
1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 1

GUI-Squatting Attack: Automated Generation of
Android Phishing Apps

Sen Chen, Lingling Fan, Chunyang Chen, Minhui Xue, Yang Liu, and Lihua Xu

Abstract—Mobile phishing attacks, such as mimic mobile browser pages, masquerade as legitimate applications by leveraging
repackaging or clone techniques, have caused varied yet significant security concerns. Consequently, detection techniques have been
receiving increasing attention. However, many such detection methods are not well tested and may therefore still be vulnerable to new
types of phishing attacks. In this paper, we propose a new attacking technique, named GUI-Squatting attack, which can generate
phishing apps (phapps) automatically and effectively on the Android platform. Our method adopts image processing and deep learning
algorithms, to enable powerful and large-scale attacks. We observe that a successful phishing attack requires two conditions, page
confusion and logic deception during attacks synthesis. We directly optimize these two conditions to create a practical attack. Our
experimental results reveal that existing phishing defenses are less effective against such emergent attacks and may therefore
stimulate more efficient detection techniques. To further demonstrate that our generated phapps can not only bypass existing
detection techniques, but also deceive real users, we conduct a human study and successfully steal users’ login information. The
human study also shows that different response messages (e.g., “Crash” and “Server failed”) after pressing the login button mislead
users to regard our phapps as functionality problems instead of security threats. Extensive experiments reveal that such newly
proposed attacks still remain mostly undetected, and are worth further exploration.

Index Terms—Android phishing apps, Android GUI attacks, Android apps

F

1 INTRODUCTION

DUE to the portability and convenience of mobile de-
vices, mobile apps have surpassed traditional desktop

applications, as the primary way of accessing the Internet.
Many users heavily depend on their smartphones for daily
tasks, such as shopping, payments, and chatting through
mobile apps. This kind of popularity has attracted great at-
tention from attackers with a growing number of malicious
apps over the past few years. Among these malicious apps,
phishing is the most popular and widely used strategy [58]
involving the act of harvesting user names, passwords, and
other sensitive information from a user. This identity theft
poses a security threat for all mobile apps; however, the
consequences are particularly severe for financial and social
apps. It is reported that mobile phishing apps lead to the
loss of billion dollars every year [1].

In traditional phishing attacks, attackers send SMS or
emails containing malicious links to redirect the browser to
external phishing web pages or inducing download activi-
ties to install malicious applications on users’ devices [17].
Moreover, phishing attacks are not necessarily sent in bulks
but can be highly targeted, such as credential spearphish-
ing [39] and whaling attacks [40]. The effectiveness of such
phishing methods have been reduced due to the increased
public awareness of risk and a plethora of research about
automatically detecting phishing web pages [73]. So attack-
ers sought to propose more sophisticated methods, such as

• Sen Chen, Lingling Fan, and Yang Liu are with School of Computer
Science and Engineering, Nanyang Technological University, Singapore.

• Chunyang Chen is with Monash University, Australia.
• Minhui Xue is with The University of Adelaide, Australia.
• Lihua Xu is with New York University Shanghai, China.

Manuscript received March 9 and revised August 15, October 15, 2019

embedding attacks directly inside the apps. In particular,
attacking the GUI (graphical user interface). For example,
attackers will build a phishing app to masquerade as the
original one by repackaging or cloning the original one to
steal the private information entered in the login pages [15].
There are two challenges to perform this attack successfully.
First, these methods require substantial effort and strong
domain knowledge to carry out static program analysis
to understand and mimic the logic of the original apps.
Moreover, for cloning apps, the difficulty is increased when
the UI pages in the original apps have dynamic loading
areas which are not determined by the UI resources [21].
Second, the original apps may not be able to be replicated
due to the development of app protection techniques (e.g.,
app packing [2] and code obfuscation [29]). In addition, the
state-of-the-art defenses (e.g., fuzz hashing technique [78]
and centroid-based approach [20]) can detect repackaging
and cloning phishing attacks successfully and effectively.
Hijacking existing original apps (e.g., window overlay and
task hijacking) could also be detected and mitigated by
state-of-the-art detection techniques [15], [35], [59], [60].

A Squatting attack [10] is a form of denial-of-service
(DoS) attack where a program interferes with another pro-
gram through the use of shared synchronization objects.
There exist several attack derivatives for different scenarios,
such as typo-squatting attack, skill-squatting attack, and
voice-squatting attack. In this paper, we propose “GUI-
Squatting Attack”, a new approach to automatically gener-
ate phishing apps effectively, within a few seconds, resulting
in a powerful new attack for the real world. The generated
phishing apps (called phapps in this paper) have very
similar login-related UI pages corresponding to the original

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 2

apps. Additionally, phapps have been encoded with de-
ception code which can steal sensitive information secretly.
We observe from the existing phishing techniques (e.g.,
repackaging and cloning phishing attacks, and zero-day
phishing attacks [45]) that a successful phishing attack re-
quires two conditions: page confusion and logic deception1 (i.e.,
deceiving users with high similarity UI pages and stealing
their information with deceptive UI responses after clicking
the “login” button). Our GUI-Squatting attack optimizes
these two conditions by leveraging image processing and
deep learning methods, making a powerful attack, which
can easily bypass state-of-the-art detection techniques.

To illustrate our phishing attack threat model, we follow
the assumption made by [21], [60], we assume that Alice
downloads a generated phishing banking app from an un-
reliable app market on her new smartphone. Installing the
app does not raise any concerns of Alice as it only requires
the permission to access the Internet. Launching the app
does not raise any concerns either as the phishing app has
a high similarity with the original app’s UI pages. Alice
clicks the “login” button after entering her personal banking
credentials, and a dialog pops up, reminding Alice that the
current banking app is out of date, and needs to be updated
to the latest version. In parallel, her credentials have been
recorded and transmitted to a remote server owned by the
malicious app author. When Alice clicks “Update Now”,
Google Play is launched and redirected to the download
page of the corresponding original app. Alice continues
to use the original app without noticing that her sensitive
information has already been stolen. Similar malicious apps
by repackaging or cloning have been previously discov-
ered [15], [21].

Motivated by the scenario above, we implement a new
approach to automatically and effectively generating a new
phishing app within a few seconds. Given only the login
page(s) of an app, with no other requirements, we first
extract all GUI components by adopting image processing
techniques, next we obtain the component types through
image classification. According to these identified compo-
nents and their attributes in the original page, we generate
the corresponding GUI code. Finally, we add deception
code for the interactive GUI components to collect users’
information and return a certain response to resolve the
users’ doubts about the phishing app. To increase the au-
thenticity under real-world scenarios, we collected 10 types
of responses following the “login” button from 50 real apps,
to have our generated phapps randomly return one of these
real responses.

Our approach is able to conduct a new powerful phish-
ing attack in the real word due to the following three charac-
teristics: (1) It is difficult for the generated app to be spotted
as a phishing one. The generated login-related page(s) are
very similar to those of the original app, with subsequent
responses sourced from the original apps, mobile users
cannot distinguish between the phapp and the original app

1. In this paper, logic deception refers to reasonable app responses
(i.e., deception code) when clicking interactive components in login-
related pages. Since our goal is to steal users’ credentials, we do not
attempt to generate the actual logic/back-end code that is similar to
the original apps.

(Section 5). In addition, the generated apps require very
few permissions (only Internet access), and is therefore
undetected by both users and existing malware detection
techniques. (2) The generation process is fully automated
without a need for humans to understand the complicated
deception code of the app. Therefore, the attackers can
easily generate a large number of phishing apps in a short
amount of time (each new app takes 3 seconds on average)
to launch large-scale attacks. (3) The generation method is
platform-independent. Although the current implementa-
tion is based on the Android platform, it can be extended
to other mobile platforms like iOS as long as we can collect
data from those platforms. In addition, according to the
recent news headlines [9], phishing attackers have started
leveraging GDPR [5] as a themed (bait) in an attempt to
steal users’ information. Users usually receive scam emails
with malicious links, showing that they should update their
apps to comply with a new Privacy Policy, which reflects
changes introduced by GDPR. Such hotspot can be used
as an actual bait to make GUI-Squatting attacks possible
in the real world. Android malware can be spread through
a variety of techniques [37], [78], they can all be used to
propagate and push the phapps to the users’ mobile devices,
which is out of scope of our research in this paper.

The experiments show that our method can accurately
segment and classify most GUI components (83.2% accu-
racy) in the UI screenshot, and the generated login pages are
on average 96% similar to the original page in a pixel com-
parison.2 We then further demonstrate that the generated
apps cannot only bypass existing malware or phishing app
detection methods, but can also successfully capture mobile
users’ credentials without alerting users of the human study.
The human study involved 20 real participants and 100
apps (50 original apps and 50 generated phapps). This study
demonstrates that the different response messages, such as
“Crash” or “Server failed” after pressing the “login” button,
make users incorrectly regard the phapp as a functionality
problem instead of a security threat. Our study also reveals
insights that users care more about the security of financial
apps than social ones, and that gender or profession does
not result in much difference to the experimental results.

In summary, this paper makes the following contribu-
tions:
• We introduce a new approach for automated mobile

phishing app (phapp) generation, which can be used on
different mobile platforms, such as Android and iOS. The
costless method enables a new powerful and large-scale
attack (“GUI-Squatting Attack”) to different apps in a
short time (2.51 seconds for each app on average).

• Our generated phishing apps can bypass the state-of-
the-art anti-phishing techniques (e.g., DROIDEAGLE [66]
and WINDOWGUARD [59]). Meanwhile, malware detection
(e.g., DREBIN) and anti-virus techniques (e.g., VirusTotal)
are weak in identifying phapps.

• Our comprehensive experiments and human study also
show the effectiveness and practicality of our generated
phishing apps which successfully steal users’ information

2. More results about the extracted components and the similar-
ity comparison can be found on https://sites.google.com/view/gui-
squattingattack/

https://sites.google.com/view/gui-squattingattack/
https://sites.google.com/view/gui-squattingattack/

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 3

imperceptibly in the real world. The analysis of users’
feedback is also valuable to future research.

At a high level of this work, our experimental results
reveal that phishing defenses should effectively respond
to such newly proposed attacks. Our approach can aid
the process to further understanding and to explore the
characteristics of new mobile phishing apps.

2 MOBILE PHISHING ATTACK

In this section, we introduce the Android GUI framework
and potential security threats arising due to consistent UI
design principles. Additionally, we briefly introduce the
types of mobile phishing attacks that have been exhibited.

2.1 Android GUI Framework

The Android GUI framework is famous for multi-interactive
activities. The GUI is what the user can see and interact with.
The Android GUI provides a variety of pre-built compo-
nents, such as structured layout objects (e.g., LinearLayout)
and components (e.g., Button and EditText). These elements
allow developers to build the graphical user interfaces for
the app. The layout structure uses a GUI-hierarchy to follow
UI design principles.

The Android GUI framework is a reusable and extensible
set of components with well-defined interfaces that can be
specialized. However, the security of Android GUI frame-
work remains an important yet under-scrutinized topic. The
Android GUI framework does not fully consider security is-
sues. For example, a weaker form of GUI confidentiality can
be breached in the form of GUI state by a background app
without requiring any permissions. The design of the GUI
framework can potentially reveal each GUI state change
through a newly-discovered public side channel – shared
memory, giving a chance for attackers to steal sensitive
user input [21]. The UI pages of Android apps are usually
rendered by static XML files, which reduces the attack costs
to control every pixel of the screen. If the attackers can
extract the GUI components and their attributes, they can
generate the corresponding GUI code smoothly.

