2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) | 978-1-7281-8595-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICCCNT51525.2021.9579959

IEEE - 51525

AngErza: Automated Exploit Generation

Shrati Dixit!, T K Geethnal, Swaminathan Jayaramani, and Vipin Pavithran®

Department Of Computer Science and Fngineering
*Amrita Center for Cybersecurity Systems and Networks
Amrita Vishwa Vidyapeetham, Amritapuri, India

dixitshruti(O@ gmail.com, geethna.teckey @ gmail.com, swaminathanj @ am.amrita.edu, viping @ am.amrita.edu

Abstraci—Vulnerability detection and exploitation serves
as a milestone for secure development and identiflving
major threats in sofiware applications. Auntomated exploit
generation helps in easier identification of bugs, the attack
veciors and the various possibilities of generation of the
exploit payioad. Thus, we Introduce AngErza which uses
dynamic and symbolic execulion Lo identify hot-spots in the
code, formulate constrainis and generale a payload based
on those constraints. Our fool is entively based on angy
which is an open-sourced offensive binary analysis frame-
work. The work around AngErza focuses on exploit and
vainerability detection in CTF-siyle T binaries compiled on
64-bit Intel archileciure for the early-phase of this project.

Index Terms—Automaled Exploit Genera-
tion(AEGYyLbuffer overflow, angr, Symbolic Execution

I INTRODUCTION

Software volnerabilities arise duve to many factors
that includes design flaws, programming defects and
configuration errors. I not detecled and reclified, the
software faces the risk of exploitation leading to po-
tential security breaches which can prove to be cosfly.
Consequently, identifyving vulnerabilities in the code has
become indispensable in secure software development.
During this phase, major threals in sofiware applicalions
are detected by techniques such as code auditing, fuzzing
applications, threat modelling and application penetra-
tion testing.

Vulnerabilities are of different types and detection
technigues vary with each type. Delection involves anal-
ysis of code, either source or binary. Hor instance, a
buffer overflow arises when the size of a buffer in
memory 18 less than the size of the dala is being stored
in that buffer. This vulnerability can be exploited by an
aftacker overwriting memory address for example, the
return address in a call stack to execute the malicious
code of the attacker.

The process of detection is complex and many vuol-
nerahilities go unnoticed during manual detection. Also,

for crafting software vulnerability exploits one requires
comprehensive knowledge of the underlying system like
file format, processor architecture, mitigation enabled on
the software, and working of the host operating system.
Thus, source code analysis alone would be an incomplete
approach for the same. The focus of ocur work is on
dynamic binary analysis and exploit generation, wherein
the raw binaries that compose a complete application
are analyzed during run-time. This is especially helpful
when there is no or limited access o source code.

AngHrza is a solution for developers to validate their
code and also o understand in what ways the pro-
gram cain be vulnerable, It generates automated exploit
pavloads for 64-hit BELHs x86 architecture with stack
buffer overflow wvulnerability. AngHrza detects buffer
overflow and format string vulnerabilities by doing dy-
namic analysis on the binary using 2pipe. It checks for
constraints in the program and uses angr [9]-[11] to craft
an exploit pavicad for attacking buffer overflow. For the
initial stage Anghreza focuses on CTH-style binaries. CTF
{Capture the Flag) competitions aim to teach learn secure
coding practices in a gamilied manner The vulnerable
binaries used in such competitions are uvsually less ob-
fuscated compared to real world applications. AngBrza
can he used by CTF players and developers fo test
the security of binaries and implement more checks by
understanding the severity of each hug.

The main contribution of the paper is AngHrza, a fully
antomated tool based on dynamic symbolic execufion
and analysis that analyzes the vulnerability of GNU
compiled 64-hit binaries {or the bugs of hufler overflow
class. Through a variely of experiments, we show how
the AngHrza not only detects overflow vulnerability, but
also determines the length and severity of each bug.
The rest of the paper is structured as follows. Section I
provides a briel summary of the related work. Section 11
discusses the core of our work on awlomaled exploil

12th [CCCNT 2021

July 6-8, 2021 - liT - Kharagpur
Authorized licensed use limited to: Northeastern University. Downlgggechgnfredaaizer 09,2021 at 05:30:46 UTC from IEEE Xplore. Restrictions apply.

