
IEEE - 51525

AngErza: Automated Exploit Generation

Shruti Dixit", T K Gcethna", Swaminathan Jayaramau', and Vipin Pavithrarr'

! Department Of Computer Science and Engineering
2Arnrita Center for Cybersccurity Systems and Networks

Amrita Vishwa Vidyapeetham, Amritapuri, India
dixitshmti09@gmail,com, geethna. teekey@ gmail. com, swaminathanjcv am.amrita.edu. vipinp eo am.amrita.edu

..Abstract-Vulnerability detection and exploitation serves
as a milestone for secure development and identifying
major threats in software applications. Automated exploit
generation helps in easier identification of bugs, the attack
vectors and the various possibilities of generation of the
exploit payload. Thus, we introduce AngErza which uses
dynamic and symbolic execution to identify hotaspots in the
code, formulate constraints and generate a payload based
on those constraints. Our tool is entirely based on angr
which is an open-sourced offensive binary analysis frame
work. The work around AngErza focuses on exploit and
vulnerability detection in C'TFvstyle C binaries compiled on
64abit Intel architecture for the. early-phase of this project.

Index Terms-Automated Exploit Genera-
tion(AEG),buffe.r overflow, angr, Symbolic Execution

1. INTRODUCTION

Software vulnerabilities arise due to many factors
that includes design flaws, programming defects and
configuration errors. If not detected and rectified, the
software faces the risk of exploitation leading to po
tential security breaches which can prove to be costly.
Consequently, identifying vulnerabilities in the code has
become indispensable in secure software development.
During this phase, major threats in software applications
are detected by techniques such as code auditing, fuzzing
applications, threat modelling and application penetra
tion testing.

Vulnerabilities are of different types and detection
techniques vary with each type. Detection involves anal
ysis of code, either source or binary. For instance, a
buffer overflow arises when the size of a buffer in
memory is less than the size of the data is being stored
in that buffer. This vulnerability can be exploited by an
attacker overwriting memory address for example, the
return address in a call stack to execute the malicious
code of the attacker.

'[he process of detection is complex and many vul
nerabilities go unnoticed during manual detection. Also,

for crafting software vulnerability exploits one requires
comprehensive knowledge of the underlying system like
file format, processor architecture, mitigation enabled on
the software, and working of the host operating system.
Thus, source code analysis alone would be an incomplete
approach for the same. The focus of our work is on
dynamic binary analysis and exploit generation, wherein
the raw binaries that compose a complete application
are analyzed during run-time. This is especially helpful
when there is no or limited access to source code.

Anglirza is a solution for developers to validate their
code and also to understand in what ways the pro
gram can be vulnerable. It generates automated exploit
payloads for 64-bit ELFs x86 architecture with stack
buffer overflow vulnerability. AngErza detects buffer
overflow and format string vulnerabilities by doing dy
narnic analysis on the binary using r2pipe. It checks for
constraints in the program and uses angr [9]-[11] to craft
an exploit payload for attacking buffer overflow. For the
initial stage AngErza focuses on ClF-style binaries. Cf'F
(Capture the Flag) competitions aim to teach learn secure
coding practices in a gamified manner. The vulnerable
binaries used in such competitions are usually less ob
fuscated compared to real world applications. AngErza
can be used by CTF players and developers to tesi
the security of binaries and implement more checks by
understanding the severity of each bug.

The main contribution of the paper is Anglirza, a fully
automated tool based on dynamic symbolic execution
and analysis that analyzes the vulnerability of GNU
compiled 64-bit binaries for the bugs of buffer overflow
class. Through a variety of experiments, we show how
the Anglirza not only detects overflow vulnerability, but
also determines the length and severity of each hug.
The rest of the paper is structured as follows. Section II
provides a brief summary of the related work. Section III
discusses the core of our work on automated exploit

12th ICCCNT 2021
July 6-8, 2021 - liT - Kharagpur

Kharagpur, India

20
21

 1
2t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
tin

g
Co

m
m

un
ic

at
io

n
an

d
N

et
w

or
ki

ng
 T

ec
hn

ol
og

ie
s (

IC
CC

N
T)

 |
 9

78
-1

-7
28

1-
85

95
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
CC

N
T5

15
25

.2
02

1.
95

79
95

9

Authorized licensed use limited to: Northeastern University. Downloaded on December 09,2021 at 05:30:46 UTC from IEEE Xplore. Restrictions apply.