Furthermore, when a user is interacting with the target
GUI component like clicking or through voice controlling,
it can actually trigger some other actions in the background
such as tapjacking attack [61], which was not intended by
the user. In fact, the Android platform has been plagued
by various GUI attacks in recent years, such as phishing
attacks, task hijacking [60], and the full screen attack [15].
Malware on the device that takes screenshots also breaches
GUI confidentiality [46].

2.2 Existing Mobile Phishing Attacks

Phishing, as a type of social engineering attack [15], [58], is
often used to steal user information, such as login creden-
tials. It occurs when an attacker masquerades as a trusted
entity (resembling the original web page or application) [43].
Web phishing attacks date back to 1995 [57], but recently,
attackers have shifted their attention to mobile devices [37].
Due to the small screen size and lack of identity indicators
of URLs seen next to online web sites, mobile users have

become more vulnerable to phishing attacks. On mobile
devices, 81% of phishing attacks are carried out using phish-
ing apps, SMS, or web pages [71]. Mobile oriented phishing
attacks are classified into two strategies: (1) masquerade as
original apps; or (2) hijack existing original apps. Mobile
phishing attacks can be classified into three types based on
the above two strategies.
• Similarity attacks (spoofing attacks) analyze the GUI code

of the original app and partially modify the GUI code.
Attackers then add logic code to manipulate the original
app logic [66]. For example, attackers can crack payment
apps to bypass the payment functionality.

• Window overlay attacks render a window on top of mo-
bile screen, either partially (e.g., Toast and Dialog) or
completely (e.g., similar UI pages) overlapping the orig-
inal app window [15], [21], [61]. For example, attackers
choose a particular time to render the phishing UI pages
by monitoring the occurrence of the original app’s lo-
gin activity. This attack usually leverages the flaws of
design mechanism in mobile OS (e.g., using Activity-
Manager#getRunningTasks() to get “topActivity” before
Android 5.1).

• Task hijacking attacks trick the system into modifying the
app navigation behaviors or the tasks (back stacks) in
the system [35], [60]. For example, The back button is
popular with users because it allows users to navigate
back through the history of activities. However, attackers
may abuse the back button to mislead the user into a
phishing activity (e.g., misusing “taskAffinity”). In short,
attackers try to modify the tasks and back stack to execute
phishing attacks.

2.3 Newly-proposed Attack: GUI-Squatting Attack

We follow the assumption summarized by the existing mo-
bile phishing attack techniques: a successful phishing app
requires two conditions: page confusion and logic deception.
In this paper, we propose a new powerful and large-scale
attack (called “GUI-Squatting Attack”) based on fully auto-
mated generation of phishing UI pages and apps. Moreover,
our approach can generate similar UI pages for the phishing
attacks mentioned above.

The following differences make the GUI-Squatting attack
more threatening than previous attacks. (1) Only the login
page(s) of an app is required and no other inputs are
necessary, making a large-scale attack possible, regardless of
platform limitations. (2) No requirements of domain knowl-
edge and traditional attack techniques (e.g., repackaging
and clone techniques) make the result harder to detect. (3) It
can conduct a wide range of attacks due to the low cost of
the generation process, and it can launch targeted attacks
like credential spearphishing attacks [39]. Our generated
phishing apps can successfully control every pixel of the
screen and capture real users’ credentials without raising
the user’s attention under practical GUI-Squatting attacks
in the real world. We detail the new strategy in Section 3.

3 OUR APPROACH

In this section, we first propose our threat model, and then
introduce our new approach with three phases to automati-
cally generate mobile phishing apps and UI pages.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 4

Classified
ICs

Unlabeled
Components

Icon

Login-related pages

GUI Code
Generation

Mobile Phishing App

Phase 1

Phase 2

Logic Code
Generation

Phase 3
Component
Extraction

CNN
Classification

Classified
ICs

Unlabeled
Components

Icon

Login-related Pages

Mobile Phishing App

Phase 1

GUI Code
Generation

Phase 2

Deception Code
Generation

Phase 3

Component
Extraction

CNN
Classification

Classified
ICs

Unlabeled
Components

Icon

Login-related Pages

Mobile Phishing App

Phase 1

GUI Code
Generation

Phase 2
Logic Code
Generation

Phase 3

Component
Extraction

CNN
Classification

Fig. 1: Workflow of our approach (ICs is short for interactive
components)

3.1 Threat Model

We follow the assumption made in [60] that our generated
phishing apps have been installed on the users’ mobile
devices. There are many propagation techniques capable
of pushing malicious apps to user devices [37], which we
consider beyond the scope of this paper. The generated
apps only need the “INTERNET” permission, frequently
requested by Android apps. Due to the high similarity
between the original UI pages and the ones in our phapp,
the app that the user does not realize is a phishing replica.
The credentials will be collected and transmitted to a remote
server after the user enters personal credentials and clicks
the “login” button. At the same time, a response is shown
(e.g., “update required” dialog, crash dialog, no response)
to create a diversion so that the user does not suspect that
their sensitive information has been stolen.

3.2 Approach Overview

The goal of our approach is to take in the login-related
screenshots of a mobile app lui, the icon of a mobile app
icon, and output a phapp that can collect user credentials.
In order to generate phapps that are able to deceive users

and successfully steal users’ sensitive information imper-
ceptibly, our approach needs to address two challenges: ¬

To enable page confusion, the generated login-related UI
pages should have a high similarity with the original ones.
 To enable logic deception, deception responses need to be
provided, especially for interactive components, including
the functionality of interacting with other UI pages, hence
corresponding deception code needs to be generated auto-
matically.

To meet these conditions and successfully generate mo-
bile phishing apps, we propose our approach to fully auto-
mate phishing app generation in Fig. 1. Our approach has
three phases: (1) we extract the GUI components from the
target UI screenshots by segmenting the components with
image processing techniques (i.e., canny edge detection and
edge dilation), and classify the types of GUI components
with a deep learning algorithm (i.e., CNN); (2) we then
assemble these components in assistance with the layout
code snippet of each component along with their attributes,
to generate layout code (i.e., XML file) for the imitation
login page that is still highly similar to the original; (3) we
further generate the deception code and assign responses
for interactive components (ICs), such as ImageButton and
EditText. The generated phishing apps can secretly collect
users’ credentials without causing users’ awareness through
these response messages.

(a) Original UI (b) Canny edge detection (c) Edge dilation (d) Contours

Fig. 2: Process of GUI component extraction

3.3 Interactive Components Extraction (Phase 1)

The extraction of interactive GUI components involves two
steps: component segmentation and component classification.

GUI component segmentation. To segment the components
from UI screenshots, we first detect the edges of all compo-
nents in the screenshot through canny edge detection [3]
which infers the edges by suppressing intensity gradients
of the image. But the detected edges are too coarse to be
used directly because this technique also detects the exact
edges of each character and letter, which does not represent
a full UI component. For example, the letters of “Password”
in Fig. 2 (b) are isolated from each other. Thus we merge
adjacent elements by edge dilation [4], which gradually en-
larges the boundaries of regions so that the holes within the
regions become smaller or entirely disappear. As shown in
Fig. 2 (c), the EditText with its hint texts and the background
image have merged together.

We observe that although some UI components may use
irregularly shaped elements, we opt to bound all compo-
nents as rectangles to make the component identification
and code generation process easier. Therefore we adopt
contour detection to obtain the regions with an approximate
rectangle border. Fig 2 (d) shows our detected GUI compo-
nents with all components annotated with rectangular, blue
bounding boxes. We crop these regions from the screenshots
as images of the GUI components, and also record their
coordinates and sizes for later use in the classification and
generation process.

GUI component classification. We then classify the cropped
images of these GUI components into different types such
as Button and EditText. To carry out the GUI component
classification, we adopt a Convolutional Neural Network
(CNN), a state-of-the-art approach often used in computer
vision applications.

The model takes as input the cropped images of GUI
components and outputs an N dimensional vector where
N is the number of classes that the program has to choose
from. As we are only concerned about the interactive GUI
components which need extra GUI code in the login page
and deception code, we consider the components of Edit-
Text, Button, ImageButton, TextView, and CheckBox. Note
that Some TextViews contain clickable links and will be
discussed later in Section 3.4. Other components, such as
ImageView and Spinner, are put into one type called “Oth-
ers.” Thus, N = 6 and our model is to classify a cropped
component as one of these 6 types. Note that the output of
the fully connected layer will be the probability of these 6
classes, where the sum of probabilities is 1.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<RelativeLayout...
<ImageView

android:layout_width=“1080px”
android:layout_height=“1845px”
android:scaleType=“fitXY”
android:background=“@drawable/bg"/>

<ImageButton...
<EditText...
<EditTextandroid:id=“@+id/pwd”

android:layout_width=“891px”
android:layout_height=“97px”
android:layout_marginLeft=“112px”
android:layout_marginTop=“959px”
android:fontFamily=“sans”
android:background=“#ffffff”
android:hint=“Password"
android:paddingLeft=“13px”
android:textColorHint=“#BEBEBE”
android:inputType=“textPassword"/>

<ImageButton...
<ImageButton...
<ImageButton...
</RelativeLayout>

Fig. 3: GUI code snippet of layout.xml file generated by our
approach for phapp

3.4 GUI Code Generation (Phase 2)

In the second phase, we generate a GUI code snippet of the
corresponding component based on the classified types of
components, and embed their attributes collected from the
component images, as shown in Fig. 3.

After obtaining a list of interactive GUI components,
we generate the phapp following Algorithm 1. The inputs
to our algorithm include lui as a list of UI screenshots of
the Android app’s login pages and icon as the icon of the
Android app. Note that one app may have several login
UI pages. For example, it may require users to fill in the
user name on the first page, and then fill in password in
the next page. So we set the number of login UI pages
as N (N ≥ 1). We first obtain the list of GUI interactive
components ordered from top to bottom, and from left to
right on the original screenshot as ICs.

For each UI page, we separately generate GUI code
and deception code since GUI code is usually maintained
in an XML layout file, and the back-end code is usually
maintained in one or more Java files. Apart from several
interactive components for which we need to generate extra
interaction code, most parts of the page do not need any
change. Thus we put the original login UI screen(s) as the
background canvas and add interactive components later.
Specifically, for each UI page, we first initialize GUI code
codegui as the code generated from the screenshot and leave
deception code codedeception[i] (i refers to the ith lui) empty
(line 8) as the background canvas does not involve any
deception code in apps. We then obtain attributes for each
interactive component extracted from phase 1. For each
component, we collect its cropped image, detailed coordi-
nates with getAttr() in line 10. However, among the five
interactive components, there is one special type, EditText.
Apart from basic attributes, it may also contain text hints
(reminder messages like “Email”, “Password” as shown in
Fig. 2) or drawable images (e.g., an email representation
image or a password visibility toggle). Therefore, we check
the existence of such hints and obtain their text by leverag-
ing optical character recognition (OCR) techniques [8], and
also extract drawable images from inside the EditText. Since
EditText may also own a particular background color (e.g.,
white, blue), we take the most frequent pixel value to fill in
the area of EditText. Fig. 3 shows the generated GUI code of
one of these EditText components with detailed attributes.

