
Guide Me to Exploit: Assisted ROP Exploit
Generation for ActionScript Virtual Machine

Fadi Yilmaz
fyilmaz@uncc.edu

University of North Carolina at
Charlotte

Dept. of Software and Info Systems
Charlotte, North Carolina

Meera Sridhar
msridhar@uncc.edu

University of North Carolina at
Charlotte

Dept. of Software and Info Systems
Charlotte, North Carolina

Wontae Choi ∗
wtchoi.kr@gmail.com

ABSTRACT

Automatic exploit generation (AEG) is the challenge of determining
the exploitability of a given vulnerability by exploring all possible
execution paths that can result from triggering the vulnerability.
Since typical AEG implementations might need to explore an un-
bounded number of execution paths, they usually utilize a fuzz
tester and a symbolic execution tool to facilitate this task. However,
in the case of language virtual machines, such as the ActionScript
Virtual Machine (AVM), AEG implementations cannot leverage fuzz
testers or symbolic execution tools for generating the exploit script,
because of two reasons: (1) fuzz testers cannot efficiently generate
grammatically correct executables for the AVM due to the improb-
ability of randomly generating highly-structured executables that
follow the complex grammar rules and (2) symbolic execution tools
encounter the well-known program-state-explosion problem due
to the enormous number of control paths in early processing stages
of a language virtual machine (e.g., lexing and parsing).

This paper presents GuidExp, a guided (semi-automatic) exploit
generation tool for AVM vulnerabilities. GuidExp synthesizes an ex-
ploit script that exploits a given ActionScript vulnerability. Unlike
other AEG implementations, GuidExp leverages exploit deconstruc-
tion, a technique of splitting the exploit script into many smaller
code snippets. GuidExp receives hints from security experts and
uses them to determine places where the exploit script can be split.
Thus, GuidExp can concentrate on synthesizing these smaller code
snippets in sequence to obtain the exploit script instead of syn-
thesizing the entire exploit script at once. GuidExp does not rely
on fuzz testers or symbolic execution tools. Instead, GuidExp per-
forms exhaustive search adopting four optimization techniques to
facilitate the AEG process: (1) exploit deconstruction, (2) operand
stack verification, (3) instruction tiling, and (4) feedback from the

AVM. A running example highlights how GuidExp synthesizes the
exploit script for a real-world AVM use-after-free vulnerability. In

∗This work was done while Wontae Choi was employed at Google Inc. However, the
work is a personal project and did not happen in the Google Inc. context. The work
also does not express the views or opinions of Google Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC 2020, December 7–11, 2020, Austin, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427568

addition, GuidExp’s successful generation of exploits for ten other
AVM vulnerabilities is reported.

CCS CONCEPTS

• Security and privacy→Web application security; Software

security engineering.

KEYWORDS

automatic exploit generation, ActionScript language, language vir-
tual machines, vulnerabilities, fuzz testing, program synthesizing

ACM Reference Format:

Fadi Yilmaz, Meera Sridhar, and Wontae Choi . 2020. Guide Me to Ex-
ploit: Assisted ROP Exploit Generation for ActionScript Virtual Machine.
In Annual Computer Security Applications Conference (ACSAC 2020), De-

cember 7–11, 2020, Austin, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3427228.3427568

1 INTRODUCTION

Determining exploitability [103] of a given vulnerability, or ex-
ploit generation for that vulnerability, has historically been a labor-
intensive manual process requiring deep security knowledge. How-
ever, with the recent advances in fuzz testing and symbolic execu-
tion, several approaches for automatically generating exploits have
been proposed [1, 8, 11, 14, 20, 30, 31, 34, 38, 39, 41, 42, 49, 59, 60,
73, 82, 89, 92, 94, 99, 100, 102, 104]. These approaches, collectively
known as the field of automatic exploit generation (AEG), (such as
AEG for return-oriented programming, or control-flow hijacking) are
critical for auditing software security, and attack prevention.

AEG implementations are usually driven by one of two engines:
a fuzzer [64] and a symbolic execution tool [50]. The fuzzer helps
explore the input-space by monitoring the execution of randomly
generated inputs, and the symbolic execution tool helps explore
the execution-path-space by symbolically executing every execu-
tion path. However, both approaches have their own limitations
in the space of AEG for language virtual machines (VM). Typical
fuzz testing approaches do not scale well for applications taking as
input other computer programs, such as language VMs. They do
not efficiently generate inputs for such applications [44, 80]. AEG
implementations for language VMs also cannot utilize a typical
symbolic execution tool due to its limitations. Symbolically execut-
ing a language VM raises the path-explosion problem in the early
stage of the AEG process. For example, the VM produces an exe-
cution branch for every instruction it can read during the parsing
phase to obtain the sequence of instructions to be executed.