IEEE - 51525

generation for buffer overflows. Section IV talks presents
the resulis of AngErza and analysis. Section V provides
our conclusions and summarizes the divections for future
work,

II. RELATED WORK

There has been considerable interest in program anal-
ysis, vulnerability delection, and automated exploil gen-
eration for secure software development. In this section
we discuss some of the closely related work.

Program analysis involves checking the program for
its correctuess and to rule out any unintended bugs. The
following are the two techniques for performing program
analysis:

Stafic Analysis involves analysis at the source code
level for any existing vulnerabilities without running the
program. A data flow, control flow, and lexical analysis
is dome for the program (o find any vulnerabililies. How-
ever, relying on static analysis alone mavbe insufficient
as this technigue misses oul finding valnerabilities/bugs
which could exist only during run-time execution.

Dynamic Analysis requires the program to be exe-
cuted for valnerability detection and testing. It involves
debugging the code manwvally or vsing automated tools
for checking memory coruplion errors, code coverage,
and other possible run-time errors. Dynamic analysis
helps discovering vulnerabilities which mavbe complex
to detect during static analysis. But it might miss out on
paths which may not be covered during run-time.

Dynamic analysis can be combined with visualization
methods to provide structural and semantic summariza-
tion [12], [13] of program behavicr. These can serve as
effective aids in debugging design errors [14].

Vulnerability Detection in Binaries. The two most
widely adopted technigues for valnerable defection in
binaries are fuzzing and sviobolic execution.

Fuzzing [8] is an automated vulnerability detection
fechnigue in which random data is sent to the program
0 as to result the program in unexpected behaviour like
getling exceptions, program crash or andefined oulput
{especially memory leaks). This technigue is widely used
in software vulnerability detection as it is a simpler
way of finding whether a hug exists in an application.
However, sanitizers are used to assess the sensitivity of
the inpuls which lead to any undefined hehaviour of the
application. Also, a "dumb” fuzzer lacks generating input
which helps covering all paths of a program.

Svmbolic Execurion [7] s a ftechnigue which helps
determining an input that could lead to execution of a
conditional branch or a specific path in the program.
In the field of vulnerability delection this lechnigue can

be used to find an input which could satisfy constraints
for triggering undefined behaviour in the applicalion.
However, this technigque saffers from palh explosion
when finding all possible paths in a complex program.

Aunfomaled Exploit Generation. Over the last
decade there have been considerable research work on
antomaled exploit generation. As discussed earlier ex-
ploit generafion reguires understanding all the aspects of
the applications and its environment inn detail. The initial
approach introduced in paper titled ABG: Automatic
Exploit Generation [1] vsed was by using both source
code and run-ime binary information. However, this
mformation may not be available for all vulnerability
detection scenarios. Symbolic execution was vsed in the
later approaches, The paper ARG [or Bulfer Overflow
Vuolnerabilities [2] presents a solution that relies on the
binary code for the binary analvsis and helps bypassing
mitigations such as ASLE (addrvess space layoul ran-
domization) and non-executable stack. The tool relies
on angr for symbolic execution but suffers rom path
explosion in complex programs. A hybrid approach
however solves this and helps in easier bug detection
and exploration. Mayhem [5] which uses a novel hyhrid-
symbolic execution technigue and covers two classes of
bugs: buller overllows and formal strings. Poly ARG [3]
generates automatically generates multiple exploits for a
vulnerable program and thus is more resilient. However,
it does not bypass ASLE and suffers performance issues
due to reliance on symbolic execution. Overall, ARG has
been hol-topic Tor research confinuously and has been
widely been used in software testing and validation.

Considering the above approaches we have applied
symbolic execulion n AngHrza for solving constrainds
for generation of exploit pavload. It does so by using
angr which 18 a binary analysis framework that uses
dynamic symbolic execution for analyzing binaries and
has been at the forefront of avtomated analvsis. We dy-
namically analyze the binary using v2pipe for defecting
butfer overfiow and format string. In the coming section
we have discussed our approsch in detail.

1L

This section would falk about the working of Anghrza
in detail. AngHrza is a light-weight approach for code
authors for testing their programs. I any volnerabilily
is found in the program the developer can analyze the
generated exploit and introduce checks/patches in the
program to harden the code against any exploits.