Algorithm 1: Phapp Generation
Input: lui: a list of login-related UI pages

icon: icon of the Android app
Output: app: generated Android phishing app (phapp)
// GUI Code Generation

1 N ← number of lui
2 i← 0
3 codegui ← Ø
4 codedeception ← Ø
5 ICs← getInteractiveComponents(lui)
6 while i < N do
7 codegui[i]← generateComponentUI(lui)
8 codedeception[i]← “ ”
9 foreach ic ∈ ICs[i] do

10 icattr ← getAttr(ic)
11 if ic == TextView and !isInteractive(ic) then
12 continue

13 codegui[i] += generateComponentUI(icattr)
// Deception Code Generation

14 codedeception[i] += generateComponentListener(icattr)

15 i = i + 1

16 phapp← generateApp(codegui, codedeception, icon)
17 return phapp

The other special type of interactive component is
TextView, many of which just display text without any inter-
action. However, some TextViews are special with clickable
links, for example, an interactive TextView is used to assist a
user in password recovery (i.e., “FORGOT PASSWORD?” as
seen in Fig. 3). Therefore, to preserve this functionality, we
also retrieve the text attributes of TextView through OCR,
and treat them as an interactive component in the login-
related pages if the text contains words that are matched
with those in a keyword set (e.g., “sign up”, “forget pass-
word” or related alias) with function isInteractive() in line
11. Otherwise, we ignore it both in GUI code and deception
code (line 12).

We generate GUI code for every interactive component
according to its attributes, and add the code into the overall
linear layout of the GUI code file (line 13). For Button,
ImageButton, and interactive TextView, we generate GUI
code by utilizing ImageButton, i.e., cropped component
images which can be clicked. For EditText, we obtain its
GUI code by also considering any of its text hints, drawable
images and background color (shown in Fig. 2).

3.5 Deception Code Generation (Phase 3)

In the third phase, we generate the corresponding deception
code snippets based on different types of components in the
layout file, as well as different event listeners. We allocate
different types of responses collected from real apps to
the “Login” buttons. Meanwhile, we implement SSL/TLS
authentication and user identity verification via HTTPS
connection for each phapp to prevent being detected by
traffic analysis tools. Additionally, to prevent being detected
by control- or data-flow analysis, we create some widely-
used activity transition relations for each phapp.

After generating the GUI code codegui for login im-
ages, we then generate the corresponding deception code
codedeception (line 14). Specifically, we set up listeners for
different interactive components. Since our goal is to au-
tomatically generate phishing apps that can steal user cre-
dentials imperceptibly instead of cloning apps, we focus on

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 6

TABLE 1: Interactive components not directly associated with the login logic
Icon Interactive Components Functionalities Deception Code Implementation

Checkbox outside EditText Remember user name Saved in SharedPreference,
SharedPreferences#getSharedPreferences

Checkbox inside EditText Display plaintext password EditText#setTransformationMethod
Switch Button Remember user credentials Saved in SharedPreference

ImageButton
Login with third-parties
(e.g. Facebook, Twitter);
Sign up

Use the same response as the login button

Clickable TextView Forget password Use the same response as the login button

Fig. 4: Response examples after clicking “login” buttons

generating the deception code of login-related pages of the
original apps, and attempt to deceive users by displaying
the highly similar login pages and showing plausible re-
sponses when clicking the “Login” button. According to
our observation of login-related pages, we summarize two
kinds of deception code that need to be generated based on
different interactive components.
Interactive components that are directly related to basic
login logic (i.e., EditText for inputs and Button for submis-
sion). As users can enter their information including their
user names and passwords in EditText, we add listeners
to each EditText to collect users’ credentials. For “login”
buttons, we regard it as ImageButton in the GUI code, and
add a listener (i.e., View#OnClickListener) to it. Once the
submission component is clicked, the listeners for EditText
will check whether there is content inside. If not, there will
be a pop-up message reminding the user to“please fill in the
account and password.” Otherwise, the data collection pro-
gram will be triggered, and the credentials are transmitted
to a remote server via the “getText()” method.
Interactive components that are associated with other
functionalities or other UI pages. As shown in Table 1,
based on our observations of real apps, we summarize
and demonstrate five kinds of interactive components that
are most widely used. These interactive components may
appear in the login-related pages; however, they are not di-
rectly associated with the login logic. For Checkboxes outside
EditText, we use SharedPreference#getSharedPreferences to
save the inputs of EditText to determine whether the
Checkbox has been chosen or not. In addition, we use
EditText#setTransformationMethod to control the plain-text
display of the password in some cases. The implementa-
tion of a Switch is similar to Checkbox outside EditText.
For ImageButton of third-party logins (e.g., Facebook and
Twitter), the credentials are used via the interfaces from
the corresponding parties, which are out of scope of our
research in this paper though it could be possible to generate
a phapp for the standardized Facebook or Google login
page. Besides, the ImageButton of “Sign up” and interactive
TextView of “Forgot password” will indicate that the current
user does not have valid credentials; they are users who
are not our phishing target, and thus it is meaningless to

TABLE 2: Response types extracted from real apps

Types of Response Description #
Invalid inputs Wrong user name or password 30
Crash Unfortunately, the app has stopped 6
Server failed Can not connect with remote server 4
Update app Update the latest version from market 2
Update Google service Update Google service from market 2
Network unavailable Check your network connection 2
Keep loading Keep showing the loading status 2
Slow response Simulate system delay 2
Force exit Exit app directly 1
No response No feedback after the action 1

steal credentials from them. We therefore allocate the same
response as clicking the “login” button to make them inter-
active. Note that, for ImageButton, Button, and interactive
TextView, we treat them all as ImageButton in the GUI code,
and add listeners for all of them.

We collected and identified 10 different types of re-
sponses for the “login” button. Among 37,251 Android apps
automatically explored in Section 4.1, we randomly sample
50 of them which could not be logged in for a manual check.
We check the screenshots of these apps after clicking the
“login” button, and summarize the ten responses in Table 2.
We find that 60% of the apps return “Invalid inputs”, i.e.,
wrong user name or password. Other unsuccessful login
pages include “Crash”, “Server failed” (no connection to
the remote server), “App update”, “Network unavailable”
(no connection to Internet), “Keep loading” (showing the
progress bar), “Slow response” (delay of the app), “Google
service update”, “Force exit” (exit without notification),
and “No response” (no feedback after the action). When
generating the phishing apps, we randomly select one of
these responses to camouflage our app as an original with
functionality problems as shown in Fig. 4.�
1 // Phapp server authentication
2 X509TrustManager trustManager = new

X509TrustManager(){
3 // Certificate verification
4 public void checkServerTrusted(...){
5 for (X509Certificate cert : chain){
6 // Is it expired
7 cert.checkValidity();
8 // Certificate public key string
9 cert.verify(ca.getPublicKey());

10 }}}
11 // Hostname verification
12 final HostnameVerifier hostnameVerifier = new

HostnameVerifier(){
13 public boolean verify(...){
14 if(URL.equals(hostname)){
15 return true;
16 }};� �
Listing 1: Simplified code snippet of server
authentication in phapps

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 7

With the help of Socket or HTTP/HTTPS connections,
our remote server (i.e., webpage) will receive users’ cre-
dentials after users enter their information and click the
submit or login button. Such one-way communication may
be vulnerable to detection through traffic analysis, which
tracks network traffic from the client to the server by using a
simple pattern-based approach. To avoid being detected, we
implement server authentication and user identity verification
for each phapp. (1) We implement SSL/TLS authentication
(the core simplified code snippet is shown in Listing 1) when
the client side (i.e., phapp) sends network requests to mimic
the real communication between the client and server sides.
Specifically, we first generate the server certificate using
keytool (i.e., keytool -genkey -alias phapp -validity 3560 -
keystore phapp.keystore), which is later imported at the server
side. After that, we also use keytool to export public key
string of the server certificate, which is used to verify the
server certificate at the client side. Server authentication
contains two phases: server certificate verification (Lines 2-
10) and server hostname verification (Lines 12-16). ¬ For the
verification of the server certificate, we use checkValidity()
to verify whether the certificate is expired or not, and use
verify() (Line 9) and getPublicKey() to verify the public key
string of the server certificate. For the verification of the
server hostname, we just verify the domain name address.
Moreover, we dynamically compose the server URL (Line
14) using separate strings to evade the black-list matching
strategy. (2) We implement user identity verification via
HTTPS for each phapp by returning an always-true result.
Before pushing different types of responses for the “login”
button, the server will check the validity of the token sent
from the phapp, and the client side also will parse the
received token no matter what data is sent from the client
side (the core simplified code snippet is shown in Listing 2).
Note that, a true result will be returned from the server side,
indicating that the user is valid. Then, the response will be
pushed to users, and the response about the functionality
problem will be displayed on the top of the screen to distract
users so that they do not regard the phapp as a phishing
app.�
1 public void send(...) {
2 new Thread(new Runnable()) {
3 // Send the login data to server
4 Request req = new Request.Builder().url(URL).

post(login_data);
5 OkhttpClient client = new OkHttpClient();
6 // Check the login data and receive response
7 Response res = client.newCall(req).exectue();
8 receivedDataParsing(res);
9 }}� �

Listing 2: Simplified code snippet of user identity
verification in phapp

Some control- or data-flow analysis methods [22], [54]
analyze the transitions between activities, it would raise
suspicion if there is no transition between the login activity
and other activities in an app. To evade it, we create many
templates of activities that are widely used to interact with
the login activity, such as register activity, main activity, and
setting activity. To set up the transitions between them, we
leverage the API StartActivity() provided by Android
system to enable the activity transition from activity A

Interactive UI Components (ICs) Extraction

Classified
ICsAttributes

Unlabeled ICs

Icon

LUI
CNN

Classifier

UIAutomator

GUI Imgs
Mobile
Apps

Dynamic
Testing Tool

Guided GUI Code
Generation

Adaptive Logic
Code Generation

GUI Screenshot

XML

LUI Imgs Labeled
Components

Mobile Phishing App

Fig. 5: Training data collection

to activity B. Such activity transitions help address the
doubts of flow-based analysis. In fact, the users would not
observe the existence of these activities since the app would
encounter functional problems after users click the “Login”
button.

In addition to event handler generation, we further bind
the GUI code and deception code via findViewById(), which
identifies the corresponding component from the layout
file (i.e., GUI code) and binds it with the deception code.
To avoid being detected by other anti-phishing techniques
based on screenshots, we prohibit our apps from having
screenshots taken by other third-party apps by setting
the flag (WindowManager.LayoutParams.FLAG SECURE =
TRUE) on the login page. With the app icon, and the
generated GUI code, deception code, we finally build the
phapp (line 15).

4 IMPLEMENTATION

4.1 GUI Component Collection

Fig. 5 shows the training data collection process. We crawled
37,251 unique Android apps with the highest installation
numbers from Google Play Store. These apps belong to
30 categories, including finance (e.g., Bank of America),
social (e.g., Facebook), news (e.g., BBC News), etc. Game
apps have been excluded due to lack of standard GUI
components that can be automatically extracted. We obtain
billions of original UI screenshots in assistance with dy-
namic Android testing tools (e.g., UIAUTOMATOR [12] and
STOAT [65]). These tools are configured with the default
setting and run on Android emulators (Android 4.3) on
Ubuntu 14.04. At the same time, we use UIAUTOMATOR to
extract component information (i.e., component types and
coordinate positions) for the explored app screens. We note
that not every app was successfully launched on the emula-
tor due to version update warnings, Google service update
warnings, lack of third-party library support, etc. Our goal
of this large-scale component analysis is to ensure we obtain
multiple sets of screenshots and components, rather than
completely explore each app and obtain all components
in each screenshot. Although the layout information from
UIAUTOMATOR does not include all components and may
contain minor errors, it would not affect the collection of
our training set. Finally, the result data set contains 1,842,580
unique screenshots based on pixel comparisons, which is
by far the largest raw data set of UI screenshots to our
knowledge.

