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Abstract—Automatically generating exploits for attacks re-
ceives much attention in security testing and auditing. However,
little is known about the continuous effect of automatic attack
generation and detection. In this paper, we develop an analytic
model to understand the cost-benefit tradeoffs in light of the
process of vulnerability discovery. We develop a three-phased
model, suggesting that the cumulative malware detection has
a productive period before the rate of gain flattens. As the
detection mechanisms co-evolve, the gain will likely increase. We
evaluate our analytic model by using an anti-virus tool to detect
the thousands of Trojans automatically created. The anti-virus
scanning results over five months show the validity of the model
and point out future research directions.

Index Terms—Software security, malware detection, automatic
exploit generation, anti-virus, information foraging

I. INTRODUCTION

Creating exploits for attacks like control flow hijacking

is typically a manual process that requires security exper-

tise [1]. To improve efficiency and increase wider use of

exploits in security testing and auditing, researchers have

proposed approaches to automatically generating attacks. In

web applications, for example, Kiezun et al. [2] introduced

the ARDILLA tool for devising SQL injection and cross-site

scripting (XSS) attacks based on dynamic taint propagation

and input mutation. Attacks on binary programs have also been

automatically generated. Huang et al. [3] investigated software

crashes and performed concolic executions by following the

failure directed path. Their approach could generate exploits

of such vulnerabilities as stack and heap overflows.

Not only are attack vectors generated, malicious programs

like worms, viruses, and Trojans are also created. A class of

methods focuses on the automatic generation of malware sig-

natures, e.g., DeepSign [4], Polygraph [5], and TrustSign [6].

Another group employs the mechanism of metamorphic mal-

ware where the malware would be able to transform its own

code so as to create variants of itself [7]. To reduce the number

of possible variants to be recognized, normalizer is needed.

Researchers have built different normalizers based on term

rewriting [8] and other means.

Despite these advances, the empirical base of automatic

attack generation is built mainly on studying individual subject

systems and their specific implementations. ARDILLA, for

instance, was evaluated on five open-source programs, ranging

from 326 to 8,181 lines of code, where the tool found a total of

68 attack vectors in these programs with an average of 14%

false-positive rate across the three vulnerability types: SQL

injection, first-order XSS, and second-order XSS [2]. Others

extended such empirical findings. Notably, Huang et al. [9]

improved ARDILLA’s web platform independence and showed

their resulting tool’s success in generating attacks against four

of the five PHP programs assessed in [2] as well as additional

ones written in Python.

Evaluating individual systems presents isolated pieces of

evidence; however, little is known about sustained effect of

automatic attack generation. In this paper, we bridge the gap by

relating attack generation and vulnerability discovery through

a cost-benefit perspective. Vulnerability discovery is chiefly

concerned with finding vulnerabilities on a continuous basis

yet within finite, economic considerations. Oftentimes, the

development team uses a combination of techniques (pene-

tration testing, static analysis, code reviews, etc.) throughout

the software development lifecycle while the effort expended

and the benefit gained must be cautiously monitored [10].

A foundational model of vulnerability discovery is devel-

oped by Alhazmi and Malaiya [11], known as the Alhazmi-

Malaiya Logistic (AML) model. The AML model depicts how

the cumulative vulnerabilities discovered correspond to the

calendar time. Empirically, this model has shown to fit the real-

world vulnerability data sets, acting as an important conceptual

reference for understanding the practicalities of the process

of vulnerability discovery. We develop mappings between the

AML model and attack generation, and further treat a free,

evolving anti-virus (AV) tool as an integral part in our work

to establish the practical interests.

This paper makes three main contributions: linking the

cost-gain dimensions of attack generation to those of the

AML model, articulating our novel model in the context of

Trojan creation, and confronting our model with empirical

data collected from over five months’ scanning of a state-

of-the-practice AV tool. The rest of the paper is structured

as follows: Section II provides the background information

about the AML model, Section III maps the key constructs

of the AML model to attack generation, Section IV presents

the empirical evaluations of our model, Section V compares

related work, and finally, Section VI draws concluding remarks

and outlines future work.

37

2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI)

978-1-7281-1054-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IRI49571.2020.00014

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 27,2020 at 02:29:52 UTC from IEEE Xplore.  Restrictions apply. 