The main deiver script for Anglrza iz written in
python 3.6, As discassed earlier AngHrza relies on binary
analysis framework in python called angr for all ils

ANGHERZA

12th [CCCNT 2021

July 6-8, 2021 - liT - Kharagpur
Authorized licensed use limited to: Northeastern University. Downlgggechgnfredaaizer 09,2021 at 05:30:46 UTC from IEEE Xplore. Restrictions apply.

IEEE - 51525

functionalities. angr helps performing dynamic symbolic
execution and static analysis on the binary. The functions
of AngErza is divided into 2 sub-modules: finding buffer
overflow and length, and exploit generation. If buffer
overflow bug is not detected in the binary then AngErza
checks if there is a format string bug. We will be taking
a simple buffer overflow scenario and walking step-by-
step through the above modules of the tool. The below
code, bug.c, is compiled without any stack protectors.

#include <stdlib.h>

> #include <unistd.h>
s #include <string .h>

s int main(int

argc, char const =xargv[])

-‘_'{

char buffer[16];
read (0, buffer ,80);
return 0;

}

A. Terms and definitions

Definition 1. Format string vulnerability : a program
vulnerability when the user’s input is treated as format
string or in other words, when the format specifier and
the parameters to be printed do not match. An attacker
can do memory reads and writes by controlling this
vulnerability.

Definition 2. Buffer overflow : when the data sent to
a program is stored in a buffer whose size is less than
then input size.

Definition 3. r2pipe : an API that allows users with
methods that can be used to send and run r2 (radare2)
commands on a binary. Radare2 is a framework which
is used for disassembling, patching, and debugging for
reverse engineering binaries.

Definition 4. Exploit: an exploit is a well crafted string
or code which attacks the vulnerabilities in a program to
cause unintended behaviour in the program.

B. Determining buffer overflow

Using angr first all the functions which are called in
the binary are listed out. In the above list of functions
AngErza checks for the stdin functions. In our case the
stdin function used is read. Then it does a dynamic
analysis using 12pipe APIs where the arguments of
stdin functions are checked. This is done by getting the
register values using r2pipe which store the arguments
that are passed to the function. Buffer size is calculated
as the difference of the stack address and the base pointer
of stack (RBP). If the buffer size is less than the size
of input then the constraint for overflow is satisfied. The

Check for Check for buffer
ELF properties and '{,‘3 overflow condition for
mitigations each stdin function
L7
« J
Check for exploit Buffer Check for
scenarios: RIP overwrite, overflow format strin
ROPchain, shellcode as possible? b 9
per the constraints ug
Print the pointers for
Payloa@ NO exploit generation to
Genen"atnon the user
possible?
— Print the
payload

Fig. 1. overall working

difference of the size of input and buffer size is evaluated
as the overflow size. Here, the size of the buffer is 16
whereas the input size is 80. Thus, the buffer overflow
bug exists here and the size of which is 64.

0x4005c2 <+30>:mov edi,0x0
ELF » 0x4005c7 <+35>:call <read@plt>
Parsing using 0x4005cc <+40>:mov eax,0x0
r2pipe
breakpoint at the | stdin fn

A

Buf_size = rbp - rsi = 16 J

registers values checked

to find overflow and length Input_size = rdx = 80

Overflow detected
(len = input_size -

YES Buf_size < input_size
and

buf_size) Canary disabled

Fig. 2. Detecting buffer overflow in bug.c

C. Find exploit payload

Next, we check if canary is enabled in the binary by
getting the properties of the binary by using pyelftools.
If canary is disabled in the binary then we can do
attack which hijacks the return pointer. We check for
the next mitigation which is PIE (position independent
executable), by enabling this address space of the sec-
tions in the program are randomized each time. If this
is enabled then we may only be able to do shellcode
injection attack. For this, we must check if stack is non-

12th ICCCNT 2021

July 6-8, 2021 - IIT - Kharagpur
Authorized licensed use limited to: Northeastern University. DowanMgp@gqmi@r 09,2021 at 05:30:46 UTC from IEEE Xplore. Restrictions apply.

IEEE - 51525

executable (NX) or not. If NX mitigation is disabled then
we can do the shellcode injection attack.

4

Considering the above constraints we check for the
possibility of payload generation in any of the scenarios: s

ROP chain generation : AngErza try to generate a
ROP chain for doing an execve syscall. It achieves this
by using angrop which is an angr based ROP chain
generation tool. If the necessary gadgets are found in
the binary for doing the execve syscall the ROP chain
is generated else the possibility for the next attack is
checked.

