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Abstract. Automatic exploit generation for heap vulnerabilities is an
open challenge. Current studies require a sensitive pointer on the heap to
hijack the control flow and pay little attention to vulnerabilities with lim-
ited capabilities. In this paper, we propose HAEPG, an automatic exploit
framework that can utilize known exploitation techniques to guide exploit
generation. We implemented a prototype of HAEPG based on the symbolic
execution engine S2E [15] and provided four exploitation techniques for
it as prior knowledge. HAEPG takes crashing inputs, programs, and prior
knowledge as input, and generates exploits for vulnerabilities with lim-
ited capabilities by abusing heap allocator’s internal functionalities.

We evaluated HAEPG with 24 CTF programs, and the results show that
HAEPG is able to accurately reason about the type of vulnerability for 21
(87.5%) of them, and generate exploits that spawn a shell for 16 (66.7%)
of them. All the exploits could bypass NX [25] and Full RELRO [28]

security mechanisms.

Keywords: Automatic exploit generation - Heap vulnerability -
Symbolic execution

1 Introduction

Automated exploit generation (AEG) is becoming an important method in
vulnerability-centric attacks and defenses. Software vendors use it to evaluate
the severity of security vulnerabilities more quickly and allocate appropriate
resources to fix critical vulnerabilities. Defenders learn from synthetic exploits
to generate Intrusion Detection System rules and block potential attacks.

Most AEG solutions [12,13,20,23,26] usually only support stack-related or
format string vulnerabilities, which are rare in modern systems [2]. Due to the
complexity of heap allocator functions, only a few existing solutions can generate
exploits for heap-based vulnerabilities. These solutions have different approaches.
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For instance, Revery [30] applies a layout-oriented fuzzing and control-flow
stitching solution to explore exploitable states in paths derived from vulnera-
bility points. Gollum [22] employs a custom heap allocator to create exploitable
heap layouts and a fuzzing technique based on prior work [21] to solve the heap
manipulation problem. SLAKE [14] uses a static-dynamic hybrid analysis to
search for useful kernel objects and manipulates heap layout by adjusting the
free list in the slab.

All these solutions corrupt a sensitive pointer (e.g., VTable pointer) and
derive an attacker-controlled memory-write or indirect call, which means that
the presence of a sensitive pointer is key to hijack the control flow. In this case,
once the heap layout is well arranged, an attacker creates an exploit primitive
with only one operation, i.e., triggering the vulnerability, and we call it single-
hop exploitation. However, not all vulnerabilities can be exploited using simple
single-hop techniques. For example, with an off-by-one error [11], it is infeasible
to fully control any sensitive pointer by merely triggering the vulnerability, let
alone overwriting the instruction pointer to an arbitrary value. To solve this
issue, the following challenges need to be addressed:

Challenge 1: Exploring the Power of Heap Vulnerabilities with Limaited
Capabilities. To exploit vulnerabilities with limited capabilities, an attacker
needs to manipulate the heap layout and abuse the heap allocator’s internal func-
tionalities to create several intermediate hops, expand the range of corruptible
memory with the help of the hops, and eventually derive an arbitrary memory-
write or indirect call. We call these techniques multi-hop exploitation. Some
solutions [19,32] aim to discover such techniques for heap allocators. However,
they can not apply the techniques to programs with heap-based vulnerabilities
automatically. To the best of our knowledge, existing AEG solutions paid very
little attention to it.

Challenge 2: Modeling Heap Interactions Between Programs and
Heap Allocators. To conduct multi-hop exploitation, AEG solutions have to
craft inputs and drive victim programs to allocate and deallocate objects of a
specific size or write specific data to heap objects. However, programs typically
do not expose any direct interfaces for users to interact with their heap alloca-
tors. Therefore, AEG solutions have to recognize heap interactions and assemble
them in a particular way to generate exploits.

Owur Solution. In this paper, we propose HAEPG to address the challenges above.
Given a program with heap-based vulnerabilities and crashing inputs, it attempts
to achieve the execution of arbitrary code through multi-hop exploitation.

HAEPG abstracts machine-level instructions and function calls interacting with
the heap allocator as heap interactions. It relies on the fact that most programs
distribute functions with function dispatchers (e.g., event handling and connec-
tion processing loops) and extracts the paths that make up such dispatchers.
Then, HAEPG applies hybrid techniques to locate and analyze heap interactions
and infer dependencies between different interactions and paths.
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After this, HAEPG collects runtime information in programs when executing
crashing inputs. It inspects vulnerable objects and analyzes the type of memory
corruption as well as the size of corrupted data.

Furthermore, we studied manual multi-hop exploitation techniques for heap
vulnerabilities. These techniques usually abuse the heap allocator’s internal func-
tionalities and improve the vulnerabilities’ capability by carefully crafted heap
interaction sequences. We designed a templating language to abstract known
multi-hop exploitation techniques as exploit templates. HAEPG uses them to
achieve an arbitrary execution and generate end-to-end exploits.

We built a prototype of HAEPG based on the symbolic execution engine S2E
[15] and wrote templates for four exploitation techniques of ptmalloc [4], the
standard allocator of glibc, and evaluated it on 24 programs from well known
Capture The Flag (CTF) competitions. The results show that HAEPG is able to
accurately reason about the type of vulnerability for 21 (87.5%) of them, and
generate exploits that spawn a shell for 16 (66.7%) of them.

2 Motivational Example

In this section, we give an example to illustrate multi-hop exploitation and reveal
problems AEG solutions encounter when handling the example.

The Vulnerability. The example is running on a GNU/Linux system with
an unmodified version of glibc.. As shown in Fig. 1, the program has three func-
tions, i.e., addItem, removeltem, editItem, which are used to allocate an object,
release an object, and modify an object. There is a poison-null-byte error [16]
at Line 22, but it only corrupts the meta-data between heap objects, while the
content of the heap objects remains unaltered.