Alhazmi-Malaiya Logistic Model

Mid point

Transition 
point 2

Transition
point 1

Calendar Time

C
um

ul
at

iv
e 

V
ul

er
ab

ili
tie

s

88

Windows 95 

0

10

20

30

40

50

60

Ju
n-9

6

Dec-9
6

Ju
n-9

7

Dec-9
7

Ju
n-9

8

Dec-9
8

Ju
n-9

9

Dec-9
9

Ju
n-0

0

Dec-0
0

Ju
n-0

1

Dec-0
1

Ju
n-0

2

Dec-0
2

Ju
n-0

3

Dec-0
3

C
um

ul
at

iv
e 

V
ul

ne
ra

bi
liti

es

Actual data
The Model

87

(a) (b)

Fig. 1. (a) AML model of the vulnerability discovery process, and (b) AML model fit to Windows 95 vulnerability data set (both adapted from [12]).

II. AML MODEL OF VULNERABILITY DISCOVERY

In his book, Software Security: Building Security In, Mc-

Graw [13] draws on his experience as a security researcher

and claims: “Security problems evolve, grow, and mutate,

just like species on a continent. No one technique or set of

rules will ever perfectly detect all security vulnerabilities.”

Austin and Williams [10] substantiated McGraw’s claim with

empirical evidence where they conducted a case study on two

electronic health record systems and compared four vulnera-

bility discovery techniques: systematic and exploratory manual

penetration testing, static analysis, and automated penetration

testing. The results clearly showed that no single technique

detected every type of vulnerability, positioning vulnerability

discovery in the empirical ground where, in order to choose

the appropriate techniques, expectations of cost and benefit

must be established.

Alhazmi and Malaiya [11] developed a logistic model of

vulnerability discovery. Figure 1 shows the AML model. The

vulnerability discovery rate increases at the beginning, reaches

a steady rate, and then begins to decline. The cumulative

number of vulnerabilities thus shows an increasing rate at the

beginning as the system starts attracting its use base. After

some time, a steady rate of vulnerability finding yields a linear

curve. Eventually, as the vulnerability discovery rate starts

dropping, there is saturation due both to reduced attention and

a smaller pool of remaining vulnerabilities [12].

The model assumes that the vulnerability discovery rate is

given by the differential equation:

dΩ

dt
= AΩ(B − Ω) (1)

where Ω is the cumulative number of vulnerabilities, t is

the calendar time (t=0 initially), and A and B are empirical

constants. The rate of change, dΩ
dt of equation (1), is governed

by two factors. The first factor, AΩ, increases with the time

needed to take into account the rising share of the use base.

The second factor, (B − Ω), declines as the number of

remaining undetected vulnerabilities declines.
While it is possible to obtain more complex models, the

AML model provides a good fit to the real-world data, e.g.,

Figure 1b shows the model fit to the actual data for cumulative

number vulnerabilities Ω for Windows 95 [12]. By solving the

differential equation (1), one obtains:

Ω(t) =
B

BCe−ABt + 1
(2)

where C is the integration constant. It is thus a three-parameter

model given by the logistic function. In equation (2), as t ap-

proaches longer discovery period, Ω approaches B. Therefore,

the parameter B represents the total number of accumulated

vulnerabilities that will eventually be found. It should be noted

that the saturation phase may not be seen in an operating

system which has not been present for a sufficiently long time.

In addition, if the initial adaptation is quick due to better prior

publicity, in some cases the early learning phase (when the

slope rises gradually) may not be significant [12].
Not only is the AML model fit to the actual data, it also

provides conceptually simple understanding of the tradeoffs

during the vulnerability discovery process. For example, the

curve of Figure 1a bends at two transition points and one

can further identify these points by taking the derivatives of

equation (2) with respect to t [12]. From t=0 to the first

transition point, the rate of vulnerability discovery grows slow,

indicating that the development team has secured a large

amount of typical use cases of the software (e.g., Windows

95) before releasing it.
The rate of vulnerability discovery becomes larger after

the first transition point, implying security problems emerge

with a close to linear trend. Such a trend diminishes after the

second transition point. The highest vulnerability discovery

rate occurs at the midpoint of Figure 1a:

Tm =
− ln [ 1

BC ]

AB
(3)
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When t passes the second transition point, the AML curve

flattens; however, it is important to point out that certain vul-

nerabilities remain undetected. Clearly, the AML model makes

simplified assumptions, such as the software (especially the

security of the software) is thoroughly tested before the release

and the no effect of continuously releasing (e.g., patching) is

taken into account. Nevertheless, the AML model is useful for

vulnerability discovery, e.g., one can use the data from prior

and relevant software systems (e.g., operating systems [12])

to constrain the range of the regression parameters’ values

thereby building an estimate of the duration between the two

transition points.

