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ABSTRACT To evaluate heap security, researchers have designed evaluation tools that automatically locate
heap vulnerabilities. Most of these tools define heap interactions as heap misuses that are bugs, such as
overflow in a target heap allocator, and verify whether each combination of heap interactions can be used
as an exploit. However, this definition of heap interactions requires preliminary work by a user possessing
evaluation tools and specialized knowledge—the user needs to manually do much work to find which heap
misuses exist in the target heap allocator. In addition, because the existing heap misuses vary according to
target heap allocators and versions, this preliminary work must be performed on each heap implementation.
That is, the current definition of heap interaction cannot be generalized to all heap implementations.
In this paper, we propose a novel heap security evaluation model, called Heap Security Pilot (HS-Pilot), to
overcome the preliminary work load and the dependency of heap misuse in heap implementation. In HS-
Pilot, a heap interaction is newly defined as the modification of heap metadata, based on the idea that any
heap misuse can be represented by a sequence of heap metadata, i.e. combination of heap interactions used
by HS-Pilot. Consequently, the heap interactions in HS-Pilot can be applied to all heap implementations
without specialized knowledge, and therefore, are more general than that in existing heap evaluation tools.
Our evaluation shows that HS-Pilot can cover the analysis range of other evaluation tools, and is able to
detect 14 known types of heap exploitation against heap allocator ptmalloc and all types of heap exploitation
found by a state-of-the-art evaluation tool.

INDEX TERMS Computer Security, Memory Defenses, Software Testing

I. INTRODUCTION

MOST modern heap allocators—such as dlmalloc, pt-
malloc and musl—use an inline metadata approach

in which the metadata and the user data are placed in
adjacent memory regions. The inline metadata approach is
a consistently popular heap implementation method due to
the advantages of cache and memory-saving features [8].
However, this design is vulnerable to metadata corruption
attacks such as overflow. Heap allocators without security
considerations can easily cause anomalies by tampering with
the metadata. Currently, a number of heap vulnerabilities
have been leveraged for malicious software activity [30].

Many studies on the heap allocator have been considered
for security aspects [33, 34, 35]. As its importance emerged,
researchers also proposed a variety of evaluation tools for
heap security [6, 7, 8]. Existing tools use heap misuses such

as overflow, use-after-free, and double-free to verify whether
the combinations of heap interactions containing the misuses
can be used as heap exploitation primitives. Unfortunately,
the tools based on heap misuses have two limitations: the
need for preliminary work and the specificity of heap misuse.

First, in order to use existing evaluation tools, an evalua-
tion tool user must first manually locate the existence of heap
misuses on a target heap allocator before using the evaluation
tool. This preliminary analysis requires expertise and user
judgment to determine the appropriate parameters for heap
misuse. Users using these evaluation tools find it difficult to
acquire expertise and meet the challenge of being responsible
for the wrong range of heap misuse. For example, when using
overflow as a heap interaction in existing evaluation tools,
the user should select a threshold to set how many bytes
can be changed by overflow. If the threshold is not large
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enough, the evaluation tools are not able to find a possible
heap exploitation. Conversely, if the threshold is too large, it
may take the existing tools a long time to analyze many cases
with long, overflowed data. Therefore, to set the threshold
at a proper value, the user must have deep knowledge of
exploitation techniques, making it difficult for some users to
use these existing tools.

Second, the preliminary analysis described above is de-
pendent on each implementation of heap allocators. More
specifically, a heap misuse may occur or disappear on a new
version even in a heap allocator. This means that it takes
enormous effort to find heap misuses that are not explicit
in existing tools. As an example of the first case, in glibc
version 2.25, a new function called tcache was introduced to
improve performance. However, a lack of security awareness
about tcache causes a new heap misuse that did not occur
in previous versions. Conversely, in regards to the second
case, a double-free occurred in dlmalloc version 2.7.2, but
this misuse no longer works on dlmalloc version 2.8.2 or later
versions. Therefore, heap misuse cannot be generally defined
for various heap implementations, and the preliminary work
must be done as needed for each allocator and version [10].

In this paper, we propose a new heap security evaluation
model to solve the limitations of existing heap evaluation
tools. In HS-Pilot, we newly define heap interaction as the
modification of heap metadata. For the preliminary work
for HS-Pilot, only the metadata structure in the target heap
allocator is required, but it is not a burden to find the metadata
information because it is publicly available from source code
or paper. For this advantage, HS-Pilot, hardly affected by
the difference of allocator implementations, can be generally
applied to various implementations.

In addition, each heap misuse in existing tools can repre-
sent a combination of modifications of heap metadata. This
modification on heap metadata is semantically the smallest
behavior in a heap exploit, and therefore, can be considered
atomic heap interactions. By using the atomic heap inter-
actions, HS-Pilot can cover the analytical range of other
evaluation tools. The main contributions of this paper are
summarized as follows:

1) We propose a new heap security evaluation model,
HS-Pilot, which can be utilized without specialized
knowledge and much preliminary work.

2) In HS-Pilot, we newly define atomic heap interaction
based on heap metadata. The atomic heap interactions
make it possible for HS-Pilot to be applied to various
heap allocator implementations.

3) HS-Pilot can cover the analysis range of existing eval-
uation tools because heap interactions in existing tools
can be represented combinations of atomic heap inter-
actions used by HS-Pilot. Moreover, HS-Pilot can find
some exploits that existing evaluation tools cannot.