Multi-hop Exploitation. The example in Fig. 1 shows the exploitation via the
unsafe unlink technique [9]. We first allocate three heap objects A, B, and C.
The pointer that the program used to access object B is stored in BSS. Then,
we trigger the vulnerability in object A to shrink the object B’s size, as shown
in state 3, and forge a fake chunk in object A in state 4. The fake chunk is well
arranged to bypass sanity checks and leads to an arbitrary write primitive in
state 6 after releasing object B in state 5. Finally, we corrupt a function pointer
with the arbitrary write primitive and hijack the control flow.
These states can be categorized as follows:

— Initial state: State when the program starts running, e.g., state 1.

— Preparation state: State when the program manipulates memory layouts
for exploitation before the corruption happens, e.g., state 2.

— Corrupting state: State when triggering the vulnerability, e.g., state 3.

— Intermediate state: State that the program would go through for reaching
an exploitable state from the initial state, e.g., state 4-5.

— Exploitable state: State with an exploit primitive for exploitation, e.g.,
state 6 and 7.
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void addItem(){

Memory State Transformation of the Exploitation:

1.

2. int size = read_int(); rl‘:x
3. size_list[index] = size; state 1 l;'ll;‘
4. heap_list[index] = malloc(size); initial state I:I:J rsp
5. if('heap_list[index])

6. puts(“malloc error”); A 0x90— <a——0x1 00— <0x 30 Tax
7. return; [ Busize = 0x101 Tbx
> 2 —
s W A s ] =
9. void removeltem(){ preparation state Isp

10.  if(heap_list[index]){
i; Eree(higpfllsl[ll]ldeg]); Poison null byte: B size = 0x100 :ﬁ’;
. eap_list[index] = 0; tate 3 -
Sa [ (A » [e]
5o o corrupting state rsp
14, if(size_list[index])
15. size_list[index] =-1; Fusize=0x81

F.fd = &P-0x18 B.pre_size = 0x80 rax

6.3 F.bk = &P-0x10 P rbx
state 4 B I C ‘ =

intermediate state rsp

Free B to trigger unlink:

state 5 ’ C ‘ rip
intermediate state

23. heap_list[index][size_list[index]] = NULL

. . rax
25. void main(){ Overwrite P with the address of an function pointer

26.  while(True){ state 6 I:l _ ’ C ‘ rip
27. index = readInst(); exploitable state rsp
28. choice = readlnst();
29. switch(choice){

Corrupt the function pointer and trigger rip hijacking [ rbx |

30. case 1: addItem(); break; 5
31. case 2: removeltem(); break; state

exploitable state [rsp |
3. )
34 ) Global Heap - Corrupted I:] Registers
3 5' ) Variables Objects Data &

Fig. 1. An example of poison-null-byte

It is easy for modern fuzzing tools [10,33] to generate crashing inputs for
the vulnerability. However, most of the AEG solutions could not handle this
case because there is no direct exploit primitive upon crash of the program. For
instance, the auto-exploit kit framework Mechanical Phish [26], which is devel-
oped by Shellphish and came third in DARPA CGC [17], could only detect the
vulnerability and generate no exploit for the example, because Mechanical Phish
requires a controllable pointer for injecting shellcodes or rop-chains. The solution
Revery [30] could find the corrupting state 3. However, it has no capabilities for
bypassing the heap allocator’s sanity checks and enhancing the vulnerability’s
capability, and thus could not turn the vulnerability into an exploit.

3 Methodology

Figure 2 shows an overview of HAEPG. It takes programs and crashing inputs as
input, and templates for the guidance of exploitation. HAEPG first models heap
interactions of the target program with function paths and heap primitives. It
extracts function paths from the program using static analysis, and dynamically
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tracks instructions and function calls of the function paths interacting with the
heap allocator during runtime and records relations of different heap interactions.

Then, HAEPG runs the program with the crashing input to retrieve infor-
mation about the vulnerability, including its type and the scale of corrupted
data. We designed a templating language for templating widely used exploita-
tion techniques. Each template contains the necessary information for guiding
the exploitation. HAEPG filters applicable exploit templates by checking if the
heap allocator and the program meets the templates’ requirements. It attempts
to generate an attack sequence and cyclically assesses and corrects the sequence
until the program reaches an exploitable state, or the analysis exceeds a config-
urable upper bound for generation attempts (e.g., 20 times).

Finally, HAEPG uses the generated exploit primitive to corrupt the instruction
pointer for transferring control flow to one-gadget [18]. One-gadgets are code
fragments inside glibc that invokes “/bin/sh” without any arguments, effectively
spawning a shell for the attacker. Once HAEPG detects a shell process is created
in the target program, it solves the path and data constraints collected when
executing the attack sequence and generates an exploit input.

Heap Interaction Modeling

Heap Primitive Heap Primitives
Analysis
Function Template-Guided Exploit Generation

Paths Initial

Function Attack
Path Sequence

Extraction

Verified
Attack
Sequence

Attack

Sequence

Assessment &
Correction

Vulnerability g Tem ]
Analysis Vulnerability Type P
& Capability

Function
Paths

Attack
Sequence
Generation

Exploit Exploit
Generation Input

Crashing
Input

Fig. 2. Overview of HAEPG

3.1 Heap Interaction Modeling

Function Path Extraction. A function dispatcher is a code structure that is
widely used in programs for function distribution, and usually implemented as
if-else or switch-case structure wrapped in a loop. Programs cyclically receive
instructions at the loop entry and execute corresponding functions. We define
the basic block sequences from the loop entry to the loop exit as function paths,
which have the following properties:

— Atomicity: Function paths are indivisible at runtime. A program cannot
execute half of a function path and then jump to other function paths. The
structure of the function dispatcher has determined that each function path
must be executed entirely before executing others.
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— Reentrant: Function paths have the same entrance and exit. When it reaches
the exit of the function path, the program returns to the entrance and chooses
the next function path according to instructions. Thus a program can execute
a function path several times through proper instructions.