386

https://doi.org/10.1145/3427228.3427568
https://doi.org/10.1145/3427228.3427568
https://doi.org/10.1145/3427228.3427568

ACSAC 2020, December 7–11, 2020, Austin, USA Fadi Yilmaz, Meera Sridhar, and 2

In this work, we focus on exploit generation targeting vulnerabil-
ities in language VMs, specifically the ActionScript Virtual Machine
(AVM) [6]. TheAVM is amajor component of the internet ecosystem.
Over the last five years more than 700 vulnerabilities were discov-
ered in the AVM versions. In 2016, ActionScript (AS) vulnerabilities
were the primary vehicle for web-based ransomware and banking
trojans, accounting for ∼80% of successful Nuclear exploits [29] and
six of the top ten exploit kit vulnerabilities [81]. More recently, in
2018 and 2019, four zero-day exploits, CVE-2018-4878,15982 [68, 70],
and CVE-2019-8069,8070 [71, 72] were discovered. In addition, Na-
tional Vulnerability Database (NVD) rated the severity of 14 AVM
vulnerabilities [65], discovered in the last two years, at 9.8 out 10
and identified them as critical [69].

We present GuidExp, the first guided (semi-automatic) exploit
generation tool that does not rely on fuzzers or symbolic execution
engines. While typical AEG implementations synthesize a whole
exploit script whose execution path reaches one of predefined ex-
ploited program states, GuidExp leverages exploit deconstruction, a
technique of splitting the execution path that reaches the exploit
program state into many shorter paths. Hence, GuidExp can synthe-
size code snippets that follow these shorter paths. GuidExp expects
that program states on which the execution path is split are given
and described by a security expert as exploit subgoals.

An exploit subgoal declares a specification for synthesizing a
code snippet that performs a malicious activity such as ‘having
a corrupted memory space’. Execution of the code synthesized
for one exploit subgoal sets the stage for executing the next exploit
subgoal. After synthesizing all code snippets, GuidExp stitches the
code snippets that achieve exploit subgoals together to obtain the
exploit script.

Unlike the other AEG implementations, GuidExp adopts several
different principles. First, GuidExp aims to reach only one exploited
program state decided by the security expert. Second, GuidExp
focuses on producing the exploit script whose execution reaches
the exploited program state with the shortest execution path since
it explores the execution-path-space as level-order. Third, GuidExp
ensures that the execution of the exploit script goes through all
program states given by security expert that are used to split the
exploit script into smaller code snippets.

Unlike typical fuzzers, which explore execution paths by ran-
domly mutating the given seed input (in our case the seed input is
the proof-of-concept (PoC) exploit, which is the minimal executable
that triggers the vulnerability), GuidExp generates exploit scripts
by not only mutating instruction sequences inside the given PoC,
but also modifying the PoC’s metadata, which identifies names and
parameters. Note that modifying the instruction sequence in the
PoC requires modifying the metadata to allow the AVM to correctly
interpret the new, modified instruction sequence. Otherwise, the
AVMwill not be able to parse the mutated exploit scripts and would
drop them since they would not be grammatically correct. Modify-
ing instructions inside the PoCmay require making several changes
to the metadata. Metadata modification includes, but not limited
to, increasing the length of the function in which instructions are
inserted, changing return type of a function. Therefore, GuidExp
guarantees the coherence between the metadata and the instruction
sequence of exploit scripts it generates.

In this paper, we focus on generating Return-Oriented Program-

ming (ROP) [86] attack scripts, and demonstrate such an attack for
an AVM vulnerability that we use as our running example. In an
ROP attack, an attacker hijacks program control-flow by gaining
control of the call stack and then executes carefully chosen machine
instruction sequences that are already present in the machine’s
memory, called gadgets [16]. Each gadget typically ends with a
return instruction that allows the attacker to craft an instruction
chain that performs arbitrary operations. We want to highlight,
however, that GuidExp can synthesize exploit scripts that perform
any type of attack (not just ROP) for given vulnerabilities if the
corresponding PoC and exploit subgoals are provided.

The contributions and impacts of our work are as follows:
• To our knowledge, we build the first guided (semi-automatic)
exploit generation tool, GuidExp, targeting vulnerabilities
residing in the implementation of language virtual machines,
specifically AVM, which run highly-structured binaries.