4) We evaluate HS-Pilot on some allocators. In ptmal-
loc, HS-Pilot can find all 14 known heap exploitation
techniques, as compared to 8 techniques found and 1
technique not found by HEAPHOPPER.

II. BACKGROUND
Each application implements or selects an appropriate heap
allocator. In modern embedded systems such as devices in
IoT environments, there are not enough resources. In these
cases, a lightweight C library such as musl [20] can be used,
and the operation for dynamic memory allocation is also sim-
plified. However, streamlined function can contain system
faults through unsecure memory allocation. To prevent the
situation of exploiting heap, heap allocator is evaluated by
evaluating tools. In our approach, to analysis heap security,
an user of an evaluation tool have to know the structure of
the chunk that is basic unit of the heap allocator. This section
introduces the design of heap allocator that use in inline
metadata along with attacks that occur using heap allocator.

A. DESIGN OF HEAP ALLOCATOR

(a) Allocated chunk (b) Freed chunk

FIGURE 1: Two types of chunk states in ptmalloc, in which
the size corresponds to smallbin

There are various heap allocators to manage the heap of an
application. These heap allocators use a similar structure of
heap metadata to achieve a common goals that are to max-
imize compatibility, portability, locality, and error detection
while minimizing time, space and anomalies [17]. We discuss
the structure of metadata in ptmalloc, the most popular heap
allocator. Ptmalloc is an allocator derived from dlmalloc [17],
and is the base design of various allocators such as Quickfit
[19] and musl. The GUN C library project, commonly known
as glibc, also uses ptmalloc as the default heap allocator and
as a core library for systems using Linux as the kernel [21].

Chunks are sorted by 8 bytes in a 32-bit architecture and
each metadata fields are aligned by sizeof(size_t) . Ptmal-
loc maintains metadata corresponding to allocated or freed
chunk as shown in Fig. 1 depending on the state of memory.
The allocated chunk has two pieces of metadata: prev_size
and size. In the size, the last three bits are not used due to
the aligned size and then store three information. The first
is PREV_INUSE bit that is the lowest bit of size. When the
previous chunk is in use, the bit is set the value to 1 and if
the previous chunk is freed, the bit is stored the size of the
previous chunk in the prev_size and change the value to 0.
The second is IS_MMAPPED, which indicates whether the
chunk is allocated by the mmap() system call. Memory region
created by calling system functions is managed differently
from existing chunks. The last is the NON_MAIN_ARENA
bit. Ptmalloc, which supports the thread function, manages
the heap memory area per thread. The flag bit is activated
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TABLE 1: A description of the heap exploitation technique in terms of metadata tampering and the resulting exploitation type

Name Type of vulnerability Description
fastbin_dup Overlapping Allocation Allocate a chunk that is not freed by corrupting freelist of fastbin
fastbin_dup_consolidate Overlapping Allocation Doubly allocate a chunk by simultaneously inserting in freelist of unsorted bin and fastbin
overlapping_chunks Overlapping Allocation Reallocate a chunk that is not freed by modifying size of freed chunk
overlapping_chunks2 Overlapping Allocation Reallocate a chunk that is not freed by modifying size of allocated chunk
poison_null_byte Overlapping Allocation Overlapping allocated chunk by using fake previous size and modifying size
fastbin_dup_into_stack Non-Heap Allocation Allocate fake chunk by modifying the forward pointer of freed chunk
house_of_force Non-Heap Allocation Allocate a chunk larger than the application can allocate by modifying the size of top chunk
house_of_lore Non-Heap Allocation Allocate fake chunk by passing unlink security check
house_of_spirit Non-Heap Allocation Allocate fake chunk in freelist by freeing fake chunk
house_of_einherjar Non-Heap Allocation Allocate fake chunk by modifying previous size and size of allocated chunk
unsortedbin_into_stack Non-Heap Allocation Overwrite target address by returning fake chunk
large_bin_attack Arbitrary Write Overwrite target address by abusing unlink macro routine
unsafe_unlink Arbitrary Write Write the desired value using unlink macro of fake chunk
unsortedbin_attack Arbitrary Write Overwrite target address by modifying backward pointer of freed chunk

when an allocated chunk is created to other thread rather than
the main thread.

The freed chunks are managed by bins, which are struc-
tures of a freed chunk list for each size. The freed chunk
has four pieces of metadata in smallbin: prev_size, size,
fd(forward pointer) and bk(backward pointer). The reason
that freed chunks have more metadata than allocated chunks
is because they contain information to efficiently reuse mem-
ory. The first two metadata fields play the same role as in an
allocated chunk, and the latter two are used to maintain freed
chunk list of the same size or within a specified range. To add
metadata fields such as fd and bk, unused memory is used as
metadata fields without additional memory allocation.

The heap creation for an application uses the top chunk
design for a small memory footprint. It contains information
about the available size of the heap. If there is no suitable
sized chunk for allocation, the top chunk returns the new
chunk of the size to be created, keeping the rest as top chunks.
If there is no space, the usable heap area is increased through
sbrk or mmap system call.

There is a technique that modifies these top chunk as well
as one that corrupts the chunk metadata. Therefore, top chunk
should be considered as a element of security evaluation. It is
difficult to detect technique such as house_of_force because
address of top chunk change fluidly. In order to tracing top
chunk, HS-Pilot use hook function that can capture address
of top chunk in runtime.