Since we only focus on login-related pages and generate
corresponding code for phapps, we extract login-related
screenshots or closely related login screenshots (e.g., related
with register, transfer, and submission) by (1) using key-
word filtering (i.e., login, sign, regist, transfer, submit), and

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 8

Fig. 6: Number of labeled GUI components

(2) ensuring the screenshots to contain the component types
of EditText, TextView, and Button. We finally obtain 4,420
login-related screenshots, from which we extract 57,209
labeled cropped GUI component images (6 types) shown
in Fig. 6. Note that since we only managed to collect 697
CheckBox components in the login-related screenshots, we
extend it with 14,676 CheckBox components from the other
unique screenshots we collected. We place other compo-
nents that appear infrequently into the “Others” category
(for 12,457 in total), including ToggleButton, RadioButton,
ImageView, etc., since we do not need to handle all com-
ponent types. This part differs from the state-of-the-art GUI
code generation tools [14], [19]. Meanwhile, we disregard
the components that do not appear in login-related pages,
such as Spinner, RatingBar, and SeekBar.

4.2 Approach Implementation

Our approach is implemented in Python 2 (3K+ Lines of
Code), and leverages several open source libraries (e.g.,
OPENCV, TESSERACT) to automatically generate phapps.
Specifically, we use CV (i.e., OPENCV [7]) and OCR tech-
niques (i.e., TESSERACT [11]) to extract components and their
attributes (e.g., coordination positions, width, height, color,
texts) from the screenshots of UI pages. Meanwhile, we use
Tesseract#makebox to extract the coordinate of each letter.

To classify the types of segmented components within
the UI screenshots, we adopt the CNN model as discussed in
Section 3.3. Our model contains three convolutional layers,
three pooling layers, and two fully-connected layers. Within
the convolutional layer, we set the filter size as 3, the stride
as 1, and padding size as 1. The same setting also applies
to the pooling layer. For two fully-connected layers, both
have 128 neurons. We implement our network with the
Tensorflow framework written in Python. The model is
trained for roughly 2 hours on a CPU, RAM, and Nvidia
Tesla P40 GPU card (24G memory) over 10 epochs.

From the classified interactive components and their
attributes, we generate the login GUI code for the given
UI screenshot. For each component, we use two lay-
out attributes (i.e., android:layout marginLeft and an-
droid:layout marginTop) to identify their coordinates. In
addition to the basic attribute settings, we also transfer
attributes of the component to corresponding layout code
(e.g., android:textColor, android:inputType). After imple-
menting the UI login code, we implement 10 types of
responses from Table 2 when interactive components are
clicked, each component has a different response attached
within the deception code. As for the response to login
actions, we randomly choose one response to be attached
to the “login” button. Our implementation runs on a 64-bit

Ubuntu 16.04 machine with 12 cores (3.50GHz Intel CPU
and 32GB RAM.)

5 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to evalu-
ate our approach in the following five aspects: (1) UI page
similarity comparison between the UI pages of the original
apps and our generated phapps; (2) UI page generation
comparison between the state-of-the-art UI generation tools
and our approach; (3) Performance of our CNN classifica-
tion; (4) Ability to evade detection by the state-of-the-art
anti-phishing techniques; (5) A human study to identify the
power and impact of our phapps.
Dataset. We randomly collect 50 Android apps (25 financial
apps and 25 social apps) from the top 100 financial and
social categories from the Google Play Store, as the apps
in these two categories are usually security- and privacy-
critical. All apps require users to login before use. These are
the most famous apps (e.g., Facebook, Twitter) with over
1,000,000+ installs, mainly originating from USA, China,
and European countries. We guarantee the representative-
ness of the selected original apps in terms of their number of
installs and representative categories. Given the screenshots
of login pages and icons of these apps, we generate the
corresponding 50 phishing apps using our approach. The
dataset of (50 original apps and 50 phapps in total) is used to
conduct the following experiments. Besides the 50 financial
apps and social apps used in our experiments, in order to
reduce the influence of randomness, we further select 20
apps that were downloaded from different times off the
Google Play Store that also contain login pages to validate
the similarity of our results. From the comparison of results,
the corresponding generated UI pages of these 20 apps are
also sufficiently similar (they achieve over 95% similarity on
average in terms of mean absolute error (MAE) and mean
squared error (MSE)) and can be used in the GUI-Squatting
attack directly. More generated phishing UI pages can be
found on our website [10].

5.1 UI Similarity Comparison

One of our goals is to generate phishing UI pages re-
sembling the original. We compare the visual similarity
of the generated UI pages and the original UI pages (i.e.,
screenshots) collected from the 50 original apps listed in Ta-
ble 3. We use two widely-used image similarity metrics [53],
i.e., mean absolute error (MAE) and mean squared error
(MSE), to measure the image similarity pixel by pixel. MAE
measures the average magnitude of differences between a
prediction and the actual observation. While MSE measures
the average of squared differences between them. On av-
erage, our approach achieves 99% and 96% similarity in
terms of MAE and MSE (normalized to [0, 1]), respectively.
We detail the pixel-by-pixel similarity results (using MSE)
of each login UI page in column “Pixel Similarity” of Ta-
ble 3. “Visual Similarity” represents the similarity results
via human observation which will be discussed in Section 6.
“Generated time” represents the time cost on each phapp,
from an image to a compiled apk.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 9

TABLE 3: Phapps used in experiments. The upper indicates
25 banking apps, the others are social apps. “#ICs” means
the number of interactive components.

App Name #ICs Pixel
Similarity

Visual
Similarity

Generated
Time (sec)

DBS IN 9 92.1% 4 2.2
CommBank 5 96.4% 5 1.7
DBS 8 94.8% 5 2.1
Alipay 8 96.8% 5 2.7
Gcash 5 96.2% 4.5 2.7
NetBank 6 94.3% 4 4.1
Reliant 6 93.4% 4.5 3.8
FAB 7 94.5% 4.5 2.4
First 7 94.5% 4 2.1
BankFirst 7 93.6% 5 5.0
AFCU 7 94.7% 4 2.1
GSB 7 92.9% 4 2.3
FSB 7 94.6% 4.5 1.8
ColumbiaBank 7 94.6% 4 2.9
Ulster 7 93.8% 4 2.6
Bridgewater 7 94.3% 4.5 2.0
RFCU 7 94.2% 4.5 3.6
CB 7 94.6% 4.5 3.1
Money 6 95.0% 5 2.3
Bred 3 94.9% 4.5 2.2
Oxigen 5 93.8% 5 1.8
Paga 6 96.1% 5 5.0
BankNordik 5 95.3% 4.5 3.0
Eik 5 95.4% 5 1.7
Nordoya 5 95.3% 4.5 1.8

Reddit 5 95.3% 4.5 2.1
Twitter 4 96.0% 5 2.0
VK 6 95.9% 4.5 2.4
Pinterest 4 93.8% 4.5 1.8
Askfm 9 91.8% 4 1.8
Badoo 4 95.3% 5 1.7
Bharat 8 95.8% 4.5 1.8
BNI 4 93.2% 4 3.2
Facebook 6 95.7% 5 5.0
Instagram 7 96.0% 4.5 2.2
MocoSpace 6 96.4% 4.5 2.2
MeetMe 7 95.1% 4.5 1.9
Path 4 96.5% 3.5 2.0
Weibo 7 97.0% 5 5.7
SKOUT 5 96.1% 4 2.2
Snapchat 5 98.3% 4.5 1.9
Nearby 5 96.5% 5 2.0
WeChat 7 97.1% 5 1.9
ADDA 5 93.2% 4.5 1.7
SayHi 8 94.8% 5 1.8
Vent 5 95.0% 4.5 1.8
LINE 7 95.4% 4.5 1.7
Kik 6 96.7% 4 3.9
Parlor 11 94.5% 4.5 1.8
Yapp 5 94.0% 5 1.9

Average 6 96.0% 4.56 2.51

We can see that the pixel-by-pixel similarity of all the 50
apps is over 90%, the average visual similarity is 4.56, and
only one app is considered dissimilar with a score less than
4. The results indicate that our generated apps are similar
enough to masquerade as the original ones. The average
number of components on the login page is 6, only one app
(Parlor) has more than 10 interactive components, indicating
that attackers can easily create a phishing login page image
due to the small number of components on the login pages.
Our approach manages to generate each phapp within 2.51
seconds on average, with the highest time cost originating
from building the apks.

Remark 1. Our approach achieves 99% and 96% simi-
larity in terms of MAE and MSE, respectively, and the
average visual similarity is 4.56 based on the participates’
feedback from our human study. Our approach can gen-
erate a phishing app within 3 seconds.

TABLE 4: Performance comparison among different methods

Methods CNN LR LDA KNN DT NB SVM

Accuracy 83.3% 48.3% 47.7% 68.9% 70.6% 26.6% 36.8%

Fig. 7: Performance of our model in 6 different components

5.2 Evaluation of the CNN Classifier

Baseline. In this experiment, apart from our method, we
also take some widely-used machine learning classification
models as baselines, including Logistic Regression (LR),
Linear Discriminant Analysis (LDA), K-nearest Neighbors
(KNN), Decision Tree (DT), Naive Bayes (NB) and Support
Vector Machine (SVM). Note that since traditional machine
learning algorithms need the hand-crafted features as the
input, we extract two kinds of features from each image.
First, for each image, we calculate its color histogram [18],
i.e., a representation of the distribution of color in an image.
Second, we extract Hu moments features [41] containing 6
different descriptors which capture the silhouette or outline
of objects inside the image. Then we concatenate color
histogram and Hu moments as the input features for all
baseline models.
Setup. Among 4,420 login-related images (Section 4.1), we
sample an even number of sub-images from each of the
6 types of UI component: CheckBox, ImageButton, Edit-
Text, Button, TextView, Others (see Section 4.1 where it is
specified). We then formulate the component classification
into a multi-class classification problem. To mitigate the
impact of unbalanced data [68], we take 7,900 sub-images
for each component i.e., only sampling 7,900 images if one
component has more than 7,900 images. Therefore, there are
totally 47,400 (7900 × 6) images for 6 different component
types. We partition this into an 80% split for training, the
remaining 20% for testing.
Results. Table 4 shows the accuracy of prediction for all
seven classification methods. We can see that our model
outperforms all baselines with 83.3% accuracy, which is
18% higher than that of the next best model (Decision Tree
70.6%). The results are reasonable, as often in computer
vision applications, deep learning outperforms classical
machine learning techniques due to reasons such as the
abstraction of latent features with suitable algorithms (e.g.,
CNN). We further analyze the accuracy of our classification
between the different component types in Fig. 7. Checkbox
and ImageButton both have very high precision, larger than
0.9, with EditText also with a reasonably high precision
of 0.86. However, it seems that our model makes more
mistakes in classifying Button, TextView and Others with
precision below 0.8. We further check which components
were misclassified, and find that the most frequent mis-
classification is that TextView were often misclassified as

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 10

Fig. 8: Pixel similarity comparisons with UI2CODE & PIX2CODE

Button. That is because some TextViews are very similar to
Buttons, In particular, TextViews with short text on a certain
background color (like blue) which is also commonly used
in Button. It is difficult to discriminate them even for human
by looking at the single component without considering the
context of the component. For the 50 generated phapps in
our experiments, only 5 cases failed due to the wrong clas-
sification of EditText as TextView, so we manually relabel
these components.