• We present exploit deconstruction, a strategy of splitting ex-
ploit scripts that GuidExp produce into smaller code blocks.
Thus, GuidExp aims to generate these smaller code blocks
in sequence rather than the entire exploit at once. In our
running example, we show that exploit deconstruction can
reduce the complexity of AEG process by a factor of 1045.

• We outline a detailed running example where we synthe-
size the exploit script, which performs an ROP attack, for
a real-world AVM use-after-free vulnerability. In addition,
we report on the production of exploit scripts for ten other
real-world AVM vulnerabilities.

• Alongside exploit deconstruction, we utilize three other op-
timization techniques, (1) operand stack verification, (2) in-
struction tiling, and (3) feedback from the AVM, to facilitate
the exploit generation process. We report that in our run-
ning example, these techniques reduce the complexity of the
process by a factor of 81.9, 1013.5 and 2.38 respectively.

The rest of the paper is organized as follows. Section 2 describes
overview and our technical approach. Section 3 presents implemen-
tation details of GuidExp including our running example. Section 4

(a) Structure of a typical

ROP attack

(b) Structure of our target exploit

Figure 1: Exploit Structures

387

Guide Me to Exploit: Assisted ROP Exploit Generation for ActionScript Virtual Machine ACSAC 2020, December 7–11, 2020, Austin, USA

introduces our optimization techniques, and Section 5 outlines ex-
perimental results. Section 6 discusses the security analysis of our
approach, and design challenges. Sections 7 and 8 outline related
work and the conclusion, respectively.

2 OVERVIEW

2.1 Structure of a Typical ROP Attack

In this section, we introduce the structure of a typical ROP attack.
GuidExp uses ROP attacks as representative attacks, because since
2015 almost 80% (547/698) of disclosed ActionScript (AS)1 vulnera-
bilities could lead to an arbitrary code execution by implementing
an ROP attack [66]. Therefore, we ensure that GuidExp is expected
and capable of generating exploit scripts that perform an ROP at-
tacks.

Fig. 1a depicts the structure of a typical ROP attack. An ROP
attack starts with executing the PoC—the piece of code which trig-
gers the vulnerability. The PoC corrupts the memory by performing
activities such as creating a dangling pointer, or mangling the struc-
ture of the garbage collector. However, the execution of the PoC
should not raise a kernel panic [32] (a system error from which
operating systems cannot quickly or easily recover), because oth-
erwise, the exploit that contains the PoC would result in the same
kernel panic, and the operating system terminates the execution of
the exploits before they perform their intended malicious activities.
The ROP attack exploits the resulting corrupted memory that the
execution of the PoC caused, and performs unauthorized activities
on the memory until it builds a gadget chain performing the arbi-
trary operations. The ROP attack achieves its malicious end goal in
several exploit subgoals, each subgoal which we demonstrate with
Code Segment # in the Fig. 1a.

2.2 Intuition Behind Target Exploit Generation

In order to facilitate exploit generation, we define a structure for
our target exploit, which is a high-level, semantic outline of the
final exploit we expect GuidExp to generate. That is, GuidExp will
generate code which is semantically equivalent to the target exploit.

Fig. 1b depicts the structure of our target exploit. The first portion
of our target exploit consists of the trigger slice, which is the AS
bytecode representation of the PoC. Note that while the trigger slice
is able to drive the virtual machine in to a buggy state, entering to
the buggy state is not sufficient for determining the severity of the
bug or examining the way an attack would exploit the vulnerability.
Our tool aims to generate real exploit code that achieves the above
by appending generated code to the bug-triggering code (the trigger
slice). The additional code required to build an exploit can vary
from one attack to another, and is not necessarily small or simple.

Execution of the trigger slice causes vulnerable code segments in
the AVM to be executed, but it performs no further activity so as not
to raise kernel panic. For a given vulnerability, GuidExp will use
the same trigger slice as a prefix to an entire set of executables to be
tested for potential exploit candidacy, therefore it is important that
the trigger slice avoids kernel panic, since otherwise, the generated
executables will result in kernel panic causing our AEG process to
fail.