IEEE - 51525

generation for buffer overflows. Section IV talks presents
the results of AngErza and analysis. Section V provides
our conclusions and summarizes the directions for future
work.

II, RELATED WORK

There has been considerable interest in program anal
ysis, vulnerability detection, and automated exploit gen
eration for secure software development In this section
we discuss some of the closely related work.

Program analysis involves checking the program for
its correctness and to rule out any unintended bugs. The
following are the two techniques for performing program
analysis:

Static Analysis involves analysis at the source code
level for any existing vulnerabilities without running the
program. A data flow, control flow, and lexical analysis
is done for the program to find any vulnerabilities. How
ever, relying on static analysis alone maybe insufficient
as this technique misses out finding vulnerabilities/bugs
which could exist only during run-time execution.

Dynamic Analysis requires the program to be exe
cuted for vulnerability detection and testing. It involves
debugging the code manually or using automated tools
for checking memory corruption errors, code coverage,
and other possible run-time errors. Dynamic analysis
helps discovering vulnerabilities which maybe complex
to detect during static analysis. But it might miss out on
paths which may not be covered during run-time.

Dynamic analysis can be combined with visualization
methods to provide structural and semantic sumrnariza
lion [12], [13] of program behavior These can serve as
effective aids in debugging design errors [14].

Vulnerability Detection in Binaries. The two most
widely adopted techniques for vulnerable detection in
binaries are fuzzing and symbolic execution.

Furring [8] is an automated vulnerability detection
technique in which random data is sent to the program
so as to result the program in unexpected behaviour like
getting exceptions, program crash or undefined output
(especially memory leaks). This technique is widely used
in software vulnerability detection as it is a simpler
way of finding whether a bug exists in an application.
However, sanitizers are used to assess the sensitivity of
the inputs which lead to any undefined behaviour of the
application. Also, a "dumb" fuzzer lacks generating input
which helps covering all paths of a program.

SymbolicExecution [7] is a technique which helps
determining an input that could lead to execution of a
conditional branch or a specific path in the program.
In the Held of vulnerability detection this technique can

be used to find an input which could satisfy constraints
for triggering undefined behaviour in the application.
However, this technique suffers from path explosion
when finding all possible paths in a complex program.

Automated Exploit Generation. Over the last
decade there have been considerable research work on
automated exploit generation. As discussed earlier ex
ploit generation requires understanding all the aspects of
the applications and its environment in detail. The initial
approach introduced in paper titled AEG: Automatic
Exploit Generation [1] used "vas by using both source
code and run-time binary information. However, this
information may not be available for all vulnerability
detection scenarios. Symbolic execution was used in the
later approaches. 'The paper AEG for Buffer Overflow
Vulnerabilities [2] presents a solution that relies on the
binary code for the binary analysis and helps bypassing
mitigations such as ASLR (address space layout ran
domization) and non-executable stack The tool relies
on angr for symbolic execution but suffers from path
explosion in complex programs. A hybrid approach
however solves this and helps in easier bug detection
and exploration. Mayhem [5] which uses a novel hybrid
symbolic execution technique and covers two classes of
bugs: buffer overflows and format strings. PolyAEG [3]
generates automatically generates multiple exploits for a
vulnerable program and thus is more resilient However,
it does not bypass ASLR and suffers performance issues
due to reliance on symbolic execution. Overall, AEG has
been hot-topic for research continuously and has been
widely been used in software testing and validation.

Considering the above approaches we have applied
symbolic execution in AngE.rza for solving constraints
for generation of exploit payload. It does so by using
angr which is a binary analysis framework that uses
dynamic symbolic execution for analyzing binaries and
has been at the forefront of automated analysis. We dy
namically analyze the binary using r2pipe for detecting
buffer overflow and format string. In the coming section
we have discussed our approach in detail.

III. ANGERZA
This section would talk about the working of AngErza

in detail. Anglirza is a light-weight approach for code
authors for testing their programs. If any vulnerability
is found in the program the developer can analyze the
generated exploit and introduce checks/patches in the
program to harden the code against any exploits.