III. MODELING THE DETECTION OF MALWARE

GENERATION

Inspired by the AML model of vulnerability discovery,

we develop an analytical model in the context of attack

generation. In particular, the attacks that we consider are

malware instances generated automatically. For example, a

metamorphic engine performs program transformations where

a payload is applied to the source program [8]. A single engine,

therefore, can be attached with a variety of payloads. This can

lead to a massive number of malicious programs.

Although creating malware may reach a high level of

automation, detecting the generated malware resembles vul-

nerability discovery. In both situations, calendar time can be

regarded as the surrogate for cost. The gain can be measured

by cumulative detections in essentially the same manner as

cumulative vulnerabilities in the AML model. The key differ-

ence is that the to be discovered vulnerabilities are unknown

at t=0, but all the attacks (malware) are known prior to t=0.

For this reason, malware detection exhibits the inverse trends

of vulnerability discovery.

Figure 2a shows our malware detection model in which the

rate of gain is contrary to that in Figure 1a. Three phases are

distinguished, and their contrasts are summarized in Figure 2.

When state-of-the-art detection mechanisms (e.g., AV tools)

are employed, we expect the initial phase to be a productive

period, i.e., a sizable malware would be detected. This is

because, for instance, good metamorphic engines are known

to be difficult to create [8]. State-of-the-practice AV tools,

thus, are quite capable of detecting a fair proportion of the

automatically generated malware with little or no time.

Phase II in the AML model is about identifying new

vulnerabilities. Correspondingly, the second phase of malware

detection is about responding to the survived (undetected)

instances after the initially productive period. As shown in

Figure 2a, this middle phase can experience a flat curve,

implying that the survived malware may continue to live

(remain undetected) for some period of time. However, if

scanning with the survived sample on a continuous basis, the

detection mechanisms co-evolve [7]. This would lead to a

nontrivial proportion of the malware being detected, as shown

in Phase III of Figure 2a.

While the intended use of our malware detection model

depicted in Figure 2a is to allow for empirically sound estima-
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Fig. 2. (a) Modeling the detection of automatically generated attacks
(malware), and (b) linking the constructs between the models.

tions and predictions, this model currently serves as an analytic

tool for understanding the sustained effect of automatic attack

generation and the cost-benefit tradeoffs of detection through-

out an extended period of time. To lend strengths of this

analytic model, we next present some preliminary results of

creating Trojans and detecting them via a state-of-the-practice

AV tool.

IV. TROJAN DETECTION VIA VIRUSTOTAL

A. Trojan Creation

A particularly interesting type of malware is the Trojan.

A Trojan is a benign program that has within it a functional

piece of malware, known as a payload. The Trojan must still

be usable by a user for all or most of its original uses, but

must also consistently execute the payload. To formalize this,

the Trojan must pass all or most of the test cases created by

the developers of the benign software, as well as a separate

set of test cases for the payload’s functionality.

In this work, we take advantage of the Metasploit repository

of payloads (https://www.metasploit.com). To mitigate directly

using these potentially well-known payloads, we generate

variations by implementing ghost writing that swaps assem-

bly instructions with equivalent instructions. Our method of

inserting payloads works via replacement instead of addition.

This means that in order to insert our payload we must identify

parts of the benign program to replace. This is the core concept

we adopt from [14]. A payload is usually relatively small and
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CMP V1, V2

JEQ @thenBranch

@elseBranch

code . . .

JMP @end

@thenBranch

code . . .

@end

CMP EAX, 0

@elseBranch

code . . .

@thenBranch

call to infected function

@end

FORK

CMP EAX, 0

JEQ @thenBranch

@elseBranch

NOP

JMP @end
@thenBranch

payload code . . .