The remaining part of the target exploit consists of a series of
exploit subgoals—semantic goals for each step of the synthesized

exploit; each exploit subgoal will be used by GuidExp to synthe-
size code blocks that will achieve that particular semantic goal.
Together, the series of subgoals will produce code that will consti-
tute the final exploit script. For example, a typical exploit subgoal
in an ROP exploit (denoted by ’Corrupting a Buffer Space
Implicitly’ in Fig. 1b) corrupts the size of a vulnerable buffer
to read the memory beyond the buffer boundaries to gain access to
libc libraries containing ROP gadgets [85].

Typical ROP attacks exploiting use-after-free (UAF) and double-

free (DF) vulnerabilities in language virtual machines tend to follow
a specific malicious activity pattern (a sequence of abstract logical
steps). This established, well-rehearsed pattern allows for surrepti-
tious penetration into the system, without being caught by standard
operating system defenses. Here, first, the ROP attack script ob-
tains one or more access privileges -rwx- for a system resource,
such as reading privileges over ELF binaries. Then, by using these
privileges, the ROP attack makes the next system resource, such
as the .plt segment, which is located in ELF binaries available
for itself. The ROP attack follows this pattern until being capable
of completing its full malicious activity goal, such as invoking a
system call. The fact that most exploits follow this typical pattern
allows us to deconstruct exploit code into multiple exploit subgoals,
whereby execution of each exploit subgoal sets the stage for the
next exploit subgoal.

For example, in the exploit shown in Fig. 1b, the trigger slice,
which exploits a UAF vulnerability, allows the ROP attack script to
dereference a dangling pointer. The dangling pointer occurs after
the UAF vulnerability is triggered. The dangling pointer points
to the metadata of the freed buffer, so that the ROP attack can
modify the metadata to corrupt the length of the buffer (see § 3.1
for more details). The goal of the ROP attack is to change the
.length property of the buffer implicitly with a large number,
without explicitly calling the .length property. The implicit change
in the .length property allows the ROP attack to gain access to
memory that lies beyond the buffer boundaries, since the implicit
change does not allow the AVM to allocate a large enough empty
space for the new buffer size.

Corrupting the .length is our first exploit subgoal and denoted
by ‘Corrupting a Buffer Space Implicitly’ in Fig. 1b. Having
the corrupted buffer allows the ROP attack to spray helper elements
such as the payload to be executed into the heap, which is our sec-
ond exploit subgoal and denoted by Spraying Helper Elements
in Fig. 1b. The ROP attack follows this pattern until execution of
its malicious payload, which is the last exploit subgoal, denoted by
‘Building and Executing the ROP Chain’ in Fig. 1b.

2.3 Defining Exploit Subgoals, Search Spaces &

Invariant

Since the semantics of “exploitability” is fluid, i.e., can change based
on security engineers’ expectations or security-sensitive assets,
GuidExp provides flexibility in defining exploitability of target
applications in various settings and environments. GuidExp allows
defining exploitability as the successful completion of a series of
exploit subgoals. For example, by providing exploit subgoals that are
necessary to bypass ASLR, security engineers can obtain the exploit
script, and then, they can see how the exploit code bypasses their

388

ACSAC 2020, December 7–11, 2020, Austin, USA Fadi Yilmaz, Meera Sridhar, and 2

ASLR implementation to fix their weaknesses. GuidExp expects
such exploit subgoals to be defined by security experts who have a
thorough knowledge of their target application since the success of
GuidExp relies on defining the exploit subgoals accurately.

In order to synthesize code corresponding to each exploit subgoal,
GuidExp will take as input a collection of exploit subgoals; each
exploit subgoal consists of (1) a search space and (2) an invariant.

The search space consists of a set of opcodes and parameters. An
opcode is the atomic portion of machine code instruction, in AS
bytecode language, that specifies the operation to be performed. In
AS language, opcodes take zero or more parameters to be used in
the operation [6]. A parameter is either an index to a value stored
in the constant pool of the executable or a constant to be pushed
into the call stack directly. We expect that the security experts will
determine opcodes and parameters based on their experience. The
experts should consider semantic meaning of every opcode and
parameter and pick opcodes and parameters that can contribute to
synthesizing the exploit subgoal.

An invariant is a test that decides whether the synthesized code
semantically satisfies the corresponding exploit subgoal, and is
written by the security expert in the form of an AS code snippet.
GuidExp utilizes the invariant since it does not modify the imple-
mentation of the AVM or require recompiling the AVM to insert
flags that alert when an error statement is reached.