The main driver script for AngErza is written in
python 3.6. As discussed earlier Anglirza relies on binary
analysis framework in python called angr for all its

12th ICCCNT 2021
July 6-8, 2021 - liT - Kharagpur

Kharagpur, IndiaAuthorized licensed use limited to: Northeastern University. Downloaded on December 09,2021 at 05:30:46 UTC from IEEE Xplore. Restrictions apply.

IEEE - 51525

Print the
payload

Check for
format string

bug

Check for buffer
overflow condition for

each std in function

YES

Print the pointers for
exploit generat ion to

the user

Check for
properties and

mitigations

NO

Check for exploit
scenarios: RIP overwrite.
ROPchain. shel/code as

per the constraints

functionalities. angr helps performing dynamic symbolic
execution and static analysis on the binary. The functions
of AngErza is divided into 2 sub-modules: finding buffer
overflow and length, and exploit generation. If buffer
overflow bug is not detected in the binary then AngErza
checks if there is a format string bug. We will be taking
a simple buffer overflow scenario and walking step-by
step through the above modules of the tool. The below
code, bug.c, is compiled without any stack protectors.

I # inc Iu d e < s t d lib . h>
2 #inc lu de <unistd .h>
3 # inc Iud e < s t r i n g . h>
4

5 in t main(i n t argc, c har ca nst » ar g v [])
6 {

char buffer[16];
read (0, buffer , 8 0);

10 re t ur n 0;
II }

A. Terms and definitions

Definition 1. Format string vulnerability : a program
vulnerability when the user's input is treated as format
string or in other words, when the format specifier and
the parameters to be printed do not match. An attacker
can do memory reads and writes by controlling this
vulnerability.

Definition 2. Buffer overflow: when the data sent to
a program is stored in a buffer whose size is less than
then input size.

Definition 3. r2pipe : an API that allows users with
methods that can be used to send and run r2 (radare2)
commands on a binary. Radare2 is a framework which
is used for disassembling, patching, and debugging for
reverse engineering binaries.

Definition 4. Exploit: an exploit is a well crafted string
or code which attacks the vulnerabilities in a program to
cause unintended behaviour in the program.

Fig. 1. overall working

difference of the size of input and buffer size is evaluated
as the overflow size. Here, the size of the buffer is 16
whereas the input size is 80. Thus, the buffer overflow
bug exists here and the size of which is 64.

Ox4005c2 <+30>:mov edi.OxO
Ox4005c7<+35>:call <read@plt>
Ox4005cc<+40>:mov eax,OxO

registers values checked
to find overflow and length

Overflow detected
(len = input_size

buCsize)

B. Determining buffer overflow

Using angr first all the functions which are called in
the binary are listed out. In the above list of functions
AngErza checks for the stdin functions. In our case the
stdin function used is read. Then it does a dynamic
analysis using r2pipe APIs where the arguments of
stdin functions are checked. This is done by getting the
register values using r2pipe which store the arguments
that are passed to the function. Buffer size is calculated
as the difference of the stack address and the base pointer
of stack (RBP). If the buffer size is less than the size
of input then the constraint for overflow is satisfied. The

Fig. 2. Detecting buffer overflow in bug.c

C. Find exploit payload

Next, we check if canary is enabled in the binary by
getting the properties of the binary by using pyelftools.
If canary is disabled in the binary then we can do
attack which hijacks the returu pointer. We check for
the next mitigation which is PIE (position independent
executable), by enabling this address space of the sec
tions in the program are randomized each time. If this
is enabled then we may only be able to do shellcode
injection attack. For this, we must check if stack is non-

12th ICCCNT 2021
July 6-8, 2021 - liT - Kharagpur

Kharagpur, IndiaAuthorized licensed use limited to: Northeastern University. Downloaded on December 09,2021 at 05:30:46 UTC from IEEE Xplore. Restrictions apply.