@end

(a) (b) (c)

Fig. 3. (a) Abstraction of a typical if-then-else in assembly, (b) abstraction of an infected if-then-else in assembly, and (c) abstraction of the ‘fork’ wrapper
around a payload.

is no larger than typical functions. To insert a payload we

first replace the assembly code within a function with ‘NOP’

instructions. These instructions are essentially space filler as

they inform the computer to take no actions. We then insert

the payload into the function via replacement. To ensure that

functionality is preserved a function that is either never used

or unlikely to be used should be chosen.
To execute our payload we next identify an if statement

with the following properties: will always be executed, and

has a branch with a low probability of being chosen. Figure 3a

shows a pseudo code version of an if statement in assembly

code broken into basic blocks. A basic block is a sequence of

instructions ending in an instruction that changes instruction

flow (e.g. JEQ, JMP, RET). We want to replace one of the

branches with a call to our infected function. We also want

the control flow instructions to be removed such that the

unmodified branch is always executed. Figure 3b shows the

simple replacement that occurs. Our Trojan generator is able

to identify the start and end of the branches if given the

location of the first jump address via information exposed

with radare2 (https://github.com/radare/radare2). The result is

that the benign program will, for example, always execute the

code in the else branch and call the infected function with our

payload. This alone does not ensure that functionality is intact

as the payload may run indefinitely, thus resulting in the rest

of the benign program not executing.
To ensure that a payload does not prevent a benign program

from finishing its execution, we execute the payload within a

new thread. The code for starting a new thread in the Linux

environment is fairly simple with the system call ‘fork’. The

‘fork’ command will start a new thread and allow each thread

to identify themselves as the new or old one via a value in the

EAX register. This allows one to have the new thread execute

the payload while the old thread jumps over it and exits the

infected function, as shown in Figure 3c.
Our mutations were done exclusively on the payload portion

of the Trojans, not including the fork. Our first method was to

remove the error checking of the payload. The error checking

served to retry connecting to the attacker’s machine if it failed.

mov eax , 1 // eax -> 1
mov ebx , 0 // ebx -> 0
int 80h // Exit 0

(a)

xor eax , eax // eax -> 0
inc eax // eax += 1
xor ebx , ebx // ebx -> 0
int 80h // Exit 0

(b)

mov eax , 1 // eax -> 1
mov ecx , 1 // ecx -> 1
mov ebx , 0 // ebx -> 0
mov edx , 1 // edx -> 1
int 80h // Exit 0

(c)

mov eax , 2 // eax -> 2
sub eax , 1 // eax -> 1
mov ebx , eax // ebx -> 1
dec ebx // ebx -> 0
int 80h // Exit 0

(d)

Fig. 4. (a) A simple ‘exit 0’, (b) a clever ‘exit 0’, (c) a wasteful ‘exit 0’, and
(d) a convoluted ‘exit 0’.

Without this it would only try to connect once, but is still

not something that can be considered benign. We performed

removal in two ways: first by replacing instructions with NOP

instructions such that the size of payload is maintained, and

secondly by deleting the instructions such that the payload

shrank in size. We then tried deleting instructions from the end

of the payload. These instructions were responsible for cleanly

ending the program with an ‘exit 0’ after the attacker closes the

connection. Without this the program might crash. We made

several versions with inserted instructions that would not affect

functionality and replacing instructions with equivalents like

those shown in Figure 4.
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TABLE I
CHARACTERISTICS OF THE EXPERIMENTAL PROGRAMS AND TROJANS

Program Functionality Testing # of ave. cyclomatic # of scanning
SLoC∗ complexity Trojans periods

Random Prints “EVEN” or “ODD” Tests that either permissible
75 1.3 9,048

Jan. 15, 2020
String (RS) or with equal chance string is printed – June 14, 2020

Random Game with 3 heroes & Tests that all heroes can win with
May 13, 2020

Adventure 2 monsters (attacked only “sword” & 2/3 heroes can 180 2.6 7,852
– June 14, 2020

(RA) by “sword” or “magic”) win with only “magic”
∗SLoC: source lines of code

B. Experiment Setup

We created two C programs for evaluating the analytic

model of Figure 2a. Table I lists some basic information of the

benign programs: Random String (RS) and Random Adventure

(RA). Both are small and simple programs as manifested by

the source lines of code and the average cyclomatic complexity

values. Compared to RS, RA is slightly larger and more

complex.

We began the experimental work with RS. The AV scanning

of RS, as shown in Table I, was ahead of that of RA. Figure 5

shows the code snippets of RS. For space reasons, source code

of RA is not displayed. Figure 5a illustrates that the code

that fills the character array is created in the main function.