B. HEAP EXPLOITATION TECHNIQUES
There are various techniques for exploiting the heap shown
as TABLE 1, and can be broadly classified into two types:
The first is passive heap exploitation, which is an attack
method that uses only valid function of the heap without
modifying any metadata, such as malloc and free [13]. The
passive attack is executed by incorrect heap implementa-
tions, but many modern heap implementations now defend
against these attacks due to a fund of knowledge. The other
type is active heap exploitation, which include most heap
exploitation techniques. An active attack leads to malfunction
of heap by manipulating metadata and bypassing security-

checking routine applied in heap implementation. Since secu-
rity checking routines are not perfect, heap evaluation tools
can help by making up for the missing part for improving
heap security.

The type of a heap exploitation techniques essentially has
three prongs: Overlapping Allocation, which overwrites all or
part of a chunk already allocated through the heap API; Non-
heap Allocation, which allocates a chunk through malloc
to non-heap areas(e.g., stack); and Arbitrary Write, which
overwrites a limited or arbitrary value in a desired address.

III. RELATED WORK
In the past, heap exploitation techniques were discovered
by attackers manually analyzing the heap implementation.
Attacks related to heap did not get the attention of attackers,
because it took a lot of effort to succeed. However, automatic
exploit generation tools for heap [9, 31, 32] have been re-
cently made so that attackers can easily create exploitation.
Attacks that use vulnerabilities of heap allocator are simply
reproduced if the memory in the heap is controlled by attack-
ers. It means that the same vulnerability exist in applications
that use the corresponding heap allocator.

Applications can also be attacked without a deep under-
standing of applications, because the heap vulnerabilities are
application independent. Due to application’s independence,
heap vulnerabilities are more critical to security than vulner-
abilities that depend on the implementation of a particular
application. Heap exploitation have been studied extensively
[16, 26] in the field of software security, and many researcher
have attempted to develop framework, using a variety of
innovative automation tools (e.g., model checkers, fuzzing
and symbolic execution) [9].

HEAPHOPPER [7] is the first automatic evaluation tool
thorough model checking and symbolic execution to evaluate
the security of a heap implementation. By detecting the
heap exploitation primitive, HEAPHOPPER helps to iden-
tify implementation problems in heap implementation. The
framework defines heap interaction based on heap misuse
and analyzes it using the symbolic execution engine angr.
In similar way, ARCHEAP [8] is the latest heap allocator
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(a) Previous heap evaluation tools analyzed using heap misuse

(b) Our heap evaluation tool analyzed using new atomic heap inter-
actions

FIGURE 2: Comparison of our mechanism with previous
study

evaluation tool through fuzzing. It defines similar heap inter-
action like HEAPHOPPER. However, rather than checking
all combinations of heap interactions, ARCHEAP devises
a way to quickly estimate the possibility of exploitation
primitive and generate combinations of heap interactions. It
uses the american fuzzy lop (AFL) [28] fuzzer to generate the
input value of the heap interaction, and the shadow memory
is designed for real-time analysis.

Heap implementations can be analyzed using tools, of
which the most common are fuzzing and symbolic execution.
Fuzzing helps to find exploitable input by generating random
values, and an evaluation tool enables efficient exploitation
detection. Fuzzing generates random value depending on
criteria and done not consider semantic of heap implemen-
tation. Therefore, fuzzing does not guarantee security of the
heap allocator even if the exploit has not been detected.
In HS-Pilot, a combination of heap interactions is analyzed
using symbolic execution, which has wide analysis coverage
because symbolic execution generate executable path that
reflects semantics of heap implementation.

In Fig. 2, our analytical mechanism is shown compared to
previous studies. Previous papers discovered heap exploita-
tion techniques [6, 7, 8] by constructing heap interactions
based on heap misuse. However, because security routines
are different between allocators and versions, it is necessary
to determine the heap misuse that may occur and generate a
coordinated combinations of heap interaction. In this paper,
we define atomic heap interactions through information on
the metadata structure of heap. As a result, our tool does not
require additional analysis unlike previous research.

IV. DESIGN
A. ADVERSARY MODEL
This section presents the capabilities of an attacker. An at-
tacker aims to identify vulnerabilities in target heap allocator,
and evaluation tool has the same goal as the adversary model.
Therefore, we give the evaluation tool the same abilities
as the actual attackers. By modeling powerful attacker ca-
pabilities, we analysis heap implementation similarly with

a real environment and effort to identify all known heap
exploitation techniques. Modern protection techniques such
as address space layout randomization (ASLR) [25] make
it difficult to found heap exploitation techniques, but these
defense do not essentially improve the security of heap
implementation. As bypassing protection techniques is out of
scope in our research, we assume that there is no protection
techniques except for the security checking routine imple-
mented in heap implementation.

Because heap APIs represent how they work in real
programs based on heap implementations, evaluation tools
should be able to run valid heap APIs. According to standard
documentation [22], functions(heap APIs) that manage heap
memory are malloc, free, calloc, realloc, memalign, etc.
However, an increase in the number of heap interactions
can result in a large overhead of the evaluation tool. So
we replaced alternative heap APIs to prevent this. Other
allocation APIs (excluding malloc and free) use malloc or
free inside. In addition, they perform additional actions such
as resizing or copying user data. These additional actions
are meaningless from a metadata perspective, which means
they can be replaced by malloc and free. For this reason, the
previous papers also evaluated heap allocators using malloc
and free.