RIP overwrite : AngErza checks for the possible
scenario of overwriting the return address of the current
function, that is stored on stack, directly with a function
such as system provided it is called in the binary. We
achieve this by giving constraints to angr to generate an
input such that the return address is overwritten.

Shellcode Injection : If NX is disabled, AngErza tries
to find an appropriate shellcode matching satisfying the
constraint of size as per the buffer size calculated.

Parsing |Canary :No
Check for using |NX : Yes
ELF mitigations |———-»|PIE :No
enabled pyelftools | Fortify :No
7 RelRO : Partial

Parsing using
angr

Not possible as no
system function
found in binary

Check for RIP
overwrite attack
Check for

ROP chain
ROP chain

Found? &

Parsing using s
angr Ien(ch§|n <
buf_size)
ROP chain
generation using
angrop

[Print the generated ROP chain]

Fig. 3. Exploit Generation of bug.c

If any of the attack payload is found by AngErza, it is
printed out to the analyst which can be verified by testing
it on the binary. For our example, bug.c AngErza was
able to generate a ROP chain for execve syscall which
we later verified to spawn a shell.

D. Finding format string bug

If the buffer overflow bug is not detected in the binary
then AngErza checks for a format string bug but we do
not generate an exploit for it.

#include <stdio .h>

> #include <stdlib .h>

s {

int main(int argc, char const =argv[])
char a[10];
scanf (P%10s* ;a);
printf (a);
return 0;

0}

In the above example, the format string vulnerability
exist in printf{a) as the user input is not formatted when
printing. Similar to the buffer overflow detector, we use
r2pipe API to set a breakpoint at the printf function. We
check the value of the registers and see whether the first
argument is a readable writable address on the stack. If
yes, then we print “format string bug is detected” else
“format string bug is not detected” is printed to the user.

IV. RESULT AND ANALYSIS

This section details about the evaluation of AngErza.
We tested AngErza with C binaries compiled on x86 64-
bit architecture. We developed AngErza to support bug
detection, constraint generation and exploit generation.
We use angr tool to do symbolic execution on the given
binary and to generate constraints. We generate file and
structure related constraints by extracting debug and
compilation details. We produce python based payloads
using angrop (rop-gadget finder) and hardcoded shell-
codes. These payloads can be used in the exploit script to
spawn a shell in the given system. We evaluated AngErza
on a Linux machine with Intel Core CPU with 1TB hard
disk and 4 GB RAM.

The tables below summarizes the results of the test
binaries which have been used to validate AngErza.
The various constraints, bug and attack are mentioned
against each binary. The results are denoted by TP -
True Positive, FP - False Positive, TN - True Negative,
FN - False Negative.

Vulnerability Detection and Constraint Genera-
tion. We use a test case to illustrate the process of
exploit generation for the given vulnerable binaries. We
are presenting it using three different case scenarios from
the table above. The binary demo-win has a user defined
function call to system, but the control flow doesn’t allow
the binary to execute it. AngErza gets the file properties
and protections, in this case NX bit is enabled and the
tool successfully detects the overflow length. According
to the overflow length and the protections, the tool tries
to model a payload to spawn a shell. Here, it generates
a return-to-system attack payload. For the second case
of demo, the file protections forces the tool to model
an exploit which involves making a call to execve() by
setting the arguments and returning to a syscall gadget.
The ROP-gadgets are generated with the help of angrop

12th ICCCNT 2021

July 6-8, 2021 - IIT - Kharagpur
Authorized licensed use limited to: Northeastern University. DowanM@gp@gqmm’r 09,2021 at 05:30:46 UTC from IEEE Xplore. Restrictions apply.