To extract function paths, HAEPG first generates a control-flow graph of the target
program and marks the loops containing the function calls of heap allocations or
deallocations as candidate function dispatchers. If the loop body of the function
dispatcher is a switch-case statement, HAEPG will search for the basic block with
several successors and extract the path of each successor as a function path.
Otherwise, the loop body could be a sequence of nested if-else statements. HAEPG
will traverse the loop backward the starting from the end of the loop body and
check the number of each basic block’s precedents during the traversal. The first
basic block, which has a large number of precedents, e.g., more than 5, would be
marked as the merge point of all dispatched functions, and we extract all paths
from the loop entry to this block as function paths.

Heap Primitive Analysis. Heap primitives model the interactions between
programs and heap allocators. We distinguish between the following three types
and their attributes:!

Allocation Deallocation Edit

size: the size of allocation addr: the address to be  base: the base of edit address
addr: the address returned released offset: the offset of edit address
by the heap allocator data: the data to be written

In general, heap primitives are these program machine instructions: (1) func-
tion calls interacting with the heap allocator, such as malloc, calloc, free, etc.
(2) function calls with heap pointers as arguments, such as read, fgets, etc. (3)
memory-write instructions with heap objects as the destination address.

To analyze heap primitives, HAEPG executes function paths using symbolic
execution. It symbolizes all input bytes and tracks instructions and the calling
of APIs interacting with the heap region. HAEPG only records instructions and the
calling of the APIs in the target program as heap primitives and ignores shared
libraries, because tracking both the target program and the shared libraries
would increase performance overhead. If any attribute of heap primitives are
symbolic, HAEPG will solve and record the range of it without concretizing it.
To reason about the relationship between heap primitives, HAEPG associates a
globally unique taint tag for each heap pointer returned by an allocation and
identifies primitives that operated on a tainted pointer.

3.2 Vulnerability Analysis

We obtain crashing inputs with AFL [33] and analyze the vulnerability’s capa-
bility by detecting violations of memory usage. HAEPG dynamically executes the

! Note that we only model the basic interaction types. Heap allocators can have other
types of interactions (e.g., realloc), which are outside the scope of this paper.
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crashing inputs and taints return pointer of allocations similarly to the heap
primitive analysis. Additionally, it propagates the tag to the pointed memory
object’s bytes. We further add annotations about a heap object’s status to the
tags: Initially, tags are uninitialized, and instructions writing to the object
will change the status to busy while instructions releasing the object will change
it to free. Furthermore, HAEPG records the size of corresponding objects for
tags. If any instruction accesses the heap memory, we could get the pointer’s tag
ptag and the pointed object’s memory tag mtag, together with the statuses and
sizes of them. Before changing the statuses of them, HAEPG checks if any of the
violation rules shown in Table1 is triggered.

Table 1. List of vulnerability types, trigger options, and violation rules

Vulnerability type | Trigger operation Violation rule
Double free Free a heap chunk mtag.status == free or
ptag.status == free
Use After Free Store n bytes of data in mtag.status == free or
memory address [base + off |ptag.status == free

| (base and off are the base
and offset of addressing)

Overflow n + off >ptag.size

Poison Null Byte n + off == ptag.size + 1
and the last byte of data is
null byte

Off by One n + off == ptag.size + 1

If a violation rule is triggered, HAEPG will record the scale of corrupted data,
such as the range of overflowed bytes or the size of the vulnerable chunk.

3.3 Template-Guided Exploit Generation

In this section, we will illustrate our method of exploit generation. We bring
existing exploitation techniques as prior knowledge of constructing memory
states and reaching exploitable states into HAEPG. Moreover, instead of hard-
coding exploitation techniques into HAEPG, we developed a templating language
to describe exploitation techniques. The method of dynamic interpreting tem-
plates and constructing attack sequences provides flexibility and extendability
to HAEPG.

Templates. The procedure of applying exploitation techniques is program-
sensitive, as even slight changes in the target program result in need of vastly
different exploitation strategies. Thus we collect constant and essential com-
ponents of exploitation techniques and abstract them as templates, which give
information over the following components:
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— Backbone Primitives Sequence: The order of heap primitives, which used
to trigger the vulnerability and abuse internal functionalities of heap alloca-
tors, remains constant. For example, cyclically releasing a heap chunk in the
fastbin attack to gain an arbitrary allocation from a double-free vulnerability
[5]. We refer to such heap primitives as a backbone primitives sequence.

— Layout Constraints: Intermediate states of the multi-hop exploitation may
need to meet certain constraints. For example, an unsafe unlink attack
requires the victim chunk to be allocated in unsortedbin size, and the fake
chunk to be adjacent to the victim chunk. We refer to such constraints as
layout constraints.

— Requirements: To use an exploitation technique, the program has to meet
some requirements. For example, the program must have the ability to allo-
cate objects in fastbin size for fastbin attack.

These components indicate how to construct memory states to reach an
exploitable state in multi-hop exploitation and constraints that memory states
should satisfy. Likewise, each template consists of three parts, including require-
ments of using the template, backbone primitives, and layout constraints. We will
introduce the templating language we used to abstract exploitation techniques
in Sect. 4.3.

Attack Sequence Generation. Attack sequence generation is closely tied to
the provided templates. Firstly, HAEPG checks if the target program meets the
specified requirements, such as the vulnerability type and the glibc version. If
the program passed these checks, HAEPG will select this template for the next
steps; otherwise, it will try other templates.