Remark 2. Our classification model outperforms all ma-
chine learning baselines, with the accuracy (83.3%) of our
model 18% higher than that of the best model among 6
baselines.

5.3 Comparison with State-of-the-Art Techniques

In this section, we choose two state-of-the-art end-to-end
GUI code generation tools, PIX2CODE [14] and UI2CODE [19],
to compare the similarity of the generated UI pages and
the original pages with the similarity of our generated UI
pages. We use UI2CODE and PIX2CODE to generate 50 cor-
responding UI pages. Since PIX2CODE may fail to generate
UI pages due to failures in translation from UI pages to
the intermediate language (i.e., DSL), and UI2CODE may fail
to generate UI pages due to failures in generation from UI
pages to an executable apk (i.e., build failure), they can only
generate 20 and 35 of the UI pages, respectively. We measure
the similarity using MAE and MSE based on the successfully
generated UI pages.

Fig. 8 shows the distribution of pixel-by-pixel similarity
on the successfully generated UI pages. Our approach out-
performs PIX2CODE and UI2CODE in terms of similarity of
the generated UIs, achieving over 96% pixel-to-pixel simi-
larity. One primary reason is that the two approaches aim to
reduce the burden on the GUI code development, but they
are not competent in generating an almost identical UI page
due to lack of realistic GUI-hierarchies of components and
containers of UI pages. Moreover, their approaches cannot
extract component attributes, such as coordinate positions,
colors and types. Similarity using MAE of UI2CODE and
PIX2CODE is mainly between 60%-80%. As for the metric of
MSE, they are mainly between 40%-70%. To understand the
significance of the similarity differences between ours and
the pages generated from UI2CODE and PIX2CODE, we apply
one-way ANOVA (analysis of variance) [6] for multi-group
comparison. We use the standard metric: α = 0.05. It shows
that the results are significant with a p-value < 0.01.

Fig. 9 displays an example of the generated UIs using
PIX2CODE, UI2CODE, and our approach based on the same
original UI page. As observed in Fig. 9 (c) and Fig. 9 (d),

�	��������	�� �
������ ����������� ����������

Fig. 9: Generated UI comparisons with UI2CODE and
PIX2CODE

there is a substantial difference between the original and
generated UIs by PIX2CODE and UI2CODE with a human
visual comparison. Note that, as for PIX2CODE, some of the
generated UI similarity measured by MAE and MSE is still
high since some original UI pages contained a white back-
ground with login components, as shown in Fig. 9 (a). Thus
when measuring pixel-to-pixel similarity, a large number
of pixels are regarded as the same or with high similarity,
producing a large similarity value that may overstate how
visually similar they appear to a human performing visual
comparisons. As for UI2CODE, as shown in Fig. 9 (d), the
results are better than PIX2CODE; however, the generated
UI pages by UI2CODE still have a big visual difference
compared to the original UI page.

Remark 3. Our new approach significantly outperforms
PIX2CODE and UI2CODE in terms of pixel-by-pixel simi-
larity of the generated UI pages. The comparison results
are significant with p-value < 0.01.

5.4 Bypassing Anti-phishing Techniques

As shown in Table 5, we choose the most representative
mobile anti-phishing and malware detection techniques
with different detection strategies to demonstrate that our
generated phapps can bypass the state-of-the-art detection
approaches [44], [50], [51], [52], [59], [66], [72]. Since these
tools are not open source projects, we re-implemented the
core functions to conduct our experiments.
Anti-phishing techniques. DROIDEAGLE [66] relies on the
layout tree to generate layout hash values, and then com-
pares the layout hash values with their repository. Before
generating layout hash values, the tool prunes all leaves in
the layout tree before hashing, and generates a hash value
only for the layout skeleton. Fig. 10 (a) shows the original
layout tree of Twitter. Attackers may carry out a similarity
attack by deleting the leaf node “CheckBox”, resulting in
Fig. 10 (b). However, the hierarchies of the two trees are
the same (i.e., LinearLayout, ScrollView, LinearLayout, and
LinearLayout), leading to the same layout hash values, thus
Fig. 10(b) can be detected by DROIDEAGLE. Fig. 10 (c) shows
the layout tree from our generated phapp, which only has a
root node and several leaf nodes. The hierarchy of our lay-
out tree is ∗Layout (e.g., LinearLayout and RelativeLayout),
which has a big difference with the original hierarchy.

To demonstrate that our generated phapps can success-
fully bypass the detection of DROIDEAGLE, we first use
APKTOOL to translate binary XML files to plain files, and
re-implement the procedure of extracting branch nodes (i.e.,
internal nodes) together with their attributes (e.g., width,

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 11

TABLE 5: Detection results of multiple Anti-phishing techniques for different mobile phishing attacks

Attack Types

Detection
Techniques

Anti-phishing Techniques
Layout Similarity
DROIDEAGLE [66]

Visual Similarity
-based [50]

Personalized Indicator
[51], [52]

Window Integrity [59]
WINDOWGUARD

Similarity Attack G# G# G# #
Window Overlay # # #
Task Hijacking # # #

GUI-Squatting Attack # # # #
 : Fully detect G#: Partially detect #: Unable to detect

LinearLayout

ToolBar ScrollView

LinearLayout

LinearLayoutTextView EditText …

TextView EditText CheckBox

*Layout

EditText CheckBox Button

(a) Original Layout (b) Similar Layout (without CheckBox) (c) Our Layout

LinearLayout

ToolBar ScrollView

LinearLayout

LinearLayoutTextView EditText …

TextView EditText CheckBox

LinearLayout

ToolBar ScrollView

LinearLayout

LinearLayoutTextView EditText …

TextView EditText CheckBox

Fig. 10: Layout comparisons

height, text). We then compare the extracted node sequence
of the original apps with that of the phapps, without further
computing their corresponding hash values. Obviously, the
hierarchies of the two trees are different, so DROIDEAGLE

does not work for phapps.
Malisa et al. [50] use visual similarity comparison on the

installed apps on the mobile device by taking screenshots,
to detect spoofing apps which have visual differences (i.e.,
repositioning elements). They do not focus on the detection
of perfect copies like ours, and the similarity comparison
is not scalable to analyze a large number of apps due to
heavy runtime overhead on users’ devices. Furthermore, the
phapps prohibited screenshots to be taken by third-party
apps, such as the pre-installed apps on the users’ devices;
thus, this approach does not work for our phapps.

Personalized security indicators rely on users to detect
phishing attack. When the user starts an app for the first
time, he is asked to choose a security indicator for the app,
he can also skip it if he does not want to set it up. After that,
whenever the app starts, it authenticates itself by showing
the security indicator. Users can distinguish benign apps
from phishing apps. However, previous work identified that
users tend to ignore personalized security indicators [63].
Moreover, many research communities have proved that it
is an ineffective phishing detection technique [16]. How-
ever, among the 50 selected financial and social apps in
our experiments, we did not find any of these apps using
personalized security indicators. Marforio et al. [51], [52]
revisited personalized security indicators to detect mobile
phishing attacks. However, if we conduct a personalized
phishing attack, our generated UI can capture the security
indicators and will show the correct indicators to users to
bypass the detection.

WINDOWGUARD [59] uses the integrity of Android Win-
dow Integrity (AWI) to detect phishing attacks efficiently.
However, phappsdo not use window overlaying or task
hijacking when running on mobile devices. Therefore, AWI
has no effect on phapps, and WINDOWGUARD also does not
work for phapps.
Malware detection techniques. Signature, behavior, and
dynamic-based detection always rely on the declaration
of resource permissions, API calls, system calls, and pre-
defined rules to detect Android malware with big data [47],

[67], [75]. Our generated phapps only use INTERNET per-
mission, the most commonly-used permission. Meanwhile,
Socket, and HTTP/HTTPs communications are very normal
ways to communicate between the client and the server.
Thus phapps can bypass such techniques. For learnined
techniques, we trained a machine learning based classifier
on a malicious dataset from DREBIN [13] using Support
Vector Machine (SVM). For the features, we replicate their
defined feature sets (e.g., requested permissions, hardware
components, suspicious API calls). We use the trained SVM
classifier to classify our 50 phapps. The result we obtained
demonstrates that the classifier does not work for phapps.
We suspect there are not enough malicious features that can
be extracted from phapps.

VIRUSTOTAL contains 61 anti-virus engines, e.g., MCAFEE

and KASPERSKY. When we upload our generated phapps,
none of the anti-virus engines flag our phapps as malicious.
Therefore, our generated phappsare also able to bypass the
state-of-the-art Android malware detection techniques.
Traffic analysis. Traffic analysis [28], [76] can also be used to
analyze abnormal behaviors when there is communication
between the client (phapp) and server. If phapp only con-
tains the code of credential collection, it would only produce
one directional traffic from the client to the server, which
would be easily detected by traffic analysis because there
is no response and traffic being sent back to the client side
(phapp). To bypass traffic analysis, we implement SSL/TLS
authentication and server identity verification via HTTPS
for each phapp, making the communication behavior of
phapps closer to normal apps. In fact, according to the recent
work [23], [24], a number of normal apps do not correctly
implement the server verification part, while our gener-
ated phapps implement correct communication between the
client and the server. Therefore, even if the traffic analysis is
employed to detect the abnormal behaviors of our phapps,
phapps are able to bypass the detection.
Activity transition analysis. Activity transition represents
the interaction between different activities. If phapp only
contains one activity, this approach of detection will be
able to identify it by leveraging activity transition graphs
(ATG). For example, defenders can use the existing inter-
component communication analysis tools (e.g., IC3 [54]
and StoryDroid [22]) to check the activity relations. To

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 12

evade the detection of them, in the deception code gener-
ation phase, we implement several common and widely-
used activities into phapp, and also build up relations
between the login activity and other activities. In the
evaluation, we use IC3 to extract the activity transi-
tion graphs and compare them with the transition re-
sults of normal apps. For example, phapps have the
normal relations (e.g., LoginActivity→RegistrationActivity,
LoginActivity→MainActivity, MainActivity→SettingActivity).
We find that the relation of phapps is similar to normal
apps, resulting in successfully evading detection by activity
transition analysis.

Remark 4. Our generated phishing apps (phapps) can
bypass the state-of-the-art anti-phishing techniques, An-
droid malware detection techniques, industrial virus en-
gines, traffic analysis, and activity transition analysis
successfully.

6 HUMAN STUDIES

In Section 5.4, we have demonstrated that our generated
phapps can bypass the state-of-the-art detection tools. An-
other important point of the phishing attack is that the
attacker is able to obtain users’ information without altering
the user. In this section, we demonstrate that these phapps
can attack users and obtain their credentials in real sce-
narios. Since the generated phapps require interaction with
users to obtain their input data (i.e., username, password),
we design and conduct a human study to evaluate the
practicality of the generated phishing apps. Our goals are
to check:
• if we can obtain user credentials from the generated
phapps without users’ awareness.
• if users can differentiate the generated phapps from their
original apps based on their login pages.