The character array will be filled with either “ODD string

\n” or “EVEN string \n” with a 50% chance for both. The

if statement in the random string function of Figure 5b is

the one that we target with our Trojan insertion. Our Trojan

creation mechanism is able to manipulate either the then or

else branch, but our samples all manipulate the then branch.

This means that our samples all print “EVEN string \n” and

run the inserted payload.

To make inserting payloads simple, we wanted to eliminate

the concern about limited space within the benign program.

Figure 5c shows the unused function within RS. This function

has the statement “i += 45;” occur 31 times within it. This

results in the function being exceptionally large within RS.

This function is also never used within the benign sample so

any modification to it will not corrupt the intended behavior.

Our benign sample was compiled for 32bit Linux with

debug symbols and dynamically linked. The tests of RS are

functional, “Does the program print either “EVEN” or “ODD”

strings?” To test the payload portion of our Trojans we ran

Metasploit to accept connections from a running payload.

After a successful connection, we tested basic features like

creating a file on the victim’s system. This is sufficient as

all features of the Metasploit shell are downloaded from the

Metasploit instance upon connection. Following the mecha-

nism presented in Section IV-A, a total of 9,048 and 7,852

Trojans are created based on RS and RA respectively.

As these Trojans are created in an automated way, the

evaluation of our analytic model lies in the detection of

Trojans. To this end, we adopt a free online AV tool, VirusTotal

(https://www.virustotal.com/), which has been used as a bench-

mark in malware detection [14]–[16]. Due to the VirusTotal

academic APIs’ constraint of 10,000 samples per day, we

int main(int argc , char *argv []){
char string [50];
random_string(string);
printf("%s\n", string);
return 0;

}

(a)

void random_string(char *string){
srand(time(NULL));
int choice = rand()%2;

if (choice == 1) {
strcpy(string , "ODD string\n");

} else {
strcpy(string , "EVEN string\n");

}
}

(b)

void unused_function () {
int i = 0;
i += 45;
// ...
// i += 45 occurs 30 times
printf("%d\n", ++i);

}

(c)

Fig. 5. (a) The main function of RS, (b) the random string function of RS,
and (c) the unused function of RS.

performed the scanning of Trojans in 3 to 4 batches daily.

Figure 6 shows a sample script that we wrote to collect the

VirusTotal scanning results. We prioritized the Trojan samples

based on their last scan time, e.g., Trojans which have not

been scanned at all will be given the highest priority.

C. Results and Analysis

The VirusTotal scanning results are plotted in Figure 7.

We calculate the detection ratio as the number of scans that

detected a Trojan to be a virus over the number of scans

that were run. The number of scans run includes scans that

timed out before concluding if the sample is malicious. In

Figure 7, cumulative detection ratios are plotted where only

non-decreasing ones are considered.

The scanning period of RS lasts for five months. From

Figure 7a, we could recognize a couple of cycles of Figure 2a.

The first cycle reaches the end of Phase I in about a month

with a cumulative detection ratio of about 0.07. For the next
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# Create VirusTotal API object
vtotal =

virustotal3.core.Files(VIRUSTOTAL_API_KEY)
# First scan?
if len(sample.virustotal_reports) == 0:

response = vtotal.upload(sample.file_path)
# Rescan this file
else:

response =
vtotal.analyse_file(sample.sha256)

if not quiet:
print("Analysis Id:

{}".format(response[’data’][’id’]))

# Return result from adding report
return add_report(str(response[’data’][’id’]),

wait_time=wait_time,
max_number_of_attempts=max_number_of_attempts,

quiet=quiet,
session=session)

Fig. 6. Sample script for collecting VirusTotal scanning results.

month and a half, the ratio stays smooth, signaling Phase II

where a stalled malware detection of the AV tool is observed.

For reasons like AV tool’s co-evolution, a sudden and sharp

increase in Trojan detection appears in Phase III. If we regard

this Phase III of the first cycle as Phase I of the second cycle,

then a new Phase II seems to emerge and continue till the end

of our scanning period of RS.

While Figure 7a of RS depicts five-month data, Figure 7b

of RA provides a finer-grained, zoomed-in view. The three

phases of Figure 2a become more prominent in the results of

RA. Not only is Phase I shorter in Figure 7b, but it is smoother

than Figure 7a. This could be explained by the “cold start” of

VirusTotal in scanning RS’s Trojan samples; however, when

similar kinds of samples carried by RA are scanned, VirusTotal

has bypassed the “cold start”. Nevertheless, the detection ratio

growth from 0.020 remains flat for the Phase II of Figure 7b

before a linear Phase III is observed.