Next, HAEPG traverses the backbone primitives of the template. It scans all
function paths to find the ones containing the backbone primitives, and combines
these function paths together with their heap primitives as an attack sequence.

We designed the following two methods to execute an attack sequence:

— Heap Simulator: The simulator is an independent binary that uses the same
heap allocator as the target program (i.e., ptmalloc for our prototype). We
use it to execute the heap primitives of the attack sequence and simulate the
intermediate states of the target program.

— Symbolic Execution: We let the target program execute function paths of
the attack sequence and associate heap primitives as data constraints with
the interrelated memory data and registers in S2E (e.g., transform the size of
allocations to data constraints of malloc/calloc’s first argument).

Attack Sequence Assessment and Correction. HAEPG assesses the attack
sequence according to the layout constraints of the template. It dynamically
executes the target program and the attack sequence and records heap layouts
at runtime. Then, it extracts the address of each essential heap object, the real
size of them, and the address where the object pointers are stored, etc. With this
information, once precedent backbone primitives of a memory state are finished,
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HAEPG will check if the current heap layout meets the layout constraints, including
the distance of heap objects and the status of them.

To improve performance, HAEPG first uses the heap simulator for a quick
assessment. Only after the attack sequence passed the assessment, HAEPG will
use S2E for an accurate assessment.

If the layout constraints are met, the program will enter an exploitable state,
and HAEPG would attempt to generate an exploit. Otherwise, HAEPG will find the
conflicting heap layout. Then, HAEPG will infer the reason for the conflict and
attempt to correct it. In general, the reasons for the conflict are as follows:

1. Heap chunk A should be free but it is busy or uninitialized;

2. Heap chunk A and B must be adjacent but there are other busy chunks
between them;

3. Heap chunk A and B must be adjacent but the adjacent chunk of A is free.

For the first case, HAEPG inserts a path into the attack sequence to release the
chunk A. For the second case, HAEPG tries to insert paths to release all chunks in
the middle of chunk A and B. If chunks cannot be released, HAEPG would allocate
a heap chunk with the same size as chunk A before the allocation of it to get a
new heap layout, which might lead to a satisfying heap layout. The third case is
generally caused by extra heap chunks of the freelist which make chunk B gets
allocated on a wrong slot, and HAEPG fills extra chunks by allocating chunks with
the same size as B. Finally, HAEPG generates a new attack sequence and repeats
the assessment and correction until it finds an attack sequence that leads to an
exploitable memory state (i.e., a state matching the layout constraints).

Ezxploit Generation. Once the attack sequence passed the assessment, HAEPG
executes it using symbolic execution and detect exploit primitives by tracking
instructions of the target program and checking if symbolic data is present in one
of the following locations: (1) the content and target address for memory-write
instructions and function calls; (2) the head pointer of one of the bins; (3) the
target address for indirect calls/jumps; (4) the value of function pointers of the
program and glibe (e.g., GOT and malloc_hook).

Based on the location of symbolic data, HAEPG can use one of the following
exploit primitives to derive an exploit input:

— Arbitrary Execution (AX): If the target address of indirect calls is sym-
bolic, or any function pointer is symbolic, HAEPG could corrupt the instruction
pointer to an arbitrary value. In this case, HAEPG uses a one-gadget [18] as the
target address. Note that each one-gadget has individual memory and regis-
ter constraints that need to be satisfied. Hence, HAEPG will check the related
memory and registers when the instruction pointer is corrupted and pick a
proper one-gadget for exploitation.

— Arbitrary Write (AW): If the value and the target address of any memory-
write instructions or function calls are symbolic, HAEPG can write arbitrary
data to an arbitrary location. HAEPG leverages it to overwrite a function
pointer of the GOT or glibc (glibc is preferred if Full RELRO [28] is enabled)
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and exercises a function path that calls the corrupted function pointer, which
transforms the exploit primitive to an arbitrary execution.

— Arbitrary Allocation (A A): If the head pointer of a bin is symbolic, HAEPG
can allocate a chunk at an arbitrary location. However, this primitive has
different constraints based on the type of bin. For tcache, the allocator does
not check the meta-data of the allocated chunk, so we treat the primitive as
an arbitrary write primitive; For fastbin, the allocator checks the consistency
of chunk size, so an attacker has to find or construct a fake meta-data to
bypass the sanity check. Fortunately, there are some data in glibc which is
suitable for bypassing the sanity check and transforming the exploit primitive
to an arbitrary execution?.

After corrupting the instruction pointer with a one-gadget, HAEPG will hook
the APIs for process generation (e.g. execve). Once HAEPG detects an invokation
of these APIs with the argument of bash’s path, it solves constraints collected
when executing the attack sequence and generates an exploit input.

4 Implementation

4.1 Static Analysis

Control Flow Graph Construction. As discussed by Shoshitaishvili et al.
[27], it is very challenging to recover an accurate CFG for programs due to
indirect calls. Since CFG generation is not a contribution of this paper, we only
focus on programs with no recursion and indirect calls. We developed a simple
CFG generation program for HAEPG’s prototype, which constructs the CFG by
extracting jump targets of basic blocks in the disassembly using static analysis.
It is sufficient for our evaluation set.

Redundant Function Path Simplification. Since a function path is a
sequence of basic blocks, branches create a new function path for each branch
target. As we use dynamic analysis to infer the dependencies between function
paths, a large number of function paths increases HAEPG’s performance overhead.
As we only focus on heap interactions, most of the function paths are redun-
dant for HAEPG because heap interactions of them are the same or similar, which
will cause dynamic analysis to do repetitive work. Besides, some function paths
should be dropped because they are not related to exploitation. We simplify
function paths with the following methods:

— Merging: We construct the CFG for the branch in Line 14 to Line 16 in
Fig. 1, as shown in Fig. 3.a. To reduce the impact of branches on the number
of paths, we extract an API call sequence from the paths and mark the

2 For example, the function pointers nearby malloc_hook in glibc, which could be mis-
taken as valid meta-data by the allocator. We could directly overwrite malloc_hook
and hijack the instruction pointer by allocating a chunk on it.
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Paths of (a) branch graph:

before merging:
Pl:..—14—>15—16—...
P2: ... —14—>16—...

after merging:
P: ...—14—<branch tag>—16—...