To discover potential heap exploitation, the evaluation tool
changes heap metadata, and then bypasses security checking
routines. The heap implementation design is specified in the
annotation or white paper, from which we can also easily ob-
tain information about the metadata. The attacker can modify
metadata as a field of chunk or exploit indirect metadata from
the target heap allocator, such as the top chunk. Similarly,
HS-Pilot analyzes corrupt metadata through symbolic execu-
tion. Indirect metadata is not metadata of each chunk, but can
indirectly affect the management of all chunks. This indirect
metadata can be obtained with the same behavior used in
previous heap exploitation techniques, such as modifying the
top chunk.

B. HS-PILOT

To evaluate the security of the heap implementation, we
introduce HS-Pilot, an automated approach to generating
heap exploits through heap metadata corruption. HS-Pilot
controls the heap in the same way as the adversary model that
presented earlier in section 4.1. The operation process of HS-
Pilot is shown in Fig. 3. To generate combinations of heap
interactions, we use configuration file and code generator.

Configuration file consists of information needed for anal-
ysis such as the location of a target heap allocator, set of
heap interactions, bound and temporal/spatial constraints.
The location of heap allocator is the directory path of target
heap allocator, and the set of heap interactions are valid heap
interactions extracted against the target heap allocator based
on section 4.3. Since HS-Pilot analyzes combinations of heap
interactions, we need to specify a bound which means the
maximum combination length for finality of analysis. Also,
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FIGURE 3: Overview of HS-Pilot

Algorithm 1: Generating compilable files with a

heap interaction (HI)
Input : FileConfig

Output: CompilableF iles

D← GetDepth(FileConfig)
HIPre← GetPreHI(FileConfig)
HISet← GetHI(FileConfig)
Sizemalloc← GetSize(FileConfig)

for DCurr ← 2 to D do
HICombs← DoCombination(HISet, DCurr , HIPre)
HIConc−Combs← DoAppendIdx(HICombs)
V ulnerableCombs← GetVulnerableCombs(FileConfig)
for A combination HISingle−Comb ∈HIConc−Combs do

if HISingle−Comb ∈ V ulnerableCombs then
Remove(HISingle−Comb)

else
MakeFile(HISingle−Comb,Sizemalloc)

end
end

end

we have to configure temporal/spatial constraints because of
limitation on system resource.

Code generator makes a compilable code based on combi-
nation of heap interactions. This process can be represented
by pseudo-code, as shown in Algorithm 1. To minimized
unnecessary analysis, a predecessor can be set for each heap
interaction. For example, to modify the forward pointer of
a chunk, a chunk is required. In other words, it is invalid
that modify forward pointer before allocating chunk. Conse-
quently, We set predecessors for heap interactions by using
relationships between metadatas. Setting the predecessors
has the advantage of optimization for analysis phase, and the
accuracy of HS-Pilot is not affected, even if predecessors are
not set.

For analysis only through metadata modification (to avoid
creating other unnecessary paths), we perform heap interac-

tion specification. Therefore, each heap interaction have to
specify chunk that perform that action in the combinations
of heap interactions. To differentiate the chunks used for
analysis, Allocated chunks maintain each unique index in
order. The concretization process uses indexes to specify
which chunks to modify through heap interaction. Then, HS-
Pilot creates all possible combination by using concrete heap
interactions. Since modifying with metadata that has already
been tampered is unnecessary, combinations with duplicate
heap interactions are eliminated beforehand. Because it is
pointless to tamper with metadata in the same chunk, theses
combinations are eliminated in advance. In addition, the
Proof of Concept (PoC) code is stored to reflect the previ-
ous analysis result, and the newly created combinations are
compared with the base combination of the PoC code. If the
generated combination contains a combination based on PoC
code, HS-Pilot removes the combination.

After compiling generated combinations, the executable
files are analyzed with the angr framework [24], a binary-
based symbolic execution engine. Source code-based analy-
sis is difficult to reflect information generated and changed at
runtime. Because it is difficult to find the corruption of mem-
ory management, we use a binary-based symbolic execution
engine. Symbolic execution restricts the value of a symbolic
variable using constraints on the basis of control flow. For our
analysis, metadata that is modulated through heap interaction
is set as a symbolic variable, and the information necessary
for runtime analysis, such as address of top chunk, is ob-
tained through defined hook function. To efficiently detect
heap exploitation primitive, we set a read/write strategies for
symbolic variables. According to existing heap exploitation,
analysis is facilitated via a value based on a target address,
allocated chunk address or fake chunk address. Therefore we
use these specified address for the read/write strategies.

During the analysis, we need criteria to detect the heap
allocators malfunctioning. So we use security checker to
detect security violations of target heap allocator. We define
three security violations for heap.

1) Overlapping Allocation: When allocating a chunk, it
means that the previously allocated chunk and the
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chunk to be allocated through the malloc function
become overlapped. The security checker verifies the
existence of coincidence between the allocated malloc
list and the chunk to be allocated using address and
size.

2) Non-Heap Allocation: It means that the chunk to be
allocated through the malloc function is created outside
the heap section. The malloc function allocates unused
memory in the heap, but exploiting heap allocator can
return non-heap memory. For example, because of a
memory locality, the address of the fake chunk that is
not in heap is allocated, and this situation can occur
when freeing a fake chunk and allocating the same size
memory.

3) Arbitrary Write: This means to write an arbitrary or
limited value at the target address. Malloc and free
contain code that writes memory inside the function
to manage metadata. By exploiting mechanism about
metadata change, we can modify the value of the target
address. The value of the target address can only be
modified to a restricted value if the mechanism has
constraints. If there is no constraint, the value can be
modified to any value. We observe whether the value
of the target address has changed after calling malloc
and free to detect Arbitrary Write.