IEEE - 51525

TABLE I
BUTFER OVERFLOW [DETRCTED
Binary Cuonsiraints Bug Adlack Hesult
demo win | system- gets ROP TP
function chain
demo N gels syscail TP
enabled ROP
vuln NX- ead stmm to | TP
dizsabled shellcode
lotlery statically fgeols syscail i
linked ROP
shellcode- | NX- read return to | TP
golf enabled shellcode
Double Fuortify read, format ™
Teouble disabled, printt string,
systemn- ROP
function chadn

and a chain is generated accordingly which will spawn
a shell. In the shell binary, NX protection bit is disabled
which makes the tool take another path which involves
in generating a payload which will result in a shellcode.
AngErza caleulates the overflow and buffer length and
prints out the appropriate shellcode, which can be used
i the exploit script to facilitale the retum-to-shellcode
altack. The binary lollery was a statically linked 64
bit executable with an fgets function taking input. The
overflow was detected by AngBrza but i was not able
to generate a complete exploit becavse of the size of
the hinary. Double Trouble binary had 2 bugs - buffer
overflow and also format siring volnerability. AngHrza
detected detected the overflow and generated a ROP
chain exploil for the overflow bug. Bul it was not able Lo
detect a format string as it already generated an exploit
for overflow vulnerability. All the other hinaries used for
iesting AngHrza on the hasis of overflow detection are
different varianis of the protections and binary structore.

TABLE II
BUPFFER OVERFLOW NOT DETECTED
Binary Cuonsiraints Bug Adlack Hesult
format- Fortify- prinif format TP
siring disabled string
attack
no-bug Al pro- | NIL no vulner- | FN
lections abilities
enabled
contioller system fgats integer ™
function wverflow
returning fotity snprintf formal iy
disabled string

In the format-siring binary, a bhuffer overfllow was

not detected and hence there was no possibility of an
mjection attack. The binary passed checks for a possible
format string attack and printed out the result. The
binary no-bug has no wvulnerable functions/processes.
Hence it was not able to detect an overflow or a format
string attack. AngHrza displays that no vulnerabity was
discovered. The controller binary had a hidden integer
overflow bug which unwraps during runtime. AngBrza
was not able to detect this possibility as the maximum
size does not lead to an overflow bul the possihility
of a negative integer was overlooked. In the case of
returning, AngHrza was able to detect the format string
vulnerability in the snprintf function which can lead to
memory leak and memory overwrite.

V. CONCLUSION

In this paper, we presented Anghrza, a fully asuto-
mated tool based on dvnamic symbolic execution and
analysis, which helps (o analyze the vulnerahility and
exploitability of GNU compiled 64-bit binaries in the
case of buffer overflow class of bugs. The tool was
able o detect overflow valnerahility and the length of
each overfiow and its severity. AngHiza was also able
fo detect format siring volnerability in buggy binaries.
Using AngHrza, we were able to evaluate the security
of the binary and facilitate adding more checks, We
have presented an evaluation of our tool and thus we
are publishing it as a CTF-helper tool

As AngHrza relies on angr, which uses symbolic exe-
cution, it suffers from path explosion when working with
obfuscated and large binaries. AngFrza cannot bypass all
binary mitigations and O8 defenses (ke ASLR). Future
work for Angliza includes extending it to be resilient
against these defenses. And also, enhance it to detect and
generale exploils for other classes of bugs in both stack
and heap. Anglrza is limited fo generating 3 types of
atfacks for exploiting overflow as explained in this paper.
Thus. it can be improved to include other attacks such
as refurn-to-libe and stack pivoting.

REFERENCES

{1] Avgerinos, Thanasaiz and Cha. Sang and Hao, Brent and Brum-
ey, David. (2011). AEG: Avtomatic Exploit Generation., Com-
minications of the ACM. 57, 10.1145/2560217.2560219.

{21 L. Xu, W. lia, W, Dong and Y. Li, "Antomatic Exploit Genaration
for Buffer Overflow Vulnerabilities,” 2018 IEEE International
Conference on Software Quality, Reliability and Security Com-
panion {QRS-C), Lishon, 2018, pp. 463468, doi: 10.110W(RS-
C2018.60085,

31 Wang M., 8a P, Li @, Ying L., Yang Y., Feng D. (2013}
Awtomatic Polymorphic Exploit Generation for Software Volner-
abilities. Tn: Ziz T, Zorpaya A, Varadbarajan V., Mao M. (eds)
Security and Privacy in Communication Networks, SecureComm
2013, Lectnre Noles of the Institnie for Computer Sciences,

12th [CCCNT 2021

July 6-8, 2021 - liT - Kharagpur
Authorized licensed use limited to: Northeastern University. Downlgggechgnfredaaizer 09,2021 at 05:30:46 UTC from IEEE Xplore. Restrictions apply.