Paths of (b) loop graph:

before merging:
Pl:..—18—19,20—22—18... »19,20—21—>23—...
P2:..—18—519,20—22—18... »>18—523—...

after merging:
P: ...—18—<loop tag>—23—...

(a) branch graph  (b) loop graph

Fig. 3. Two types of structure to be optimized

branch with a branch tag if the API call sequence does not contain heap
interactions.

A loop can have more than one exit, and the extra exits increase the number
of function paths. We take the loop of func3 in Fig. 1 as an example, and the
CFG is shown in Fig. 3.b. The loop has two exits, i.e., Line 21 and 23. Since
Line 23 is the successor of Line 21, we regard Line 23 as the only exit of the
loop and replace the loop with a jto merge function paths exiting from Line
21 or 23 into one.

— Pruning: Programs check functions’ return values and perform different
operations if they indicate the failure of function execution. Such opera-
tions are usually organized with conditional branches, which also increase
the number of function paths. As exploiting the failure of function calls usu-
ally depends on programs rather than heap allocators, we consider them out
of scope for HAEPG. We discard those paths as irrelevant and filter them out
using a lightweight taint analysis for functions’ return values.

4.2 Dependency of Function Paths

HAEPG may fail to execute function paths because program variables do not
meet path constraints in symbolic execution. In this case, HAEPG executes other
function paths first, which set the program variables correctly. We refer to these
variables as reliant variables, and the latter function paths are the dominant
paths of the formers. For example, we assume that function path F'P1 is the
sequence of line number 27-29-30-5-7 in Fig. 1, and F'P2 is 27-29-31-10-11-14-15
(we only take the line number of branches). HAEPG would fail to jump to Line
11 from Line 10 when executing F'P2 without executing F P1 first because the
value of heap_listlindex] does not meet F'P2’s path constraints. In this case,
heap_list[index] is the reliant variable of FP2, and FP1 is the dominant path
of FP2.

HAEPG has to find all dominant paths for such function paths to avoid missing
heap primitives in them. It first dynamically executes function paths and records
the following information: (1) new values that the function path used to overwrite
or update the original reliant values; (2) constraints not being satisfied and
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Listing 1. Template of unsafe unlink

1 |RQMT: Include(UNSORTEDBIN, hmodel.malloc_sizes) and

Include(vuln.type, ["0ff-by-One", "Poison-Null-Byte", "Overflow"l)
< and
3 VersionLower (allocator.ver, "2.26")
4 |EXEC: vul_ptr = Allocation(size = (0x80 + RANDNUMB * 0x10 + 8), tag = vul.
— vul_tag)

5 vic_ptr = Allocation(size = (0xfO + RANDNUMB * 0x100))

6 sep_ptr = Allocation(size = RANDNUMB)

7 | SATS: adjacent(vul_ptr, vic_ptr) == True and adjacent (vic_ptr, topchunk)
<~ == False

8 | EXEC: vul_data = h64(0) + h64(vul_ptr.size - 8 + 1) + h64(vul_ptr.base - 0
— x18) + h64(vul_ptr.base - 0x10) + RANDBYTE * (vul_ptr.size - 0x28)
«— + h64(vic_ptr.size & (78)) + "00"

9 Edit(base = vul_ptr, offset = 0, data = vul_data)

10 | SATS: vul_ptr.chunk.fd == 0 and

11 vul_ptr.chunk.bk == (vul_ptr.chunk.raw_size - 0x10) and
12 vic_ptr.chunk.pre_size == (vic_ptr.chunk.bk - 1) and

13 vic_ptr.chunk.raw_size & 1 ==

14 |EXEC: Deallocation(vic_ptr)
15 |EXEC: Edit(base = vul_ptr.base - 0x18, offset = 0, data = "A" * 0x20)

causing termination of states in symbolic execution. HAEPG infers expected values
of reliant variables by solving these constraints and finds function paths that can
set reliant variables correctly (i.e., the dominant paths).

4.3 Templating Engine

Templating Language. Our templating language describes exploitation tech-
niques via requirements, backbone primitives, and layout constraints. We mark
them in the template with labels RQMT, EXEC, and SATS, as shown in
Listing 1. The language provides users with functions and objects to describe
exploitation techniques, and Table 2 shows the central components of the lan-
guage.

We employ the following methods to concretize the attributes of the heap
primitives of attack sequences:

— Direct Calculation: HAEPG determines some of the attributes of heap prim-
itives based on the range of them and the template, such as the size of an
allocation. It solves these attributes when constructing the attack sequence.
We refer to it as direct calculation.

— Lazy Calculation: Some of the attributes of heap primitives could only be
determined at runtime, such as vul_ptr.chunk, vul_ptr.base, and the data of
edit at Line 7 in Listing 1. They remain unsolved when the attack sequence
is constructed. HAEPG collects runtime information and solves these attributes
during the execution. We refer to it as lazy calculation.

Note that the Allocation function returns a HeapChunk object whose
member variables represent meta-data’s fields, the user payload, and the address
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where the heap pointer is stored. A user does not need to initialize these member
variables because HAEPG would automatically initialize them using lazy calcula-
tion. Listing 1 shows the template of unsafe unlink. It intuitively describes the
exploitation of Fig. 1 showcased in.

When generating attack sequences, the backbone primitives from the same
EXEC label are out of order, and HAEPG simulates the changes of reliant variables
and sorts backbone primitives on the premise that reliant variables meet the
expectation of function paths.

