 62.44 56.27 50.15 18.75

Table 3: Performance results obtained by varying the model hyper-parameters. The best performances for each
number of layers are in bold.

of NMT in the context of shellcode generation and
to establish baseline performance levels for evalu-
ating techniques for future research. Similar to the
encoder-decoder architecture with attention (Bah-
danau et al., 2015), we use a bi-directional LSTM
as the encoder to transform an embedded intent se-
quence E = |e1, ..., eTS

| into a vector c of hidden
states with equal length. We implement this archi-
tecture with Bahdanau-style attention (Bahdanau
et al., 2015) using xnmt (Neubig et al., 2018). We
use an Adam optimizer (Kingma and Ba, 2015)
with β1 = 0.9 and β2 = 0.999. The last step is
inference. During inference, the auto regressive in-
ference component uses beam search with a beam
size of 5. The train/dev/test split is train (N = 2560),
dev (N = 320), and test (N = 320) using a random
80/10/10 ratio. The test set includes 44 multi-line
snippets (13.75% of the test set).

Following prior work in this area (Ling et al.,
2016; Yin and Neubig, 2017; Oda et al., 2015), we
evaluate the translation performance in terms of
averaged token level BLEU scores (Papineni et al.,
2002). BLEU uses the modified form of n-grams
precision and length difference penalty to evaluate
the quality of the output generated by the model
compared to the referenced one. BLEU measures
translation quality by the accuracy of translating
ngrams to n-grams, for values of n usually rang-
ing between 1 and 4 (Han, 2016; Munkova et al.,
2020). We measure the performance of the eval-
uation task also in terms of exact match accuracy
(ACC), which is the fraction of exactly matching

samples between the predicted output and the refer-
ence (Yin and Neubig, 2017). Both metrics range
between 0 and 1.

During our experiments, we set a basic config-
uration of the model: α = 0.001, layers = 1, vo-
cabulary size = 4, 000, epochs (with early stopping
enforced) = 200, beam size = 5, minimun word fre-
quency = 1. Next, we performed experiments by
varying the dimensionality of the layers from 64 to
1024, and the number of layers from 1 to 4 while
keeping all other hyper-parameters constant. Table
3 summarizes the results. We notice that increasing
the number of layers leads to worse performance,
while a layer dimension set between 256 and 512
is found to be the best option.

All experiments were performed on a Linux OS
running on a virtual machine with 8 CPU cores and
8 GB RAM. The computational times are highly de-
pendent on the model hyper-parameters, and range
between few minutes to ∼ 105 minutes, with the
average training time equal to ∼ 28 minutes.

4 Qualitative Analysis

Automated metrics (BLEU and accuracy) provide
a somewhat limited window into the efficacy of the
models to accomplish our task: the task of auto-
matically generating assembly code from natural
language intents. We conducted a qualitative anal-
ysis of the outputs to address this issue and present
our findings through cherry- and lemon-picked ex-
amples from our test set (Table 4). In particular,
we manually expected the outputs predicted by the



Natural Language Ground Truth Model Output

Put ASCII /bin/sh into eax
push 0x68732f2f \n
push 0x6e69622f \n

mov eax , esp

push 0x68732f2f \n
push 0x6e69622f \n

mov eax, esp

Place address buff into esi mov esi, buff lea esi, [buff]

Perform a bit-wise inversion of edx not edx and edx, 0

if the contents of the bl register is greater than or
equal to the value 78h then jump to the memory

location loc 402B1D

cmp bl, 78h \n jge
short loc 402B1D

cmp bl, 78h \n jle
short loc 402B1D

Table 4: Illustrative examples of correct and incorrect output. The prediction errors are red/bold.

best model configurations found in Table 3 (layers
number = 1, layer dimension = 512).

The first two rows of Table 4 are illustrative
examples of categories of intent – snippet pairs that
the model can successfully translate. The first row
demonstrates the ability of the model to generate
multi-line snippets from a relatively abstract intent.
The example in the second row shows the model’s
ability to properly use the instruction lea with the
correct addressing mode (specified by the bracket
[] in NASM syntax) to translate the intent. We note
here that a1though the output would be considered
incorrect based on automated metrics (e.g. BLEU-
4), it is considered correct using manual inspection.

We also highlight problems with the models
through illustrative examples of failure outputs
(Rows 3 and 4, Table 4). In the third row of the ta-
ble, the model generates the wrong instruction due
to the model’s failure in using implicit knowledge
(i.e. the bit-wise inversion to negate the contents
of the register) because it was not explicitly men-
tioned in the intent. Row 4 illustrates the model’s
failure in predicting the right command among fif-
teen different conditional jumps in the dataset (jle
instead of jge) in an if-then statement. To summa-
rize, the failures we observed are caused either by a
lack of implicit intent knowledge, the model gener-
ating incorrect instruction/identifiers (i.e., register
names, labels, etc), or even both.

5 Ethical Considerations

Recognizing that attackers use exploit code as a
weapon, it is important to specify that the goal of
the proof-of-concept (POC) exploits is not to cause
harm but to surface security weaknesses within
the software. Identifying such security issues al-
lows companies to patch vulnerabilities and protect
themselves against attacks.

Offensive security is a sub-field of security re-

search that employs ethical hackers to probe a sys-
tem for vulnerabilities or can be a technique used
to disrupt an attacker. Automatic exploit generation
(AEG), an offensive security technique, is a devel-
oping area of research that aims to automate the
exploit generation process and to explore and test
critical vulnerabilities before they are discovered
by attackers (Avgerinos et al., 2014). Indeed, study-
ing exploits on compromised systems can provide
valuable information about the technical skills, de-
gree of experience, and intent of the attackers who
developed or used them. Using this information,
it is possible to implement measures to detect and
prevent attacks (Arce, 2004).

6 Conclusion

We address the problem of automated exploit gener-
ation through NLP. We use Neural Machine Trans-
lation to translate the natural language intents into
assembly code. The contribution in this work is
a new dataset, Shellcode IA32, containing 3, 200
pairs of instructions in assembly language code
snippets and their corresponding intents in English.
These assembly language snippets can be combined
together to generate attacks or exploits on Linux
OS running on Intel Architecture 32-bit machines.

Shellcode IA32 represents a first step towards
the ambitious goal of automatically generating
shellcodes from natural language. Our experimen-
tal evaluation has shown promising early results,
demonstrating the feasibility of generating assem-
bly code instructions with high accuracy.
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