IEEE - 51525

IV. RESULT AND ANALYSIS

char a I l D}:
scanf("%lOs " ,a);
printf (a);
return 0;

This section details about the evaluation of AngErza.
We tested AngErza with C binaries compiled on x86 64
bit architecture. We developed AngErza to support bug
detection, constraint generation and exploit generation.
We use angr tool to do symbolic execution on the given
binary and to generate constraints. We generate file and
structure related constraints by extracting debug and
compilation details. We produce python based payloads
using angrop (rop-gadget finder) and hardcoded shell
codes. These payloads can be used in the exploit script to
spawn a shell in the given system. We evaluated AngErza
on a Linux machine with Intel Core CPU with ITB hard
disk and 4 GB RAM.

The tables below summarizes the results of the test
binaries which have been used to validate AngErza.
The various constraints, bug and attack are mentioned
against each binary. The results are denoted by TP
True Positive, FP - False Positive, TN - True Negative,
FN - False Negative.

Vulnerability Detection and Constraint Genera
tion. We use a test case to illustrate the process of
exploit generation for the given vulnerable binaries. We
are presenting it using three different case scenarios from
the table above. The binary demo-win has a user defined
function call to system, but the control flow doesn't allow
the binary to execute it. AngErza gets the file properties
and protections, in this case NX bit is enabled and the
tool successfully detects the overflow length. According
to the overflow length and the protections, the tool tries
to model a payload to spawn a shell. Here, it generates
a return-to-system attack payload. For the second case
of demo, the file protections forces the tool to model
an exploit which involves making a call to execvei) by
setting the arguments and returning to a syscall gadget.
The ROP-gadgets are generated with the help of angrop

: No
: Yes
: No
: No
: Partial

ROP chain
Found? &

len(chain <
buCsize)

IPrint the generated ROP chain I

Parsing using
angr

Check for RIP
overwrite attack '------./

Canary =No
NX =Yes

Fig. 3. Exploit Generation of bug.c

r------, Parsing Canary
using NX

PIE
pyelftools Fortify

'------,---' RelRO

Check for
ROP chain

ELF

If any of the attack payload is found by AngErza, it is
printed out to the analyst which can be verified by testing
it on the binary. For our example, bug.c AngErza was
able to generate a ROP chain for execve syscall which
we later verified to spawn a shell.

D. Finding format string bug

If the buffer overflow bug is not detected in the binary
then AngErza checks for a format string bug but we do
not generate an exploit for it.

executable (NX) or not. If NX mitigation is disabled then 4 in t main (i n t argc, char con st » ar g v [])
we can do the shellcode injection attack. 5 {

Considering the above constraints we check for the 7

possibility of payload generation in any of the scenarios: 8

ROP chain generation : AngErza try to generate a 9

ROP chain for doing an execve syscall. It achieves this 10 _} _

by using angrop which is an angr based ROP chain In the above example, the format string vulnerability
generation tool. If the necessary gadgets are found in exist in printf(a) as the user input is not formatted when
the binary for doing the execve syscall the ROP chain printing. Similar to the buffer overflow detector, we use
is generated else the possibility for the next attack is r2pipe API to set a breakpoint at the printf function. We
checked. check the value of the registers and see whether the first

RIP overwrite : AngErza checks for the possible argument is a readable writable address on the stack. If
scenario of overwriting the return address of the current yes, then we print "format string bug is detected" else
function, that is stored on stack, directly with a function "format string bug is not detected" is printed to the user.
such as system provided it is called in the binary. We
achieve this by giving constraints to angr to generate an
input such that the return address is overwritten.

Shellcode Injection: If NX is disabled, AngErza tries
to find an appropriate shellcode matching satisfying the
constraint of size as per the buffer size calculated.

I #inc lude <stdio .h>
2 # inc I u d e < s t d lib . h>

12th ICCCNT 2021
July 6-8, 2021 - liT - Kharagpur

Kharagpur, IndiaAuthorized licensed use limited to: Northeastern University. Downloaded on December 09,2021 at 05:30:46 UTC from IEEE Xplore. Restrictions apply.