It is important to point out that certain Trojans in both

RS and RA remain undetected by VirusTotal, although most

malware samples created by us have been detected. Relating

to the AML model of Figure 1a, this implies that no discovery

technique or techniques would uncover all the vulnerabilities,

confirming the empirical findings of Austin and Williams [10].

In an attempt to build further connections of our results

with the AML model, we fit the data of Figure 7 by using

least-squares with the three free parameters [12]. The free

parameters, together with χ2 values, are shown in Table II.

These inferential statistics show that our model of malware

detection is not yet quantitative or predictive, but is currently

analytic and qualitative. Next we discuss the limitations of

our study so as to enable further quantitative and predictive

investigations of our model.

(a)

(b)

Fig. 7. (a) Trojan detection of RS, and (b) Trojan detection of RA.

TABLE II
FIT USING LEAST-SQUARES

A B C χ2 χ2 critical p-value

RS 0.01 0.213 17.55 0.040 7.81 1.00
RA 0.01 0.558 77.45 0.013 7.81 0.91

D. Threats to Validity

One construct validity of our current study is measuring

the cumulative benefit by AV detection ratio rather than by

the raw number of Trojans detected. A main reason of our

ratio-based measure is due to the daily scanning limits of

VirusTotal. The total number of scans, therefore, varies from

one batch to another. A threat to internal validity relates to

our AV scanning strategy which sets the priority based on the

last time a particular Trojan was scanned. For reasons like

timeout, other scanning priorities may result in different cost-

benefit patterns.

Several factors affect the external validity. Both our benign

programs are purposefully simple and easy to insert a payload
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into. Therefore, the preliminary results reported here are initial

findings in relating the AML model to attack generation and

detection. Moreover, the Metasploit payloads are well-known;

however, even with these payloads, a state-of-the-practice AV

tool was shown to go through distinct phases in malware

detection. The use of VirusTotal presents another threat to

generalizability. While it is interesting to employ other AV

tools like TrendMicro, building an infrastructure supporting

continuous malware scanning is important to understand the

sustained impacts and tradeoffs of attack generation and de-

tection.

V. RELATED WORK

We have drawn close parallels between the AML model of

vulnerability discovery and our empirical model of malware

detection. In this section, we further shed light on the cost-

benefit tradeoffs in software engineers’ information foraging

tasks where human-tool integration is important. In software

development, many information-intensive tasks exist, such as

vulnerability discovery and requirements tracing. In essence,

these tasks require humans—sometimes assisted by tools—

to locate the relevant information (e.g., a bug in the imple-

mentation that has security implications or a code fragment

satisfying a requirement [17], [18]).

Software developers seeking information adopt various

strategies, sometimes with striking parallels to those of animal

foragers [19]. Optimality here refers to the strategy that

maximizes the gain per unit cost. Figure 8a illustrates the

patch model of optimal foraging by presenting a hypothetical

bird seeking food in an environment that consists of patches

of berry clusters. The forager must expend some amount of

between-patch time (tB) arriving at the next patch. Once in a

patch, the forager faces the decision of keeping within-patch
foraging (tW ) or leaving to seek a new patch. As the forager

gains energy, the amount of food diminishes or depletes.

In such cases, there will be a point at which the expected

future gains from foraging within a current patch diminish

to the point that they are less than the expected gains that

could be made by leaving for a new one. Figure 8b shows

Charnov’s Marginal Value Theorem, which mathematically

models an optimal forager’s time allocation. In Figure 8b,

g(tW ) represents a decelerating expected net gain function.

The amount of energy gained per unit time of foraging is

R = g(tW )/(tB + tW ). Thus, the rate-maximizing time, t∗,

occurs when the derivative of g(tW ) is equal to the slope of

the tangent line R∗.

Although the theoretical foundations like the patch model

of Figure 8 helps to unify observations (even seemingly

conflicting ones) [21] and build tool support in a principled

manner [22]–[26], some simplifying assumptions are made in

the model. Similar to recent work [27], our work examines the

cumulative growth of gain on a cost scale. Different from [27],

we use the AML model to depict different phases and present

initial empirical data in malware detection. Interestingly, Hus-

sein et al. [28] modeled attackers and their intentional goals

with constructs adopted from social information foraging [29].