6.1 Settings of Human Studies

Dataset of human study. We use our generated 50 phapps
for our human study. The 100 apps (50 original apps and 50
generated apps) are randomly installed on 20 mobile devices
(e.g., Nexus 5 and Nexus 5X with Android 4.4) with 8 apps
on each device, among which 4 apps are phapps (with 2
financial apps and 2 social apps) and the other 4 are the
original apps (still with 2 financial apps and 2 social apps).
Participant recruitment. We recruit 20 people from our
university to participate in the experiment via emails and
word-of-mouth. The recruited participants have a variety of
occupations, ranging from doctoral students, post-doctoral
researchers to administrative staff, including app devel-
opers, computer vision researchers, etc. They come from
different countries, such as the US, China, Singapore, and
European countries (i.e., Spain and Ireland). The male-to-
female ratio of participants is 7:3. All of the participants
have used Android OS before, and 84.6% of them have
used Android for more than one year. The participants
were compensated with a $10 shopping coupon for their
participation in the study.
Experiment procedures. The experiment begins with a
brief introduction. We explain to the users and walk them
through all of the features that we want them to use. To

TABLE 6: The questions for participants to answer

Task Questions Likert Scale
Score 1-5

T1
T2

Q1: How is the UI design of each app?
Q2: Did you notice anything out of ordinary?
If yes, specify the app and the problem
(e.g., UI layout problem, functionality problem).

Completely
unacceptable
-Very good

T3 Q3: What’s the visual similarity of the two
login pages? If has, please write the differences.

Very different
-Very similar

T4 Q4: Do you think it is a phishing app according to
its login page? Show your confidence.

Very unsure
-Very sure

T5
Q5: When you see the responses after clicking
“login” button, show your confidence that it is
a phishing app?

Very unsure
-Very sure

better mimic the real world scenario, instead of telling
users the fact that there are phapps inside and creating
unnecessary attention, we only provide a list of tasks for
users to accomplish while they are exploring the provided
apps, followed by a questionnaire. Each participant is asked
to work on the 8 apps randomly and explore them on the
assigned Android device. We also asked them to register
each corresponding normal apps before our human study
and get familiar with the basic functionalities. During the
experiment, all apps are used without any interventions or
discussions among the participants.

There are five main tasks that participants were asked
to complete. Participants need to (1) log in the apps using
their credentials; (2) explore functionalities and they can
terminate the exploration at any point of the process; (3) give
a similarity score between the login pages from phishing
apps and the corresponding original ones; (4) distinguish if
the current page is from a phapp; (5) give a confidence score
about the app related to the deception response given by the
phapp.

After the experiments, participants are asked to complete
a questionnaire in Table 6:
T1&T2: We first ask each participant the overall opinions
about each app including the UI design (Q1). Second, they
are asked if they notice any weirdness and related details to
see if they spot the phapps (Q2).
T3: We then provide login pages from phishing apps and
the corresponding original ones of 8 apps to each user to
let them score the similarity and point out differences (if
any) between the two kinds of pages (Q3). As there are 20
participants, each app in our dataset has been checked by
two users to avoid bias.
T4: After they finish answering Q3, we randomly sample
8 different apps (half original, half phishing). We explicitly
tell them that there are phapps inside and ask them to check
which ones are phapps by only looking at the login pages,
and rate their confidence of their choices (Q4) [50].
T5: We then randomly provide 10 response pages from 10
phishing apps after clicking the “login” button, and each of
them displays a response of that in Table 2. We ask them for
the confidence score about the app regarded as a phishing
app (Q5).

Note that all questions have to be answered in the order,
listed in Table 6, to stimulate the real environment, where
information about the phapps would be unknown to a
phishing victim. Different questions are placed to different
pages in the survey, so the participants do not know the next
questions until they finish answering the current questions.
We do not tell participants that there are phapps before

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 13

TABLE 7: The results of phishing app identification

Metrics Number Confidence Scores
TP 26 3.73
FP 24 3.58

TN 56 3.96
FN 54 3.93

Q3, and want to see if they can spot the phapps or any
abnormalities by themselves.

6.2 Results of human studies

It takes about 35 minutes for each participant to finish the
human study, including 16 minutes (2 minutes each) for
using the apps, 10 minutes for filling the questions, and 10
minutes to check the image similarity. For all 80 phapps in
the experiment, we successfully receive users’ usernames
and passwords on our hacking server (Nexus 5X, Android
7.1.1). We show the human study results as follows.
Answer to Q1: Most participants hold neutral views on
design of UI pages, and there is no significant difference
of satisfaction scores of UI design between the original apps
(3.85) and phapps (3.47). We interviewed the participants
who are not satisfied with the UI design of the whole app,
and asked them the reasons for that. Their answers are
mainly about two respects: (1) The UI design is too compact,
e.g., setting options or other login options (e.g., login with
facebook) appear in the page. (2) The UI design is too
simple, e.g., only two inputs (username, password) and a
“login” button are shown in the login page. But according to
our observation, their satisfaction is influenced by whether
the app ran well. Those phapps with response messages
showing problems about the apps seemed to receive lower
satisfaction scores.
Answer to Q2: Among all 160 apps, participants found
that 34 of them exhibit some kind of weirdness, 27 of
them belong to phapps in our experiments, indicating that
users cannot notice any weirdness for a majority of phapps
(53/80 = 66.25%). We further asked participants what kinds
of weirdness they found, and the results show that they
regard most of the weirdness (24/27 = 88.9%) as functional
problems with complaints about “Crash”, “Server failed”,
“Network unavailable”, etc. They regard other weirdness
(3/27 = 11.1%) as UI problems, e.g., lack of features of
remembering username with auto-filling in the EditText bar.
But none of them raised concerns that this was a phishing
app.
Answer to Q3: The results can be seen in the column “Visual
Similarity” of Table 3 and the average score is 4.56. As
users can only select a score between 1 to 5, it means that
most users select 5, i.e., two screenshots are almost perfectly
the same. The visual similarity results correlate with our
observations given by pixel similarity through computing
MSE. Both results verify the quality of the generated login
pages.
Answer to Q4: Different from other questions, we now
inform participants that there are phapps in this experiment
but without telling which apps are phapps. Participants then
determine if the app is a phapp or an original app by looking
at their login pages, and mark their confidence. The results

Fig. 11: The confidence of treating apps as phishing apps
according to different responses

can be seen in Table 7, where TP represents the number of
phapps which are correctly determined, and FP represents
the number of original apps which are wrongly determined
as phishing. TN represents the number of original apps
which are correctly determined, and FP represents the num-
ber of phapps which are wrongly determined as benign.
Although the number of phapps and the original apps are
the same (80 in each) in our experiments, participants regard
50 of them as phapps and the other 110 of them as original
apps. In addition, it seems that users have higher confidence
in their selection of original apps (average of TN and FN:
3.945) than that of phapps (average of TP and FP: 3.655).

Among 50 login pages which were described as phapps
by the participants, 26 (52%) of them are right, while 24
(48%) of them are wrong. Both TP and FP have similar
confidence scores. The probability of correct prediction is
almost the same to random guess (50% for a binary guess).
Similar observations also apply to TN and FN. These results
further demonstrate the effectiveness of our method for
phapp generation, as users cannot accurately spot phapps
with special attention given after being told that phapps
exist.
Answer to Q5: There are 10 kinds of different responses
as listed in Table 2. We try to explore which of them
are more likely to invoke alarm from an user. The results
are shown in Fig. 11. By looking at the mean confidence
of different responses, we can see that users are more
concerned about “Update Google service”, “Update app”,
and “Server failed”. As they are all about downloads, it
seems that users are more sensitive to Internet interaction
and think that it may bring security risks to their apps.
Considering both the mean and lowest confidence values,
we find that “Invalid inputs”, “Slow response”, and “Keep
loading” cause fewer concerns. Therefore, when applying
our approach in practice, it is better to adopt these responses
inside the generated apps. According to the results, these
collected response types from real apps achieve different
reliability when used in phishing apps. The reason for such
random assignment of responses is to defend against the
pattern-based detection approaches. Moreover, before the
response is shown, the user credentials have already been
successfully stolen.
Remark 5. We summarized the key findings based on
participants’ feedback from the human study. Our phapps
successfully masquerade as original apps without raising
users’ special attention in information leakage. Even in cases
when users did raise concerns, we were able to mislead

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 14

them to believe it was a functional problems as opposed to a
security or privacy threat. The login pages of phapps are so
similar to the ones of original apps that participants cannot
distinguish between them. Responses like “Keep loading”
and “Slow response” are more effective in placating users’
security concerns than other responses like “Update Google
service” and “Update app.”

7 DISCUSSION

Limitations of our approach. (1) Our approach does not
fully handle the font family/color of the text extracted from
the EditText component, causing a small visual difference
if the app uses a special font family. Fortunately, according
to the results of the human study, users are insensitive of
such differences. (2) Since we generate components with
normal attributes, such as a plain background of EditTexts,
if the original app uses a colorful image (e.g., photos) as
the background of EditTexts, we cannot generate a perfect
copy of its UI page. (3) As for targeted UI pages with
smaller resolutions, we need to scale the component to an
equivalent size to deploy the same phapp on devices with
larger resolutions.
Deception code generation. As for deception code, we
generate responses for each interactive component such as
“Button” and “TextView” with component listeners. Ac-
cording to the comprehensive experiments, we notice that
page confusion plays a more important role than logic de-
ception in GUI-squatting attacks. Specifically, in the human
study, there is only one person (1/20) who clicked other
interactive components first before directly starting the login
process. Nevertheless, receiving such responses after click-
ing other interactive components, they still regarded it as a
functional issue (logic deception), and then proceeded to the
login process. In other words, phapps are able to extract the
users’ credentials because of the high page similarity (page
confusion) and the realistic responses encoded the deception
code (logic deception).

Moreover, compared with repackaging and cloning tech-
niques for phishing attacks, our approach generates mobile
phishing apps without any domain-knowledge, and there
is no other inputs required except the login page(s) of
an original app. Such a light-weight input enables us to
generate a phishing app with less complexity but with more
reliability of the login pages; thus the deception logic aims
to generate the corresponding responses for the interactive
components in order to convince users when logging in.
There are four main problems to use the original app in
addition to login-related pages as inputs when generating
phishing apps. (1) Firstly, the original apps are often closed-
source, the source code and resource files are unavailable.
Even if we are able to obtain it by reverse engineering the
original apk file, the process is still affected by the packing
and obfuscation techniques as we mentioned in Section 1.
(2) Even if the source code of the app is available, the
functionalities associated with the components can also be
deleted by the technique in [42]. It is difficult to extract
the functionalities associated with the components from the
source code since many dependencies of the logic code,
including third-party libraries and resource files, need to be
considered. (3) More sophisticated logic code means more

UI pages involvement and maintenance. (4) It is a time-
consuming task to reverse engineer and extract function-
alities associated with the components.
Mitigation of GUI-Squatting attack. We introduce the fol-
lowing methods to mitigate our generated phapps. (1) Static
analysis of back-end code. Due to lack of complete logic code
like original apps, phapps may be distinguished from orig-
inal apps through an in-depth static analysis. Specifically,
in this work, apart from the login activity, we integrate
some widely-used activities and also build up the relations
between them. However, the whole logic is still missing.
If defenders can generate the whole picture of phapps at
a high level, the general feature or the detectors based on
the imbalanced structure of two code branches [55] will
help to identify phapps. (2) Taint analysis. Although the
technique is able to track user credentials from source to
sinks (i.e., server URL), they need to determine whether
the remote URL is malicious. For example, one app may
contain several URLs linking to other websites apart from
the official website related to this app, and it is difficult
to determine whether the unofficial URLs are malicious or
not. It is also difficult to maintain a comprehensive black-list
for comparison or have applications nominate white-listed
destinations for authentication. (3) Relying on the Android app
market assessment. Both the official and third-party Android
markets should first analyze similar apps with same or sim-
ilar UI pages and app names, and further identify whether
it is a phishing one. But it is an ineffective way since it relies
on a large-scale reference dataset.