If a state that is a security violation is reached during
analysis, HS-Pilot obtains a value that satisfies the constraints
of the symbolic variable for the violated state, and generates
PoC code based on the value. To reduce the duplication of the
analysis, we gradually increase the length of the combination
and reflect the results of the previous analysis.

C. ATOMIC HEAP INTERACTION
A heap interaction refers to what can be done with an
evaluation tool to actually verify target heap allocator. In
previous researches, heap interactions were defined based
on heap misuses. Because it would be pointless to evaluate
security of heap implementation using a non-existent heap
misuse, it is necessary to check existence of heap misuse in
target heap allocator before analysis. Checking step requires
expert knowledge and effort. Also, different versions of the
heap misuse occur even with the same heap allocator.

In this paper, we define atomic heap interactions through
metadata of heap. Each metadata represents the smallest
unit containing one piece of information for managing the
heap and is no longer semantically divisible. Therefore, we
call an heap interaction based on metadata as atomic heap
interactions. Identifying the metadata structure of a heap
implementation is a well-known piece of information without
analysis, and is easier than figuring out the heap use of the
target heap allocator. This definition overcomes the limitation
of existing research that require expertise. In our research,
HS-Pilot accesses different metadata via offsets based on the
chunk address. Since the size of each metadata is fixed, we
do not need setting a misuses of threshold such as a overflow
size. Atomic heap interactions have four types.

• Dynamic memory related heap interaction - This
means a valid API to be used on the heap such as
malloc and free, and these functions dynamically man-
age memory. Malloc receives input parameter that is
the size to be allocated and returns the address of the
allocated chunk. Information about allocated memory is
then maintained as a global variable, and the size to be
allocated can be specified through a configuration file.
Free receives input parameter that consists of an address
to be deallocated with no return value. The argument of
the free function can include the address value assigned
through malloc function and fake chunk.

• Malloc metadata-based heap interaction - It is a type
of heap interaction that manipulates the metadata of
allocated chunks. The allocated chunk has metadatas
such as a chunk size, flag bits and previous chunk size
that is the size of the chunk adjacent to the current
chunk.

• Free metadata-based heap interaction - This heap in-
teraction manipulates freed chunk metadata. In general,
freed chunks are managed by size through a linked list.
for efficient use of allocated chunk metadata and mem-
ory. If the allocated chunk is fake free, free metadata-
based heap interaction can be used for the chunk that is
not free. In other words, chunks allocated through the
heap API can all use heap interactions about metadata
used in malloc and free, regardless of state.

• Indirectly affecting heap interaction - This heap in-
teraction indirectly affects the heap and does not belong
to the above three interaction types. This type includes
modifications to metadata for heap management, such
as top chunk, or memory allocation for connections with
other areas, such as fake chunks. This heap interaction
can be identified through actions used in known heap
exploitation techniques.

HS-Pilot uses an defined atomic heap interactions through
above criteria. Since the heap area is initialized after the
first malloc call in the program, we use dummy chunks to
perform analysis in the initialized heap state (allocation and
deallocation). So we can use initialized heap state informa-
tion such as top chunk. Also, fake chunks that are created
outside of the heap are not affected by sequence of heap
interactions, so code generator initially places fake chunks
to create combinations that minimize duplication.

D. HEAP HOOK FUNCTION

HS-Pilot analyze using a lot of information that is gener-
ated at runtime. Because the address to be read or written
differs for each combination of heap interactions, informa-
tion related to the heap have to be collected at runtime. In
addition, it should be maintained that fake chunk address
and information about the top chunk address. However, since
runtime information is not shown in source code, we use
hook functions to obtain runtime information. HS-Pilot uses
four hook functions.
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• Malloc hook function - Heap API is difficult to anal-
ysis because of complex mechanism such as memory
consolidation. HS-Pilot uses values that are returned
directly through malloc function, so there is no need to
consider complex mechanisms. Malloc hook function
stores the size and address of the chunk in a malloc
chunk list when malloc function is called from binary
file. HS-Pilot is able to verify that keeping security
policy, such as checking whether it is allocated inside
the heap through the stored address.

• Free hook function - Similar to the Malloc function,
free hook function occurs when the free function is
called from a binary file. HS-Pilot remove an address
that received input of free function in malloc chunk list,
and insert the address in free chunk list. If the address is
not in malloc chunk list, insert only free chunk list. This
situation is fake free if the address is not in free chunk
list. Contrastively, if the address is in free chunk list, it
is double free.

• Fake chunk hook function - Fake chunk is data that
maintains a similar structure to chunk in non-heap sec-
tion. The goal of fake chunk is to make target heap
allocator identify as legitimate chunk. The fake chunk
address is what must be known for heap interaction
input to create a valid exploitation technique. When
analyzing this information, note that the address of the
fake chunk stored on the stack may be different from the
actual runtime memory location. For this reason, when
we discovered a heap exploitation technique, we used
the hook function to preserve address information for
fake chunks and reanalyze the information.

• Top chunk hook function - Position of top chunk
depends on chunks that are presently allocated, and size
metadata field of top chunk keep how much memory can
newly be allocated in the heap. The goal of exploitation
is to allocate more than the size that can be allocated in
the heap by modifying the size field. Top chunk hook
function find address of the top chunk. In ptmalloc, HS-
Pilot finds the address of the top chunk by referring to
the main_arena structure that manages the heap area
inside the libc function.