IEEE - 51525

Social Informatics and Telecommunications Enginessing, vol
127. Springer, Charo. htips:/doiorg/10.1007/978-3- 31904283
114

{41 Gadient, Austip and Ortiz, Baltazar and Bammato, Ricardo and
Davis, EH and Peildis, Teff and Rinard, Martin, (2019). Auto-
maiic Exploitation of Fully Randomnized Execuntables.

{51 8. K. Cha T. Avgerinos, A, Rebert, and D, Bromley, “Unleash-
ingMavhern on binary code, Proceedings - 1EEE Symposivm on
Secwrityand Privacy, pp. 380394, 2012,

[6] Brooks, T. (2017}, Survey of Auvtomated Volnerability Detection
and Exploil Generalion Technigues in Cyber Reasoning Systems.
AtXiv, abs/1702.06162,

[7] James . King. 1976, Symmbolic execution and program
tegting, Commun, ACM 19, 7 (July 1976), 385-394,
DROUHtpsdolorg/10.1145/360248.360252

{8] Barton B Miller Louis Fredrksen, and Bryan So. 1990, An
esppirical study of the reliability of UNIX uiilities. Commun.
ACM 33, 12 (Dec, 1990), 3244,

191 Y. Shoshitaishvili el sl, "SOK: (State ofy The Ad of War
Oftensive Technigues o Binary Analysis” 2016 [EEE Sympo-
sium on Security and Pdvacy (SP), 201se, pp. 138-157. doi:
10.11089/5P.2016.17.

{10] Shoshitaishvili, Yan and Wang, Ruoyy and Hanses, Christophe
and Kregel, Christopher and Vigea, Giovanni, Firmalice - Au-
tomatic Detection of Aunthentication Bypass Volnerabilities in
Binary Firmware, NDSS2013

[11] Stephens, Nick and Grosen, Iohn and Salls, Christopher and
Dutcher, Audrey and Wang, Ruoyn and Corbetta, Jacopo and
Shoshitaishvili, Yan and Krvegel Christopher and Vigna, Gio-
vanni, Twifler: Augmenting Fuzzing Through Selective Symbaolic
Execution, NIDSSE, 2016,

{121 S. Jayaraman. B, Jayaraman and D, Lessa, “Compact visualiza-
fion of Tava program execulion” Scftware: Prclice & Experi-
ence, John Wiley & Sons Inc, vol. 47, pp. 163-191, 2017,

{13} A. A, Aziz, M. Unny, 8. Niranjana, M. Sanjana and J. Swami
nathan, “Decoding Parallel Program Execution by using Java
Interactive Visualization Hnvironment (UVE): Behavioral and
Performance Analysis,” in proceadings of 3rd International Con-
ference on Computing Methodologies and Communication {1C-
CMC), pp. 792-797, 2019,

{14] K. B.], Jayaaman, 3, Jayaraman, B, M, 5. “Finite-state model
extraction and visvalization from Java program execution,” Sofbw
Pract Expar, 517 409- 437, 2021,

{15} V. 8. Rao, T. Gupta, 8. Vasan and L. R, Deepthi, "PHPIL:
Fuzzing the PHP Interpreter with Custom Bytecode” 2020
11th Iiernational Confoercnce on Computing, Communication
and MNetworking Technologies (ICCCINT, 2020, pp. 1.5, doi:
10 H108ACCONTA9239.2020,922 5578,

{i6] awthor Seshagisd, Prabho and Vazhayil, Aunw and Sdram, Pad-
marcala, AMA: Stafic Code Analysis of Web Page for ihe
Detection of Malicious Scripis.Procedia Computer Science vol.
93,768-773,dol: 10.10164.procs.2016.07.291

11771 Prakash, R, and Amritha, P and Sethumadhavan,
M.,Opaque Predicate Detection by Static Analysis of Binaty
Exccutables,pages. 250258, isbn = Y78.481-10-6897 3.doi=
10.1007/978-981-10-0898-0_21

12th [CCCNT 2021

July 6-8, 2021 - liT - Kharagpur
Authorized licensed use limited to: Northeastern University. Downlgggechgnfredaaizer 09,2021 at 05:30:46 UTC from IEEE Xplore. Restrictions apply.

		2021-10-28T12:41:15-0400
	Certified PDF 2 Signature