Time 

Gain 

tB tW 

t* 

g(tW) 

R* 

Forager’s search 

                               (a)                              (b)

Patch 1 

Between-patch 
search time (tB)

Patch 2 

Within-patch
search time (tW)

Fig. 8. (a) Illustration of patchy environment, where a hypothetical bird
forages in patches containing berry clusters. (b) Charnov’s Marginal Value
Theorem states that the rate-maximizing time to spend in patch, t∗, occurs
when the slope of the within-patch gain function g(tW ) is equal to the
average rate of gain, which is the slope of the tangent line R∗ (both adapted
from [20]).

The extension along the social dimensions has already inspired

new ways to construct an information patch [30] and to

answer practitioners’ requirements tracing questions [31], [32].

It likely will offer insights into synthesizing tools (e.g., Trojan

creation and AV) to achieve complementary effects [33] and

to assuring a system’s safety, security, dependability and other

critical properties [34]–[38].

VI. CONCLUSIONS

This paper presents our view of attack creation and detection

in relation to the AML model of vulnerability discovery. We

develop a three-phase model to suggest that the cumulative

malware detection has a productive period before the rate of

gain slows down. As the detection mechanisms co-evolve,

the gain will likely increase; however, relying on single

mechanism or mechanisms may not be able to detect all the

malware samples. To test our analytic model, we automatically

created Trojans on top of two benign programs and further

used a state-of-the-practice AV tool to detect the Trojans. The

preliminary results confirm the three-phased model; however,

the statistical inferences indicate more work shall be done to

make the model a better fit.

The future work thus includes calibrating the model and

conducting more empirical studies to confront the model with

real-world malware detection data. Furthermore, we plan to

build different Trojan creation methods (e.g., using payloads

other than those from Metasploit), and to develop automated

ways to identify the locations in the benign program to insert

the payloads. Finally, we encourage replications, especially

theoretical replications with open data [39]–[41], of our work

so as to offer explanatory powers and to enrich the empirical

bases of attack generation and detection.
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[16] C.-T. D. Lo, P. Ordóñez, and C. C. Mora, “Towards an effective and
efficient malware detection system,” in International Conference on Big
Data (BigData), Washington, DC, USA, December 2016, pp. 3648–
3655.

[17] A. Sardinha, Y. Yu, N. Niu, and A. Rashid, “EA-tracer: Identifying
traceability links between code aspects and early aspects,” in ACM
Symposium on Applied Computing (SAC), Trento, Italy, March 2012,
pp. 1035–1042.

[18] N. Niu, W. Wang, and A. Gupta, “Gray links in the use of requirements
traceability,” in International Symposium on Foundations of Software
Engineering (FSE), Seattle, WA, USA, November 2016, pp. 384–395.

[19] N. Niu, A. Mahmoud, and G. Bradshaw, “Information foraging as a
foundation for code navigation,” in International Conference on Software
Engineering (ICSE), Honolulu, HI, USA, May 2011, pp. 816–819.

[20] N. Niu, X. Jin, Z. Niu, J.-R. C. Cheng, L. Li, and M. Y. Kataev,
“A clustering-based approach to enriching code foraging environment,”
IEEE Transactions on Cybernetics, vol. 46, no. 9, pp. 1962–1973,
September 2016.

[21] N. Niu, A. Mahmoud, Z. Chen, and G. Bradshaw, “Departures from
optimality: Understanding human analyst’s information foraging in

assisted requirements tracing,” in International Conference on Software
Engineering (ICSE), San Francisco, CA, USA, May 2013, pp. 572–581.

[22] A. Mahmoud and N. Niu, “TraCter: A tool for candidate traceability
link clustering,” in International Requirements Engineering Conference
(RE), Trento, Italy, August-September 2011, pp. 335–336.

[23] S. Reddivari, Z. Chen, and N. Niu, “ReCVisu: A tool for clustering-
based visual exploration of requirements,” in International Requirements
Engineering Conference (RE), Chicago, IL, USA, September 2012, pp.
327–328.

[24] N. Niu, S. Reddivari, and Z. Chen, “Keeping requirements on track via
visual analytics,” in International Requirements Engineering Conference
(RE), Rio de Janeiro, Brazil, July 2013, pp. 205–214.