HS-Pilot uses four defined hook functions to obtain run-
time information. Malloc and Free hook function are oc-
curred when malloc function and free function are called,
and fake chunk and top chunk hook function are hooked by
defining special function.

V. IMPLEMENTATION
In this paper, we implemented the prototype model, HS-
Pilot, to analyze ptmalloc, the allocator of glibc version 2.23.
In configuration file, we use YAML format that is a data
serialization language. The process of code generation and
analysis is written by python version 3.5.4 and with a totals
1500 line of code. We generate code using a file format that is
compile with GNU compiler collection(GCC) on linux, and

analyze it with version 8.19.4.5 of the angr framework, which
is a binary symbolic execution engine.

For efficient analysis, angr provides an option called the
plug-in function, which is simply simulated instead of a real
function. Plug-in functions that are related to malloc and free
are also implemented. However, we have to analysis real
implemented functions so removed this option. If HS-Pilot
encounters invalid path that lead to fail at runtime such as
abort function, our tool halt analysis. Symbolic Execution
performs objective analysis, and increases the reliability of
the tool by creating an automated input without user interven-
tion of the evaluation tool. We can get this advantage through
using symbolic execution.

1 size_t = 8
2

3 class Topchunkhook(angr.SimProcedure):
4 def run(self, addr = None,

var_dict_top_chunk_addr = None,
var_dict_top_chunk_size = None):

5 main_arena_top = addr + 88
6 top_chunk_addr = self.state.mem[main_arena_top

].uint64_t.resolved
7 top_chunk_index = self.state.heap_analysis.

top_chunk_idx
8

9 self.state.heap_analysis.top_chunk_idx += 1
10 self.state.memory.store(

var_dict_top_chunk_addr[top_chunk_index],
top_chunk_addr, size_t, endness=archinfo.
Endness.LE)

11 self.state.memory.store(top_chunk + size_t,
self.state.mem[var_dict_top_chunk_size[
top_chunk_index]].uint64_t.resolved,

12 size_t, endness = archinfo.Endness.LE)
13

14 return
15

16

17 class FakeChunkAddr(angr.SimProcedure):
18 def run(self, addr, var_dict_fake_addr = None):
19 fake_chunk_index = self.state.heap_analysis.

fake_chunk_idx
20

21 self.state.heap_analysis.fake_chunk_idx += 1
22 self.state.memory.store(var_dict_fake_addr[

fake_chunk_index], addr, size_t, endness =
archinfo.Endness.LE)

23 self.state.heap_analysis.fake_addr.append(self
.state.mem[var_dict_fake_addr[fake_chunk_index
]].uint64_t.concrete)

24

25 return
26

Listing 1: Source code of hook function to obtain runtime
information

In angr, a global variable address can be caught through
symbols of binary file. However, no symbols are generated
for a local variables in the stack. In addition, several infor-
mation is generated after heap section is initialized. For these
information, HS-Pilot perform defined hook function. Listing
1 show source code of hook function to obtain address of
top chunk and fake chunk. When the top chunk is created,
the address of the top chunk is held in a structure called
main_arena which is a specific value apart from libc. We use
the top field of this structure to obtain the top chunk address
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TABLE 2: Description of combination for known heap vulnerability techniques generated by the code generator

Name Combination of Atomic Heap Interactions

fastbin_dup malloc→malloc→malloc→free→free→free→malloc→malloc→malloc
fastbin_dup_consolidate malloc→malloc→free→malloc→free→malloc→malloc
fastbin_dup_into_stack fake_chunk_out→malloc→malloc→malloc→free→free→free→malloc→malloc→fwd→malloc→malloc
house_of_force malloc→top_chunk→malloc→malloc
house_of_lore fake_chunk_out→fake_chunk_out→malloc→malloc→free→malloc→bck→malloc→malloc
house_of_spirit fake_chunk_out→fake_chunk_out→malloc→free→malloc
house_of_einherjar fake_chunk_out→malloc→malloc→prev_chunk_size→chunk_size→free→malloc
largebin_attack malloc→malloc→malloc→malloc→malloc→malloc→free→free→ malloc→free→chunk_size→bck→malloc
overlapping_chunks malloc→malloc→malloc→free→chunk_size→malloc
overlapping_chunks2 malloc→malloc→malloc→malloc→malloc→free→chunk_size→free→malloc
poison_null_byte malloc→malloc→malloc→free→chunk_size→prev_fake_chunk_size→malloc→malloc→free→free→malloc
unsafe_unlink malloc→malloc→fake_chunk_in→prev_chunk_size→chunk_size→free
unsortedbin_attack malloc→malloc→free→bck→malloc
unsortedbin_into_stack fake_chunk_out→malloc→malloc→free→chunk_size→bck→malloc

TABLE 3: Analysis results of 14 heap exploitation techniques detected using HS-Pilot