IEEE - 51525

TABLE I
BUFFER OVERFLOW DETECTED

Binary Constraints Bug AHack Result
demo win system- gets ROP TP

function chain
demo NX gets syscall TP

enabled ROP
YUIll NX- read return to TP

disabled shellcode
lottery statically (gets syscall 'I'll

linked ROP
shellcode- NX- read return to TP
golf enabled shellcode
Double Fortify read, formal TN
Trouble disabled, printf string,

system- ROP
function chain

and a chain is generated accordingly which will spawn
a shell. In the shell binary, NX protection bit is disabled
which makes the tool take another path which involves
in generating a payload which will result in a shellcode.
AngErza calculates the overflow and buffer length and
prints out the appropriate shellcode, which can be used
in the exploit script to facilitate the retum-to-shellcode
attack. The binary lottery was a statically linked 64
bit executable with an Igets function taking input. The
overflow was detected by AngErza but it was not able
to generate a complete exploit because of the size of
the binary. Double Trouble binary had 2 bugs - buffer
overflow and also format string vulnerability. AngErza
detected detected the overflow and generated a ROP
chain exploit for the overflow bug. But it was not able to
detect a format string as it already generated an exploit
for overflow vulnerability. All the other binaries used for
testing AngErza on the basis of overflow detection are
different variants of the protections and binary structure.

TABLE II
BUFFER OVERFLOW NOT DETECTED

Binary Constraints Bug AHack Result
format- Fortify- printf format TP
string disabled string

attack
no-bug All pro- NIL no vulner- FN

tections abilities
enabled

controller system fgets integer TN
function overflow

returning fortify snprintf format TP
disabled string

In the format-string binary, a buffer overflow was

not detected and hence there was no possibility of an
injection attack. The binary passed checks for a possible
format string attack and printed out the result The
binary no-bug has no vulnerable functions/processes.
Hence it was not able to detect an overflow or a format
string attack A..ngErza displays that no vulnerabity was
discovered. The controller binary had a hidden integer
overflow bug which unwraps during runtime. AngErza
was not able to detect this possibility as the maximum
size docs not lead to an overflow but the possibility
of a negative integer was overlooked. In the case of
returning, A.ngErza Vii3S able to detect the format string
vulnerability in the snprintf function which can lead to
memory leak and memory overwrite.

V. CONCLUSION

In this paper, we presented AngErza, a fully auto
mated tool based on dynamic symbolic execution and
analysis, which helps to analyze the vulnerability and
exploit ability of GNU compiled 64-bit binaries in the
case of buffer overflow class of bugs. The tool Vii3S

able to detect overflow vulnerability and the length of
each overflow and its severity. A.ngErza was also able
to detect format string vulnerability in buggy binaries.
Using AngErza, we were able to evaluate the security
of the binary and facilitate adding more checks. \Ve
have presented an evaluation of our tool and thus we
are publishing it as a eTF-helper tool.

As AngErza relics on angr, which uses symbolic exe
cution, it suffers from path explosion when working with
obfuscated and large binaries. AngErza cannot bypass all
binary mitigations and OS defenses (like ASL.R). Future
work for AngErza includes extending it to be resilient
against these defenses. And also, enhance it to detect and
generate exploits for other classes of bugs in both stack
and heap. AngErza is limited to generating 3 types of
attacks for exploiting overflow as explained in this paper.
Thus. it can be improved to include other attacks such
as return-to-libc and stack pivoting.

[1] Avgerinos, Thanassis and Cha. Sang and Hao, Brent rule! Brnm
ley, David, (2011), AEG: Automatic Exploit Generation.. Com
munications of the ACM. 57, 10,1145/2560217.2560219,

[2] L. Xu, \V, Jia, W, Dong and Y, Li, "Automatic Exploit Generation
for Buffer Overflow Vulnerabilities," 20IS IEEE International
Conference on Software Quality, Reliability and Security Com
paniou (QRS··C), Lisbon, 20IS'- pp. 463-468, doi. 10.110'91QRS
C.201S,OOOS5.

[3] Wang M., Su r., I.i Q" Ying L" Yang Y., Feng D. (2013)
Automatic Polymorphic Exploit Generation for Software Vulner
abilities, In: Zia T" Zomaya A., Varadharajau V" Mao M. (eds)
Security and Privacy in Communication Networks, SecureComm
2013. Lecture Notes of the Institute for Computer Sciences,

12th ICCCNT 2021
July 6-8, 2021 - liT - Kharagpur

Kharagpur, IndiaAuthorized licensed use limited to: Northeastern University. Downloaded on December 09,2021 at 05:30:46 UTC from IEEE Xplore. Restrictions apply.