[25] A. Mahmoud and N. Niu, “Supporting requirements to code traceability
through refactoring,” Requirements Engineering, vol. 19, no. 3, pp. 309–
329, September 2014.

[26] W. Wang, N. Niu, H. Liu, and Y. Wu, “Tagging in assisted tracing,” in
International Symposium on Software and Systems Traceability (SST),
Florence, Italy, May 2015, pp. 8–14.

[27] X. Jin, N. Niu, and M. Wagner, “Facilitating end-user developers by
estimating time cost of foraging a webpage,” in International Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC),
Raleigh, NC, USA, October 2017, pp. 31–35.

[28] N. Hussein, W. Wang, J. L. Nedelec, X. Wei, and N. Niu, “Unified
profiling of attackers via domain modeling,” in International Workshop
on Requirements Engineering for Investigating and Countering Crime
(iRENIC), Beijing, China, September 2016, pp. 98–101.

[29] T. Bhowmik, N. Niu, W. Wang, J.-R. C. Cheng, L. Li, and X. Cao,
“Optimal group size for software change tasks: a social information
foraging perspective,” IEEE Transactions on Cybernetics, vol. 46, no. 8,
pp. 1784–1795, August 2016.

[30] D. Cepulis and N. Niu, “Creating socio-technical patches for information
foraging: A requirements traceability case study,” in International Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC),
Lisbon, Portugal, October 2018, pp. 17–21.

[31] A. Gupta, W. Wang, N. Niu, and J. Savolainen, “Answering the require-
ments traceability questions,” in International Conference on Software
Engineering (ICSE), Gothenburg, Sweden, May 2018, pp. 444–445.

[32] N. Niu, W. Wang, A. Gupta, M. Assarandarban, L. D. Xu, J. Savolainen,
and J.-R. C. Cheng, “Requirements socio-technical graphs for managing
practitioners’ traceability questions,” IEEE Transactions on Computa-
tional Social Systems, vol. 5, no. 4, pp. 1152–1162, December 2018.

[33] W. Wang, N. Niu, M. Alenazi, J. Savolainen, Z. Niu, J.-R. C. Cheng,
and L. D. Xu, “Complementarity in requirements tracing,” IEEE Trans-
actions on Cybernetics, vol. 50, no. 4, pp. 1395–1404, April 2020.

[34] W. Wang, A. Gupta, N. Niu, L. D. Xu, J.-R. C. Cheng, and Z. Niu,
“Automatically tracing dependability requirements via term-based rele-
vance feedback,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 1, pp. 342–349, January 2018.

[35] N. Niu, S. Brinkkemper, X. Franch, J. Partanen, and J. Savolainen,
“Requirements engineering and continuous deployment,” IEEE Software,
vol. 35, no. 2, pp. 86–90, March/April 2018.

[36] M. Alenazi, D. Reddy, and N. Niu, “Assuring virtual PLC in the context
of SysML models,” in International Conference on Software Reuse
(ICSR), Madrid, Spain, May 2018, pp. 121–136.

[37] M. Alenazi, N. Niu, and J. Savolainen, “A novel approach to tracing
safety requirements and state-based design models,” in International
Conference on Software Engineering (ICSE), 2020.

[38] H. Gudaparthi, R. Johnson, H. Challa, and N. Niu, “Deep learning
for smart sewer systems: Assessing nonfunctional requirements,” in
International Conference on Software Engineering (ICSE), 2020.

[39] N. Niu, A. Koshoffer, L. Newman, C. Khatwani, C. Samarasinghe, and
J. Savolainen, “Advancing repeated research in requirements engineer-
ing: a theoretical replication of viewpoint merging,” in International
Requirements Engineering Conference (RE), Beijing, China, September
2016, pp. 186–195.

[40] C. Khatwani, X. Jin, N. Niu, A. Koshoffer, L. Newman, and
J. Savolainen, “Advancing viewpoint merging in requirements engi-
neering: A theoretical replication and explanatory study,” Requirements
Engineering, vol. 22, no. 3, pp. 317–338, September 2017.

[41] W. Wang, A. Gupta, and N. Niu, “Mining security requirements from
common vulnerabilities and exposures for agile projects,” in Interna-
tional Workshop on Quality Requirements in Agile Projects (QuaRAP),
Banff, Canada, August 2018, pp. 46–55.

44

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 27,2020 at 02:29:52 UTC from IEEE Xplore.  Restrictions apply. 