Name Type of Heap Interaction malloc size Analysis time Depth

fastbin_dup [ malloc, free ] [ 0x8 ] 5.15 9
fastbin_dup_consolidate [ malloc, free ] [ 0x8, 0x500 ] 4.92 7
fastbin_dup_into_stack [ fake_chunk_out, malloc, free, fwd ] [ 0x8 ] 8.79 12
house_of_force [ malloc, top_chunk ] [ 0x8, 0x100, 0x7fffffbf8840 ] 7.62 4
house_of_lore [ fake_chunk_out, malloc, free, bck ] [ 0x100, 0x500 ] 10.44 9
house_of_spirit [ fake_chunk_out, malloc, free ] [ 0x8, 0x100 ] 7.71 5
house_of_einherjar [ fake_chunk_out, malloc, free, prev_chunk_size, chunk_size ] [ 0x8, 0x100, 0x200 ] 50.47 7
largebin_attack [ malloc, free, chunk_size, bck ] [ 0x8, 0x100, 0x320, 0x500 ] 12.57 13
overlapping_chunks [ malloc, free, chunk_size ] [ 0x100, 0x500 ] 4.36 6
overlapping_chunks2 [ malloc, free, chunk_size ] [ 0x100, 0x200 ] 14.40 9
poison_null_byte [ malloc, free, chunk_size, prev_fake_chunk_size ] [ 0x100, 0x500 ] 10.09 11
unsafe_unlink [ malloc, free, fake_chunk_in, prev_chunk_size, chunk_size ] [ 0x100 ] 54.75 6
unsortedbin_attack [ malloc, free, bck ] [ 256 ] 4.63 5
unsortedbin_into_stack [ fake_chunk_out, malloc, free, chunk_size, bck ] [ 256 ] 220.20 7

at runtime and store the address by size_t bytes. Thus we are
able to statically locate the address of the top chunk in the
PoC code, and modify the size information of top chunk. A
fake chunk can be created in the stack area or inside the chunk
created with the malloc function. Similar the top chunk hook
function, the fake chunk hook function is used to find the
chunk address.

VI. EVALUATION
The goal of HS-Pilot is to verify security about heap alloca-
tors. We evaluated the detection performance of against 14
known heap exploitation techniques in ptmalloc. In addition,
we compared HS-Pilot with the HEAPHOPPER, a state-of-
the-art heap evaluation tool. In this section, we discuss the
following questions.

1) Can atomic heap interactions (newly defined heap
interactions) generate combination for known heap
exploitation techniques?

2) Can heap exploitation techniques be detected through
the generated combinations?

3) How efficient is HS-Pilot compared to other state-of-
the-art frameworks?

First, it is essential to verify that the code generator is
able to generate a combination for known heap exploitation

techniques. This process is equivalent to ensuring that atomic
heap interactions are well defined, as an incorrectly defined
heap interactions are not able to reproduce currently known
heap exploitation techniques. TABLE 2 shows the combina-
tions for the 14 heap exploitation techniques as described
in section 2.2. The metadata that is used in largebin, such
as fd_nextsize or bk_nextsize, can be modified through a
fake chunk created inside target chunks. Because fake chunk
triggers the constraints of the numerous symbolic variables,
HS-Pilot has to resolve state explosion in symbolic execution.
To prevent this situation, we limited number of possible uses
of fake chunks.

Second, it should be checked whether the used evalu-
ation tool properly detects heap exploitation. We describe
our analysis using atomic heap interactions for known heap
exploitation techniques as shown TABLE 3. Malloc size
is candidate of parameter that is used in malloc function,
and depth signifies bound that is length of the combination.
Analysis time means the time that is required to analyze
through HS-Pilot when the corresponding combination of
heap interactions is given.

Several types of vulnerabilities can occur in one combi-
nation of heap interactions, and HS-Pilot detects the type of
vulnerability first discovered. For example, unsafe unlink is
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TABLE 4: Table comparing HS-Pilot with HEAPHOPPER against 8 heap exploitation techniques

HS-Pilot HEAPHOPPER
Technique

Tool
All path First vuln All path First vuln

fastbin_dup_into_stack 13.71 8.79 4.64 3.63
house_of_lore 16.21 10.44 68.87 36.73
house_of_spirit 9.96 7.71 4103.47 6.50
overlapping_chunks 96.60 4.36 1552.5 36.68
unsortedbin_attack 4.90 4.27 2.98 2.60
unsafe_unlink 193.67 54.75 235.85 145.01
house_of_einherjar 134.38 50.47 1469.01 136.91
poison_null_byte 21.98 10.09 1523.83 78.26
Average Time 61.42 18.86 1120.15 55.79

a heap exploitation technique that writes unrestricted values
to a desired address. The process is as follows. We write
Addrobject as the address of the object. When we want
to highlight the status of a given chunk, we denote CHA

or CHF and metadata for a specific chunk is indicated as
metadataCH .

1) Allocate two chunks, CHA
1 and CHA

2 , with the size of
0x100.

2) Store AddrCH1 and AddrCH2 in a global buffer G.
3) Create a fake chunk FCH inside CH1, where

prev_sizeFCH and sizeFCH are equal to 0. fdFCH

and bkFCH are equal to AddrG−C1 and AddrG−C2,
respectively, where C1 and C2 are constants.

4) Modify prev_sizeCH2 and sizeCH2 to make CHA
1

look like the fake freed chunk CHF
1 .

5) Free CHA
2 . After that, CHF

2 and CHA
1 are merged

into one freed chunk. As a result, AddrCH1
in G is

overwritten.
6) Put the Addrtarget in AddrCHA

1 +C1
. Addrtarget is

stored in G due to the manipulated CH1. In this case,
target is the object we want to tamper with.