8 RELATED WORK

Web phishing. Gupta et al. [38] summarized that web
phishing attacks have two traditional strategies: spoofed
emails and fake websites. Spoofed emails induce users to
click links in the email and redirect to a malicious web-
site from untrusted servers to extract victims’ information.
Numerous approaches have been proposed to filter out
phishing emails. Fette et al. [34] utilized machine learn-
ing to classify the spoofed emails with a high accuracy.
CANTINA [77] proposed a content-based approach to de-
tect phishing websites, based on the TF-IDF information re-
trieval algorithm. Pan et al. [56] examined anomalies in web
pages (e.g., the discrepancy between a website’s identity) to
detect phishing web pages. Fu et al. [36] and Liu et al. [48]
used visual similarity comparison to distinguish phishing
web pages. DOMAntiPhish [62] leveraged layout similarity
information to distinguish malicious and benign web pages.
Ma et al. [49] trained a predictive classifier based on the web
URLs to identify phishing URLs. However, since attributes
in mobile apps are different from those in web pages, these
detection techniques are not applicable to mobile systems.
In this paper, we focus on phishing attacks under mobile
environments.
Mobile phishing. App-based phishing attack is a major
problem on mobile devices [31], [33], [37], [70], and phish-
ing apps are one of the most popular types in malicious
apps [25], [26], [27], [30], [32], [69]. Repackaged apps are
the most useful technique to perform similarity attacks
(spoofing attacks) for mobile phishing [15]. RESDROID [64]
leverage new features extracted from core resources and

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 15

source code to detect repackaged apps; however, phapps
do not rely on repackaging techniques. Sun et al. [66]
introduced that attackers can analyze the GUI code of the
original apps, modify the corresponding layout code, and
then add logical code to manipulate the original logic.
However, developers can obfuscate or pack their apps
to avoid repackaging malware attacks (e.g., repackaging
phishing attacks). Meanwhile, this process heavily relies
on the attacker’s knowledge about the original app code.
Bianchi et al. [15] extracted API call sequences via static code
analysis to detect phishing apps, however, static analysis
is limited to known attack vectors, and many similarity
attacks don’t require specific API calls. DROIDEAGLE [66]
used the similarity of layout tree between official apps and
third-party apps to detect mobile phishing apps. Marforio
et al. [51], [52] leveraged personalized security indicators as
a mechanism to avoid mobile phishing attacks.

MOBIFISH (APPFISH) [73], [74] used OCR techniques to
extract texts from the screenshot of a login interface. It
identifies the identity from the extracted texts, and compares
it with the actual identity from a remote server of mobile
apps. If two identities are different, there is a warning
presented to users. However, it has two shortcomings: (1)
Many login pages do not contain app identities; (2) A white-
list of legitimate domains are required, in addition to a
database of suspicious applications that needs to first be
constructed and continuously updated.

In this paper, we propose GUI-Squatting attacks; how-
ever, code obfuscations and packs will not affect the ca-
pability of our approach, and knowledge of the original
app code is not essential. Moreover, our approach can
bypass the state-of-the-art repackaging or clone detection
techniques [20]. In addition to similarity attacks, window
overlay and task hijacking are common mechanisms to
execute mobile phishing attacks [21], [60], [61]. Although we
do not focus on these two methods, our approach can also
help generate the similar UI pages that can be leveraged
by these two attacks. However, these two methods can
be detected and mitigated by many cutting-edge detection
techniques [15], [59], [60]. A recent defense solution has been
proposed in [15] based on GUI-related APIs/permissions.
WINDOWGUARD proposed a security model, Android Win-
dow Integrity [59] (AWI), to protect the system against all
GUI attacks, including window overlay and task hijacking.
But our generated phappsare able to bypass all of these
detection techniques successfully.

9 CONCLUSION

In this paper, we propose a novel approach to automatically
generate platform-independent phishing apps, to enable a
powerful and large-scale phishing attack (GUI-Squatting
attack) on different categories of apps within 3 seconds. Our
human study demonstrates the effectiveness of our gener-
ated phishing apps which successfully steal users’ infor-
mation imperceptibly. Additionally, the generated apps can
successfully bypass the state-of-the-art detection techniques.
Finally, by discussing methods to mitigate our generated
apps, we thereby assist security defenders to further explore
and understand the characteristics of new mobile phishing
apps.

REFERENCES

[1] (2015) Alleged ‘Nazi’ Android FBI ransomware mastermind
arrested in Russia. [Online]. Available: https://www.forbes.com/

[2] (2018) Android Packers. [Online]. Available: https://
d3gpjj9d20n0p3.cloudfront.net/AndroidPackers Hacktivity.pdf

[3] (2018) Canny Edge Detection. [Online]. Available: https:
//docs.opencv.org/3.4/da/d22/tutorial py canny.html

[4] (2018) Dilatation Edge. [Online]. Avail-
able: https://docs.opencv.org/2.4/doc/tutorials/imgproc/
erosion dilatation/erosion dilatation.html

[5] (2018) GDPR. [Online]. Available: https://www.tripwire.com/
solutions/compliance-solutions/gdpr/

[6] (2018) One-way analysis of variance. [Online]. Available:
https://en.wikipedia.org/wiki/One-way analysis of variance

[7] (2018) Opencv. [Online]. Available: https://opencv.org/
[8] (2018) Optical Character Recognition. [Online]. Available:

https://en.wikipedia.org/wiki/Optical character recognition
[9] (2018) Phishers leveraging GDPR-Themed scam emails

to steal users’ information. [Online]. Available: https:
//securityboulevard.com

[10] (2018) Squatting attack. [Online]. Available: https:
//en.wikipedia.org/wiki/Squatting attack

[11] (2018) Tesseract. [Online]. Available: https://github.com/
tesseract-ocr/tesseract

[12] (2018) UIAutomator. [Online]. Available: https://
developer.android.com/training/testing/ui-automator

[13] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
and C. Siemens, “Drebin: Effective and explainable detection of
Android malware in your pocket.” in NDSS, 2014.

[14] T. Beltramelli, “pix2code: Generating code from a graphical user
interface screenshot,” arXiv preprint arXiv:1705.07962, 2017.

[15] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel,
and G. Vigna, “What the app is that? deception and countermea-
sures in the Android user interface,” in Security and Privacy (S&P),
2015.

[16] C. Bravo-Lillo, L. F. Cranor, J. Downs, and S. Komanduri, “Bridg-
ing the gap in computer security warnings: A mental model
approach,” IEEE Security & Privacy, 2011.

[17] CAPEC. (2017) Mobile Phishing. [Online]. Available: https:
//capec.mitre.org/data/definitions/164.html

[18] O. Chapelle, P. Haffner, and V. N. Vapnik, “Support vector ma-
chines for histogram-based image classification,” IEEE transactions
on Neural Networks, vol. 10, no. 5, pp. 1055–1064, 1999.

[19] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From UI design
image to GUI skeleton: A neural machine translator to bootstrap
mobile GUI implementation,” in The 40th International Conference
on Software Engineering, Gothenburg, Sweden. ACM, 2018.

[20] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on Android mar-
kets,” in Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014, pp. 175–186.

[21] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app
without actually seeing it: UI state inference and novel Android
attacks.” in USENIX Security Symposium, 2014, pp. 1037–1052.

[22] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu,
“Storydroid: Automated generation of storyboard for android
apps,” in Proceedings of the 41st International Conference on Software
Engineering. IEEE Press, 2019, pp. 596–607.

[23] S. Chen, G. Meng, T. Su, L. Fan, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“Ausera: Large-scale automated security risk assessment of global
mobile banking apps,” arXiv preprint arXiv:1805.05236, 2018.

[24] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu,
“Are mobile banking apps secure? what can be improved?” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2018, pp. 797–802.

[25] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li,
“Automated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach,” computers &
security, vol. 73, pp. 326–344, 2018.

[26] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: A
streaminglized machine learning-based system for detecting an-
droid malware,” in Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security. ACM, 2016, pp. 377–
388.

https://www.forbes.com/
https://d3gpjj9d20n0p3.cloudfront.net/AndroidPackers_Hacktivity.pdf
https://d3gpjj9d20n0p3.cloudfront.net/AndroidPackers_Hacktivity.pdf
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html
https://www.tripwire.com/solutions/compliance-solutions/gdpr/
https://www.tripwire.com/solutions/compliance-solutions/gdpr/
https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://opencv.org/
https://en.wikipedia.org/wiki/Optical_character_recognition
https://securityboulevard.com
https://securityboulevard.com
https://en.wikipedia.org/wiki/Squatting_attack
https://en.wikipedia.org/wiki/Squatting_attack
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://capec.mitre.org/data/definitions/164.html
https://capec.mitre.org/data/definitions/164.html

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 16

[27] S. Chen, M. Xue, and L. Xu, “Towards adversarial detection of
mobile malware: poster,” in Proceedings of the 22nd Annual Interna-
tional Conference on Mobile Computing and Networking. ACM, 2016,
pp. 415–416.

[28] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Can’t you
hear me knocking: Identification of user actions on android apps
via traffic analysis,” in Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy. ACM, 2015, pp. 297–
304.

[29] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen,
X. Wang, and K. Zhang, “Understanding Android obfuscation
techniques: A large-scale investigation in the wild,” arXiv preprint
arXiv:1801.01633, 2018.

[30] L. Fan, M. Xue, S. Chen, L. Xu, and H. Zhu, “Poster: Accuracy vs.
time cost: Detecting android malware through pareto ensemble
pruning,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security. ACM, 2016, pp. 1748–1750.

[31] A. P. Felt and D. Wagner, Phishing on mobile devices. na, 2011.
[32] R. Feng, S. Chen, X. Xie, L. Ma, G. Meng, Y. Liu, and S.-W. Lin,

“Mobidroid: A performance-sensitive malware detection system
on mobile platform.”

[33] E. Fernandes, Q. A. Chen, J. Paupore, G. Essl, J. A. Halderman,
Z. M. Mao, and A. Prakash, “Android UI deception revisited:
Attacks and defenses,” in International Conference on Financial
Cryptography and Data Security. Springer, 2016.

[34] I. Fette, N. Sadeh, and A. Tomasic, “Learning to detect phishing
emails,” in Proceedings of the 16th international conference on World
Wide Web. ACM, 2007.

[35] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak and
Dagger: from two permissions to complete control of the UI
feedback loop,” in Security and Privacy (S&P), 2017.

[36] A. Y. Fu, L. Wenyin, and X. Deng, “Detecting phishing web pages
with visual similarity assessment based on earth mover’s distance
(EMD),” IEEE transactions on dependable and secure computing, 2006.

[37] D. Goel and A. K. Jain, “Mobile phishing attacks and defence
mechanisms: state of art and open research challenges,” Computers
& Security, 2017.