IEEE - 51525

Social Informatics and Telecommunications Engineering, vol
127. Springer, Cham. hUps://doi.orgIlO.l007/978-3--319--04283
114

[4] Gadient,Allstin and OI1j;~, Baltazar and Banato, Ricardo and
Davis, Eli and Perkins, Jeff and Rinard, Martin, (2019), Auto
mafic Exploitation of Fully Randomized Executables.

[5] S, K Cha, T, Avgerinos, A, Rebert, and D. Brumley, "Unleash
ingMayhem on binary code.T'rcceediugs IEEE Symposium on
Securityand Privacy, pp. 380394, zorz.

[6] Brooks, T. (2017). Survey of Automated Vulnerability Detection
and Exploit Generation Techniques in Cyber Reasoning Systems.
ArXiv. abs/1702.06162.

[7] James eKing. 1976. Symbolic execution and program
testing, Commun. ACM 19, 7 (July 1976), 385-394,
DOl:https:!idoi.org/1 0.1145/360248.360252

[8] Barton P, Miller, Louis Fredriksen, and Bryan So, 1990. An
empirical study of the reliability of UNIX utilities. Cornmuu.
ACM 33, 12 (Dec. 1990), 32-44,

[9] Y. Shoehitaishvili et al., "SOK: (State of) The A.t1: of 'War:
Offensive Techniques in Binary Analysis," 2016 [EEE Sympo
sium on Security and Privacy (SP), 2016, pp. 138-157, doi:
10.1109/SP.2016.17.

[10] Shoshitaishvili, Yan and Wang, Ruoyu and Hauser, Christophe
and Kruegel, Christopher and Vigna, Giovanni, Firmalice - Au
tomatic Detection of Authentication Bypass Vulnerabilities in
Binary Firmware,NDSS,2015

[11] Stephens, Nick and Crosen, John and Salls, Christopher and
Dutcher, Audrey' and Wang, Ruoyu and Corbetta, Jacopo and
Shoshitaishvili, Yan and Kruegel, Christopher and Vigna, Gio
vanni, Driller: Augmenting Fuzzing Through Selective Symbolic
Execution, NDSS, 2016.

[12] S. Jayaraman. B, Jayaraman and D, Lessa, "Compact visualiza
tion of Java program execution," Software: Practice & Experi
ence, John Wiley & Sons Inc., vol. 47, pp. 163-191, 2017.

[13] A. A.Aziz, M. Unny, S. Niraujana, M. Saujana and J. Swami
nathan, "Decoding Parallel Program Execution by using Java
Interactive Visualization Environment (JIVE): Behavioral and
Performance Analysis," in proceedings of 3rd International Con
ference on Computing Methodologies and Communication (IC
CMC), pp. 792-797, 2019.

[14] K. P, J, Jayaraman, S, Jayaraman, B, M, S., "Finite-state model
extraction and visualization from Java program execution," Softw
Pract Expel', 51: 409- 437, 2021,

[15] V. S. Rao, T. Gupta, S. vasan and L. R. Deepthi, "PHPIL:
Fuzzing the PHP Interpreter with Custom Bytecode," 2020
Llth International Conference on Computing, Communication
and Networking Technologies (ICCCNT), 2020, pp. 1-5, doi:
10.1109!JCCCNT49239.2020. 9225578.

[16] author Seshagiri, Prabhu and Vazhayil, Anu and Sriram, Pad
marnala, AMA: Static Code Analysis of Web Page for the
Detection of Malicious Scripts.Prccedia Computer Science,vul.
93,768-773,doi: 10.1016(j,procs.2016.07 .291

[17] Prakash, R. and Amritha, P. and Sethumadhavau,
M"Opaque Predicate Detection by Static Analysis of Binary
Executables.pages. 250-258, isbn = 978--981--10-6897-3,doi=
10.1007/978-981-10-6898-0 21

12th ICCCNT 2021
July 6-8, 2021 - liT - Kharagpur

Kharagpur, IndiaAuthorized licensed use limited to: Northeastern University. Downloaded on December 09,2021 at 05:30:46 UTC from IEEE Xplore. Restrictions apply.

		2021-10-28T12:41:15-0400
	Certified PDF 2 Signature