Heap Simulator. The main part of the simulator is a loop that wraps the
three heap primitive functions described in Sect.3.1. It takes heap primitives
as the input and executes the corresponding functions to simulate the heap
interactions of the target program. After finishing the execution of each function,
the simulator will output its heap layout. HAEPG uses the simulator to simulate
the memory states of the target program.

5 Evaluation

To evaluate the effectiveness of HAEPG, we implemented a prototype of HAEPG and
assessed it with 24 programs CTF challenges, and all of them can be found in
ctftime.org [1], pwnable.tw [7], and github.com [3]. We selected programs based
on the following criteria: (1) programs must have at least one heap vulnerability,
and vulnerabilities are diverse; (2) programs with higher scores are preferred. In
general, challenges with higher scores are more difficult. Most selected challenges
have higher scores than the median score for their CTF game, and 4 of them
have the highest score in the exploitation category. We wrote templates for
four common heap exploitation techniques: fastbin attack [5], unsafe unlink [9],
house of force [6], and tcache poisoning [8], which are applicable to a significant
amount of CTF challenges. However, some challenges are not shipped with their
respective glibe, and we provided default glibc for them (2.27 for those whose
intended solution involves tcache and 2.24 for others)3. The result shows that
HAEPG can generate exploits for most of them.

All programs are tested in Ubuntul8.04, with Intel(R) Xeon(R) Gold 6154
CPU @ 3.00GHz*24 and 512GB RAM. We enabled NX [25] and disabled ASLR
[24] for all programs. We disabled ASLR because bypassing ASLR it is an orthog-
onal problem out of the scope of this paper.

5.1 Effectiveness

Table 3 shows the result of our evaluation. It contains details of programs, such as
names and CTF competitions. Moreover, it shows the glibc version, the vulner-
ability type that HAEPG identified, and whether HAEPG could generate an exploit

3 We provided 1d.so for different versions of glibc, and changed the absolute paths of
Id.so and libc.so to relative paths for all test cases. In this way, we were able to load
arbitrary ld.so and libc.so on our evaluation system.
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Table 2. List of function and variables provided by the templating language

Types Name Description
Object | vuln vulnerability information, including vulnerability type
and capability (for example, overflowed data size)
hmodel heap interaction model, including function paths and
their heap primitives
allocator the allocator, including the version information
Type HeapChunk | value returned by Allocation
Function | Include check if two parameters are inclusive
Allocation | allocation primitive
Deallocation | deallocation primitive
Edit edit primitive
Adjacent check if two heap objects are adjacent in heap layout
Distance return the distance of two heap objects

for them. As a result, HAEPG accurately reasons about the type of vulnerabil-
ity for 21 (87.5%) programs successfully and generate working exploits for 16
(66.7%) of them. Moreover, we bypassed Full RELRO [28] by corrupting the
function pointers in glibe (e.g., malloc_hook) instead of GOT.

We also evaluated Revery [30] and Mechanical Phish [26] as a comparison,
and none of them could generate exploits for these programs. Revery found
corrupting states for these challenges. It reached unlink states for challenges
that could be exploited with unsafe unlink (the results of them are marked with
“*7 in Table 3). However, Revery could not generate complete exploits because it
uses fuzzing to explore the memory state space. Unfortunately, this is insufficient
to forge fake chunks. Mechanical Phish found crashing states for these challenges
with Driller [29], but it could not generate exploits because there was no pointer
corrupted with symbolic bytes. Hence, Mechanical Phish could not hijack the
instruction pointer or inject shellcodes/rop-chains.

5.2 Performance

To evaluate the performance of HAEPG, we recorded the time HAEPG spent for heap
interaction modeling and exploit generation, as shown in Fig. 4. With the help of
merging and pruning, HAEPG reduced the number of function paths significantly,
and the total time for exploit generation of most programs is less than 400s. The
program with the most function paths without simplification is airCraft, which
has 4284 function paths. Heap interaction modeling of this program without
simplification took more than 10 h, while after removing the redundant function
paths, it only left 6 of them and took 344 s for modeling. Besides, programs with
complex algorithms, such as note3, which has a sophisticated bitwise algorithm,
require a lot of analysis time due to complex constraints that need more time
for solving.
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Table 3. List of CTF pwn programs evaluated with HAEPG
Exp. Name CTF Glibc ver.|Vul. type |Exp. prim. Exp. |Revery M.
Tech. gen Phish
Fastbin |CaNaKMgF ASIS CTF 2.23 Double AA v X X
Attack Remastered 2017 Free
halconyheap TJCTF 2019 |2.23 Double AA v X X
Free
stringer RCTF 2018 |2.23 Double AA v X X
Free
secretgarden Pwnable.tw |2.23 Double AA v X X
Free
babyheap Fireshell 2.24 UAF AA v X X
CTF 2019
aircraft RCTF 2017 |2.24 UAF AA X X X
Unsafe stkof HITCON 2.23 Overflow |AW v X* X
Unlink 2014
simple_note Tokyo 2.24 Off by AW v X* X
‘Westerns One
2017
fb AliCTF 2016 |2.24 Poison AW v X* X
Null Byte
note3 ZCTF 2016 |2.19 Overflow |AW v X* X
House of |gryffindor InCTF 2017 |2.23 Overflow |AX v X X
Force
bamboobox NTU-CTF- |2.24 Overflow |AX v X X
2017
Tcache three BCTF 2018 |2.27 UAF AA v X X
Poisoning
penpal world |RedpwnCTF |2.27 UAF AA v X X
2019
one SECCON 2.27 Double AA v X X
CTF 2019 Free
girlfriend StarCTF 2.27 Double AA v X X
2019 Free
zero to hero PicoCTF2019|2.27 Double AA v X X
Free
- house_of_atum |BCTF 2018 |2.27 UAF - X X X
- iz_heap_lv2 ISITDTU 2.27 Off by - X X X
CTF 2019 One
- schmaltz InCTF 2019 |2.28 Double - X X X
Free
- children_tcache HITCON 2.27 Poison - X X X
2018 Null Byte
- Auir CSAW CTF |2.23 - - X X X
2017
- Secret Note V2 |HITCON 2.23 - - X X X
2018
- Car_Market ASIS CTF 2.23 — - X X X