7) Change the value of AddrCH1
to a desired value. Then,

we can set the desired value in the target address.
The above heap exploitation technique is triggered by a

change in the value of the global buffer through the unlink
macro by freeing the second chunk. This means that this is
an arbitrary write that writes a limited value at an arbitrary
address, and HS-Pilot detects changes in the global buffer
through a security checker in step5. The final goal of unsafe
unlink can be achieved through the subsequent process.

Finally, the difference between HS-Pilot and existing eval-
uation tool is explained through comparison. We compares
HS-Pilot with HEAPHOPPER as shown TABLE 4. We test
8 exploitation techniques that are detectable by HEAPHOP-
PER. In HS-Pilot, the length of combination is long because
of using small units. Through a read/write strategy during
symbolic execution, the check is performed on a specific
address rather than all addresses, and the path of symbolic ex-
ecution is constructed to mitigate the state explosion problem
of symbolic execution. Heap misuse-based interactions result
in a number of symbolic variables being allocated because
target memory is not clear. In other words, many symbolic
variables act as overhead of the evaluation tool, increasing

analysis time. HS-Pilot uses a fixed length target memory to
mitigate the state explosion in a symbolic extension. This
can be seen in our comparison experiment between HS-
Pilot using new atomic heap interactions and HEAPHOPPER
using traditional heap misuses. house_of_spirit is a typical
example of this.

For the finiteness of code execution, we set the tunable
threshold. The temporal threshold was 1,500 seconds and
spatial threshold was 8GB in used evaluation tools. HS-
Pilot was able to analyze eight heap exploitation techniques
within the threshold. Since we are not able to predict a
point of vulnerability, we need to analyze each combination
until the entire path is reached, not when you first find the
vulnerability. To do this, we measured the time to detect
the first vulnerability and the time to detect the entire path.
The analysis was performed three times, and each value
represents an average value. Because HS-Pilot has fewer
symbolic variables than existing tools based on symbolic
execution, HS-Pilot saves 67% on average when finding the
first vulnerability and 95% when checking all paths.

In HS-Pilot, an address of a stack is specified. It mean
that the address of the stack can be analyzed via read/write
strategies by granting access to memory near the fake chunk.
Also, by setting the memory layout, we are able to deter-
mine the gap between the heap and the stack. By using
this information, we also found the specific malloc value of
the house_of_force technique and subsequently generated a
combination, enabling us to allocate the stack area address
using the malloc function.

Additionally, we analyzed dlmalloc, which is identical to
the chunk metadata of ptmalloc. Since it has the same meta-
data structure, atomic heap interactions used by ptmalloc can
be used intact. However, even though the structure of the
metadata is the same, we have to analyze dlmalloc because
possible vulnerabilities differ according to internal imple-
mentation. We found that version 2.7.2 of dlmalloc is yielded
the same vulnerabilities as ptmalloc, which was a highly
probably outcome, as ptmalloc is based on dlmalloc 2.7.0.
In order to set the top chunk to execute the house_of_force
technique, ptmalloc stores information from the top chunk in
a structure called main_arena, and dlmalloc 2.7.2 is stored
in the av_ structure. Since the newer dlmalloc 2.8.6 is not
able to do double free, it is deemed safe against the fastbin
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heap exploitation technique. Also, version 2.8.6 of dlmalloc
uses the _gm_ structure to maintain information about the top
chunk of the heap.

Finally, we analyzed musl 1.1.9 version. musl is similar
in design with dlmalloc, so we were able to analyze it using
atomic heap interaction without any significant burden. How-
ever, we checked the top of the heap with the mal.brk value
without keeping the top chunk in the musl design. As a result,
we found that modifying the top chunk resulted in an invalid
interaction with musl and that the house_of_force technique
could not be exploited. Similar to dlmalloc 2.8.6 version, we
were able to apply double free defense techniques to show the
invalidity of the previously known fast bin attack technique.
In addition, the analysis using HS-Pilot showed that heap
exploit techniques related to non-heap allocation for the stack
were not valid. This is because there is a routine to check
if the address is in the stack when allocating the chunk
address in musl. Heap allocators are constantly developing to
improve security, and existing manual tasks can be automated
through heap evaluation tools. Before heap allocators are
released, HS-Pilot can improve security by using our heap
evaluation tool.

VII. DISCUSSION

There are various vulnerabilities in heap implementations
that cause heap corruption, but they must involve heap API
use or heap metadata tampering. Use-after-free leads to in-
formation leakage about metadata and user data. In order for
metadata information leakage to trigger heap corruption, a
write action must occur on the metadata. HS-Pilot analyzes
heap allocators based on metadata writes, so it is possible
to recreate the manipulation of information leaked after use-
after-free occurs. In addition, HS-Pilot considers both the
memory area shared by user data and metadata itself as meta-
data. Because of this, user data through use-after-free is inde-
pendent of metadata and does not compromise the integrity
of heap implementations. The same goes for an uninitialized
read and a buffer overread. Metadata management is done
in the heap API, and information leakage through a memory
read alone does not cause unintended behavior in the heap
implementation.

VIII. CONCLUSION

In this paper, we proposed a new heap security evaluation
tool HS-Pilot that uses atomic heap interactions. We verified
a heap allocator without special knowledge about heap mis-
uses. The number of combinations increases due to refined
heap interaction, but this is alleviated through feedback. In
addition, HS-Pilot also showed that the analysis time for each
combination improved over existing evaluation tools that use
symbolic execution. Able to detect all 14 known heap exploit
techniques for ptmalloc, HS-Pilot is proven to have a wider
analysis range than HEAPHOPPER.
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