[38] B. Gupta, N. A. Arachchilage, and K. E. Psannis, “Defending
against phishing attacks: taxonomy of methods, current issues and
future directions,” Telecommunication Systems, vol. 67, no. 2, pp.
247–267, 2018.

[39] G. Ho, A. S. M. Javed, V. Paxson, and D. Wagner, “Detecting cre-
dential spearphishing attacks in enterprise settings,” in Proceedings
of the 26rd USENIX Security Symposium (USENIX Security2017),
2017.

[40] J. Hong, “The state of phishing attacks,” Communications of the
ACM, vol. 55, no. 1, pp. 74–81, 2012.

[41] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE
transactions on information theory, 1962.

[42] J. Huang, Y. Aafer, D. Perry, X. Zhang, and C. Tian, “Ui driven An-
droid application reduction,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Press, 2017, pp. 286–296.

[43] INCAPSULA. (2018) Phishing Attacks. [Online]. Available:
https://www.incapsula.com/web-application-security/

[44] J. Jiang, S. Wen, S. Yu, Y. Xiang, and W. Zhou, “Identifying
propagation sources in networks: State-of-the-art and comparative
studies,” IEEE Communications Surveys & Tutorials, vol. 19, no. 1,
pp. 465–481, 2016.

[45] K. Krombholz, H. Hobel, M. Huber, and E. Weippl, “Advanced
social engineering attacks,” Journal of Information Security and
applications, 2015.

[46] C.-C. Lin, H. Li, X.-y. Zhou, and X. Wang, “Screenmilker: How to
milk your Android screen for secrets.” in NDSS, 2014.

[47] L. Liu, O. De Vel, Q.-L. Han, J. Zhang, and Y. Xiang, “Detecting and
preventing cyber insider threats: a survey,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 2, pp. 1397–1417, 2018.

[48] W. Liu, X. Deng, G. Huang, and A. Y. Fu, “An antiphishing
strategy based on visual similarity assessment,” IEEE Internet
Computing, vol. 10, no. 2, pp. 58–65, 2006.

[49] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
learning to detect malicious web sites from suspicious URLs,”
in Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2009.

[50] L. Malisa, K. Kostiainen, and S. Capkun, “Detecting mobile ap-
plication spoofing attacks by leveraging user visual similarity
perception,” in Proceedings of the Seventh ACM on Conference on

Data and Application Security and Privacy. ACM, 2017, pp. 289–
300.

[51] C. Marforio, R. Jayaram Masti, C. Soriente, K. Kostiainen, and
S. Čapkun, “Evaluation of personalized security indicators as an
anti-phishing mechanism for smartphone applications,” in Pro-
ceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, 2016.

[52] C. Marforio, R. J. Masti, C. Soriente, K. Kostiainen, and S. Capkun,
“Hardened setup of personalized security indicators to counter
phishing attacks in mobile banking,” in Proceedings of the 6th
Workshop on Security and Privacy in Smartphones and Mobile Devices,
2016.

[53] T. A. Nguyen and C. Csallner, “Reverse engineering mobile ap-
plication user interfaces with REMAUI,” in Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on.
IEEE, 2015.

[54] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel,
“Composite constant propagation: Application to Android inter-
component communication analysis,” in Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 77–88.

[55] X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin, “Dark hazard:
Learning-based, large-scale discovery of hidden sensitive opera-
tions in Android apps.” in NDSS, 2017.

[56] Y. Pan and X. Ding, “Anomaly based web phishing page detec-
tion,” in Computer Security Applications Conference, 2006. ACSAC’06.
22nd Annual. IEEE, 2006, pp. 381–392.

[57] PHISHING.org. (2017) History of Phishing. [Online]. Available:
http://www.phishing.org/history-of-phishing

[58] ——. (2017) Phishing Techniques. [Online]. Available: http:
//www.phishing.org/phishing-techniques

[59] C. Ren, P. Liu, and S. Zhu, “Windowguard: Systematic protection
of gui security in Android,” in Proc. of the Annual Symposium on
Network and Distributed System Security (NDSS), 2017.

[60] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu, “Towards discovering
and understanding task hijacking in Android.” in USENIX Security
Symposium, 2015.

[61] F. Roesner and T. Kohno, “Securing embedded user interfaces:
Android and beyond.” in USENIX Security Symposium, 2013, pp.
97–112.

[62] A. P. Rosiello, E. Kirda, F. Ferrandi et al., “A layout-similarity-
based approach for detecting phishing pages,” in Security and
Privacy in Communications Networks and the Workshops, 2007. Se-
cureComm 2007. Third International Conference on. IEEE, 2007, pp.
454–463.

[63] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer, “The
emperor’s new security indicators,” in Security and Privacy (S&P),
2007.

[64] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “Towards a scal-
able resource-driven approach for detecting repackaged android
applications,” in Proceedings of the 30th Annual Computer Security
Applications Conference. ACM, 2014, pp. 56–65.

[65] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of Android
apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ACM, 2017.

[66] M. Sun, M. Li, and J. Lui, “Droideagle: seamless detection of
visually similar Android apps,” in Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks.
ACM, 2015.

[67] N. Sun, J. Zhang, P. Rimba, S. Gao, L. Y. Zhang, and Y. Xiang,
“Data-driven cybersecurity incident prediction: A survey,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1744–1772,
2018.

[68] Y. Sun, A. K. Wong, and M. S. Kamel, “Classification of imbalanced
data: A review,” International Journal of Pattern Recognition and
Artificial Intelligence, 2009.

[69] C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou, “A
large-scale empirical study on industrial fake apps,” in Proceedings
of the 41st International Conference on Software Engineering: Software
Engineering in Practice. IEEE Press, 2019, pp. 183–192.

[70] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Invernizzi,
Y. Markov, O. Comanescu, V. Eranti, A. Moscicki et al., “Data
breaches, phishing, or malware?: Understanding the risks of stolen
credentials,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017.

https://www.incapsula.com/web-application-security/
http://www.phishing.org/history-of-phishing
http://www.phishing.org/phishing-techniques
http://www.phishing.org/phishing-techniques

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2956035, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, MARCH 2019 17

[71] wandera. (2017) Mobile data report: Focus on Phishing.
[Online]. Available: http://go.wandera.com/rs/988-EGM-040/
images/Phishing%20%282%29.pdf

[72] S. Wen, M. S. Haghighi, C. Chen, Y. Xiang, W. Zhou, and W. Jia, “A
sword with two edges: Propagation studies on both positive and
negative information in online social networks,” IEEE Transactions
on Computers, vol. 64, no. 3, pp. 640–653, 2014.

[73] L. Wu, X. Du, and J. Wu, “Mobifish: A lightweight anti-phishing
scheme for mobile phones,” in Computer Communication and Net-
works (ICCCN), 2014 23rd International Conference on. IEEE, 2014.

[74] ——, “Effective defense schemes for phishing attacks on mobile
computing platforms,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 8, pp. 6678–6691, 2016.

[75] T. Wu, S. Wen, Y. Xiang, and W. Zhou, “Twitter spam detection:
Survey of new approaches and comparative study,” Computers &
Security, vol. 76, pp. 265–284, 2018.

[76] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, “Net-
work traffic classification using correlation information,” IEEE
Transactions on Parallel and Distributed systems, vol. 24, no. 1, pp.
104–117, 2012.

[77] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-based
approach to detecting phishing web sites,” in Proceedings of the
16th international conference on World Wide Web. ACM, 2007.

[78] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in
Proceedings of the second ACM conference on Data and Application
Security and Privacy. ACM, 2012.

Sen Chen received his Ph.D. degree in com-
puter science from School of Computer Science
and Software Engineering, East China Normal
University, Shanghai, China, in June 2019. Cur-
rently, he is a postdoctoral Research Fellow
in School of Computer Science and Engineer-
ing, Nanyang Technological University, Singa-
pore and working with Yang Liu. Previously, he
was a visiting scholar of Cyber Security Lab
(CSL), SCSE, NTU from October 2016 to June
2019. His research focuses on mobile security

and testing, AI security and testing, and big data. He has published
broadly in top-tier security and software engineering venues, including
CCS, ASIACCS, ICSE, FSE, ASE, and TSE. More information is avail-
able on https://sen-chen.github.io/

Lingling Fan received her Ph.D and B.S. de-
grees in computer science from East China Nor-
mal University, Shanghai, China in June 2019
and June 2014, respectively, and now she is a
postdoctoral Research Fellow in School of Com-
puter Science and Engineering, Nanyang Tech-
nological University, Singapore. Her research
focuses on program analysis and testing, An-
droid application analysis and testing, and model
checking. She got an ACM SIGSOFT Distin-
guished Paper Award at ICSE 2018. More infor-

mation is available on https://lingling-fan.github.io/

Chunyang Chen obtained his Ph.D. degree
from School of Computer Science and Engineer-
ing, Nanyang Technological University (NTU),
Singapore, and bachelor’s degree from Bei-
jing University of Posts and Telecommunications
(BUPT), China, June 2014. He is a lecturer
(a.k.a. Assistant Professor) in Faculty of Informa-
tion Technology, Monash University, Australia.
His research focuses on Mining Software Repos-
itories, Text Mining, Deep Learning, and Human
Computer Interaction.

Minhui Xue is Lecturer (a.k.a. Assistant Profes-
sor) of School of Computer Science at the Uni-
versity of Adelaide. He is also Honorary Lecturer
with Macquarie University. His current research
interests are machine learning security and pri-
vacy, system and software security, and Inter-
net measurement. He published widely in top
security and software engineering conferences,
including IEEE S&P, NDSS, ACM IMC, PETS,
IEEE/ACM FSE, IEEE/ACM ASE, and ACM IS-
STA. He is the recipient of the ACM SIGSOFT

distinguished paper award and IEEE best paper award, and his work
has been featured in the mainstream press, including The New York
Times and Science Daily.

Yang Liu graduated in 2005 with a Bachelor of
Computing (Honours) in the National University
of Singapore (NUS). In 2010, he obtained his
PhD and started his post doctoral work in NUS,
MIT and SUTD. In 2011, Dr. Liu is awarded the
Temasek Research Fellowship at NUS to be the
Principal Investigator in the area of Cyber Se-
curity. In 2012 fall, he joined Nanyang Techno-
logical University (NTU) as a Nanyang Assistant
Professor. He is currently an associate professor
and the director of the cybersecurity lab in NTU.

He specializes in software verification, security and software engi-
neering. His research has bridged the gap between the theory and
practical usage of formal methods and program analysis to evaluate
the design and implementation of software for high assurance and
security. His work led to the development of a state-of-the-art model
checker, Process Analysis Toolkit (PAT). By now, he has more than
200 publications and 6 best paper awards in top tier conferences and
journals. With more than 20 million Singapore dollar funding support, he
is leading a large research team working on the state-of-the-art software
engineering and cybersecurity problems.

Lihua Xu received her Ph.D. degree in Com-
puter Science in June 2009, from the University
of California at Irvine, USA. She is currently
an Associate Professor at New York Univer-
sity Shanghai and East China Normal Univer-
sity, China. Before joining New York University
Shanghai as part of its overseas talent introduc-
tion program in 2012, Lihua held tenure-track As-
sistant Professor position at Rochester Institute
of Technology, USA. Her current research fo-
cuses on software engineering, automated soft-

ware testing, and mobile security.

http://go.wandera.com/rs/988-EGM-040/images/Phishing%20%282%29.pdf
http://go.wandera.com/rs/988-EGM-040/images/Phishing%20%282%29.pdf