2016
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Fig. 4. Time intervals of modeling heap interaction and exploit generation

5.3 A Multi-hop Exploitation Case Study

We take stkof as an example and show how HAEPG automatically generates an
exploit for a CTF challenge. The binary has three critical functions in stkof,
do_alloc, do_dealloc, and do_edit, which are used for allocating, deallocating, and
modifying heap chunks, respectively. An overflow in the do_edit function allows
an attacker to write an arbitrary amount of data past the bounds of a chunk.
Based on the vulnerability’s capability, HAEPG used the template of unsafe unlink
(as shown in Listing 1) for exploitation.

As shown in Fig.5, HAEPG first generated Attack Sequence 1 based on the
unsafe unlink template. The template required the vul_ptr and vic_ptr to be adja-
cent when triggering the vulnerability. However, the glibc created stdout_buffer
between the vul_ptr and vic_ptr unexpectedly when initializing io streams (HAEPG
did not capture it because it only tracked heap interactions in stkof and ignored
shared libraries). Thus HAEPG attempted to fix the heap layout by releasing the
stdout_buffer first. Since stdout_buffer was generated by glibc, there is no func-
tion path that can release it. Hence, HAEPG tried to create a new heap layout. It
constructed Attack Sequence 2 by inserting a function path with an allocation
primitive. HAEPG used the primitive to allocate a chunk ph_ptr in the same size
as vul_ptr. The ph_ptr is allocated at vul_ptr’s original address and forced the
vul_ptr and vic_ptr to be allocated at higher addresses, and they are adjacent to
each other as desired. Now, the meta-data of vic_ptr can be corrupted through
the overflowing from vul_ptr. Through the last deallocation, the heap allocator
finally unlinked the fake chunk inside vul_ptr and caused an arbitrary write prim-
itive. HAEPG corrupted malloc_hook with a one-gadget pointer via this primitive
and hijacked the instruction pointer by inserting the function path of do_alloc
into the Attack Sequence 2. When a shell was spawned, HAEPG generated the
exploit input in S2E.
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Heap Primitives & Attack Sequence 1 Template Attack Sequence B

F““;ﬁ"“upaths 1. vul_ptr = Allocation(0x80) E 1. ph_ptr = Allocation(0x80)

0_alloc

2. vic_ptr = Allocation(0x10) 2. vul_ptr = Allocation(0x80)
3. sep_ptr = Allocation(0x20) 3. vic_ptr = Allocation(0xf0)

do_edit
4. Edit(vul_ptr, vul data) 4. sep_ptr = Allocation(0x20)

P 5. Deallocation(vic_ptr) 5. Edit(vul_ptr, vul_data)
0_Tree
6. Deallocation(vic_ptr)

vul_ptr r stdout_bufferrvic_plr r sep_ptr rph_plr r stdout_buffer iul_ptr [Vic_ptr Esep_ptr

Heap Layout 1 Heap Layout 2

stkof
L]

Assessment &
Correction

Fig. 5. Heap primitives to exploit stkof

5.4 Failed Cases

Failed on Exploit Generation: HAEPG corrupted a forward pointer of fastbin
for airCraft. However, exploiting the AA primitive derived from fastbin attack
requires a fake meta-data which is valid for size 0x88 in this case. HAEPG could not
find such a primitive to store the illegal heap object, so it could not construct an
exploitable state. To exploit the challenge, an attacker has to forge a fake chunk
on the global data region in advance, which is beyond HAEPG’s ability.

HAEPG failed on house_of _atum because the program only provides two heap
objects for use at the same time, which are not sufficient for existing templates.
The intended way is to confuse the tcache list and fastbin list.

Missing Capable Templates: HAEPG relies on templates for exploit generation,
which means it can only handle the cases that are exploitable with existing tem-
plates, and can not use unknown exploitation techniques by itself. For instance,
HAEPG can not handle children_tcache, iz_heap_lv2, and schmaltz because they
are not exploitable with the provided templates. The intended solutions for
children_tcache, iz_heap_lv2 are to overlap heap objects by corrupting heap
meta-data and triggering consolidation. As to schmaltz, the intended solution
is to put a chunk in two different tcache lists and then corrupt the link pointer
of it to get an AA primitive.

We downgraded the glibc version for them for further tests. HAEPG success-
fully generated exploit inputs for iz_heap_lv2 and schmaltz with the templates
of unsafe unlink and tcache poisoning. HAEPG could not solve children_tcache
because the program only provides one chance to write for each object, which is
not sufficient for provided templates.

Faziled on Vulnerability Detection: Since HAEPG tracked heap interactions
at the object level, it failed to detect memory corruptions in some cases. For
instance, the challenge Car_Market has a buffer overflow inside objects, i.e.,
it will corrupt the adjacent data fields rather than adjacent objects. A more
fine-grained method is needed to handle this case.

Failed on Program Amnalysis: HAEPG could not analyze sophisticated pro-
grams, such as SecretNoteV2, which has an AES encryption algorithm, and
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Awir, which is an obfuscated program. As HAEPG relies on symbolic execution,
these programs generated a large number of complex constraints and states,
resulting in path/state explosion.

6 Related Work

Automatic Exploit Generation. Mechanical Phish [26] is a cyber reasoning
system developed by the Shellphish team for DARPA’s CGC [17]. It finds PoCs
of vulnerabilities using Driller [29] and reproducing crashing states in Angr [27].
Then, it checks if input data corrupts write pointers or the instruction pointer
at crashing points. If so, it will create shellcodes or rop-chains for exploitation.
In the end, it solves data constraints and generates exploit inputs.

Revery [30] is an automatic exploit generation tool for heap-based vulnerabil-
ities. It employes taint analysis and shadow memory to detect memory corruption
in crashing inputs. Moreover, it searches for exploitable points using a layout-
oriented fuzzing technique. In the end, Revery generates exploits by stitching
the diverging paths and crashing paths together. As shown in Sect.5, Revery
failed on the evaluation set because the fuzzing technique that Revery used to
explore exploitable points is not capable of multi-hop exploitation.

FUZE [31] is a novel framework to automate the process of kernel UAF
exploitation. It analyzes and evaluates system calls which are valuable and use-
ful for kernel UAF exploitation using kernel fuzzing and symbolic execution.
Then, it leveraged dynamic tracing and SMT solver to guide the heap layout
manipulation. The authors used 15 real-world vulnerabilities to demonstrate
that FUZE could not only escalate kernel UAF exploitability but also diversify
working exploits.

SLAKE [14] is a solution to exploit vulnerabilities in the Linux kernel. It uses
a static-dynamic hybrid analysis to search for objects and syscalls which are use-
ful for kernel exploitation. Then, SLAKE models the capability of vulnerability
and matching the capability with corresponding objects. To exploit the vulner-
ability, SLAKE chooses the method of exploitation based on the vulnerability
type and manipulates heap layouts by adjusting the free list in the slab.

Gollum [22] is the first approach to automatic exploit generation for heap
overflows in interpreters. It employes a custom heap allocator SHAPESHIFTER
to generate exploitable heap layouts and utilizes a genetic algorithm to find heap
interaction sequences that can lead to the target heap layouts. If Gollum reaches
the target heap layouts, it corrupts the function pointers of victim objects by
triggering heap overflows. Like HAEPG, Gollum corrupts the instruction pointer
with one-gadgets to generate exploits.

The solutions above which toward interpreter or kernel explore the heap state
space with the knowledge of language grammars or kernel syscalls. However,
there is no such standard input protocol for applications as each application
parses inputs differently. Our method modeled heap interactions in the dimension
of the program path, and the result showed the potency of it.
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Besides, these solutions assume there is a sensitive pointer which could be
overwritten by merely heap layout manipulation and triggering vulnerabilities.
As we discussed before, the premise does not always hold for some vulnerabilities
and applications, which makes exploitation harder. Our method could effectively
solve this problem, and this is the main advantage of our method over others.

Moreover, instead of encoding existing exploitation techniques into HAEPG,
we developed a templating language to abstract them. A user could write their
templates without the need to know the internal details of HAEPG. The solutions
mentioned above have no such interface.

Heap Exploitation Techniques Discovery. Heaphopper [19] is an automated
approach to analyze the exploitability of heap implementations in the presence
of memory corruption. It takes the binary library of heap implementation, a list
of transactions (e.g., malloc and free), the maximum number of transactions that
an attacker can perform, and a list of security properties as input. Heaphopper
generates lists of transactions by enumerating permutations of the transactions
and generate C files and compiled programs for them. Then, it executes these
programs and tracks the memory states of them. If any program leads to states
violating the security properties, Heaphopper will take the C file of it as output.

ARCHEAP [32] uses fuzzing rather than symbolic execution to discover new
heap exploitation techniques. It generates test cases by mutating and synthesiz-
ing heap operations and attack capabilities, and checks whether the generated
test cases can be potentially used to construct exploitation primitives, such as
arbitrary write or overlapped chunks. As a result, ARCHEAP discovered five pre-
viously unknown exploitation primitives in ptmalloc and found several exploita-
tion techniques against jemalloc, tcmalloc, and even custom heap allocators.

The solutions above focus on exploit techniques discovery rather than appli-
cation, so they are usually used for heap allocator’s security assessment. Our
solution can generate exploits using known exploit techniques, but it can not
make use of unknown exploit techniques.

7 Discussion

HAEPG is dedicated to automating the process of multi-hop exploitation for heap-
based vulnerabilities. However, it has the following limitations:

— HAEPG could not analyze sophisticated programs or real-world programs. First,
the static analysis which HAEPG used to extract CFG is not good at handling
indirect calls/jumps. Second, symbolic execution’s drawbacks make HAEPG
only applicable to small programs. Third, a significant amount of real-world
programs uses multi-threading or multi-processing, which brings additional
challenges to the program analysis techniques used by HAEPG.

— HAEPG is fundamentally incomplete because it only searches for specific mem-
ory states based on existing templates rather than exploring the whole mem-
ory state space, which means HAEPG could not generate exploits with exploita-
tion techniques where no template is given.
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8

In

HAEPG is implemented for ptmalloc and can not generate exploits for programs
using other allocators for now. To adapt HAEPG to other heap allocators, we
have to change the codes of parsing heap objects, the strategy of heap layout
manipulation, and the codes of detecting and leveraging exploit primitives.
We leave it as future work.

Conclusion

this paper, we proposed an automatic exploit generation solution HAEPG for

heap vulnerabilities, which uses hybrid techniques to build the heap interaction
model and navigate the multi-hop exploitation. HAEPG could generate complex
exploits that abuse heap allocator’s internal functionalities and enhance the vul-
nerabilities’ capability step by step, which previously could only be completed
manually. We evaluated HAEPG with CTF challenges, and the result showed the
effectiveness of HAEPG. In the end, we believe that HAEPG improves the state-of-
the-art of automated exploit generation and provides useful building blocks for
solving remaining challenges in the field.
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