Consider the simplified example of an exploit script containing
an exploit subgoal of summing two known integer values. Assume,
in this simplified example, the trigger slice for the exploit script
creates these integers with the following code snippet:
1 function init(){

2 var firstVariable = 6; var secondVariable = 12;}

To achieve the exploit subgoal, GuidExp needs to append to the
given PoC with the following:
1 var sum = firstVariable + secondVariable;

The line calculates the sum of given two integer variables, first-
Variable and secondVariable. The same line consists of three
smaller operations within: (1) assigning a value to a variable, since
the resulting sum (firstVariable + secondVariable) will be
assigned to another variable (sum), (2) pushing the values to be
summed onto the operand stack (since the AVM uses the operand
stack to store temporary values), and (3) invoking the sum operator.

A security expert can therefore create the search space for this ex-
ploit subgoal by considering these subset of operations. The expert
can choose these opcodes for the search space for the exploit sub-
goal: getlocal, add, and setlocal. The opcode getlocal pushes
the value of local variables onto the operand stack, add is the op-
code that pops two values from the operand stack and pushes the
result onto the operand stack, and setlocal pops the top value
from the operand stack and assigns the value to a local variable.
The parameters used with the opcodes should be the indices of the
local variables. GuidExp is capable of calculating indices of exploit
subgoal-relevant variables when their names are provided. If no
variable name is provided, GuidExp calculates indices of all local
and global variables and adds them to the current search space.

The invariant for this exploit subgoal will test whether the sum
equals to a third known variable. A good invariant for the exploit
subgoal could be:
1 return (sum == thirdVariable)

2.4 Constructing Exploit Script from

Checkpoints

Once GuidExp synthesizes a code segment that satisfies the in-
variant for the current exploit subgoal, we declare that GuidExp
achieved the exploit subgoal. Subsequently, GuidExp can move to
the next subgoal. GuidExp appends the synthesized code segment
into the AS executable constructed so far. This combined executable
is dubbed checkpoint. In this example, the checkpoint for the exploit
subgoal consists of the PoC and the line that GuidExp synthesizes.
Subsequently, GuidExp moves to the next subgoal. The checkpoint
that achieves the given exploit subgoal for the example in §2.3 is:
1 function init(){

2 var firstVariable = 6; var secondVariable = 12;

3 var sum = firstVariable + secondVariable; }

Acquiring a checkpoint successfully enables the exploit to be ready
to aim for the next exploit subgoal; therefore, GuidExp can stitch
the exploit script from checkpoints it synthesizes. When achiev-
ing one subgoal and synthesizing the next one, GUIDEEXP builds
candidates for the next subgoal on top of the solution found for
the previous one (i.e., new instruction permutations are appended
to a solution for the previous subgoal). This guarantees that the
solution for the new subgoal always satisfies the prior subgoal.

2.5 Overview of GuidExp

Fig. 2 depicts an overview of GuidExp, which consists of three
phases. GuidExp takes as input the full series of exploit subgoals,
and at the end, produces the final exploit script. In the first phase,
GuidExp reads an exploit subgoal (denoted by τi in Fig. 2) from the
collection. Then, GuidExp parses the corresponding search space
and the invariant (denoted by Search Space(τi) and Invariant(τi) in
Fig. 2 respectively). The Exploit Subgoal Parser is responsible for
taking the search space and the invariant from the exploit subgoal.
Both the search space and the invariant are sent to different units
to be used in the second phase.

In the second phase, GuidExp explores all possible execution
paths that follow the execution of the trigger slice and checks

Figure 2: Overview AEG Tool

389

Guide Me to Exploit: Assisted ROP Exploit Generation for ActionScript Virtual Machine ACSAC 2020, December 7–11, 2020, Austin, USA

whether the current exploit subgoal is achieved in any execution
path. There are three main units in this phase: (i) the parser, which
generates the abstract syntax tree (AST) from the trigger slice into
Java structures; the AST becomes the input for the next main unit,
(ii) the Code Generator, which analyzes the AST to locate the ex-
ecution path in which the vulnerability is triggered. The Code
Generator outputs executables that follow the execution path by
appending a permutation of instructions given in the exploit sub-
goal to the trigger slice. The executables outputted by the Code
Generator are input for the final main unit, (iii) the Invariant Val-
idator, which dynamically monitors execution of the executables
coming from the Code Generator to decide if the current exploit
subgoal is achieved by any of them.

The CodeGenerator synthesizes distinct executable scripts, called
candidate slices (denoted by Candidate Slice in Fig. 2), by appending
distinct permutations of instructions given in the subgoal to the
trigger slice at a time. Each executable script can explore a differ-
ent execution path. However, at this point, GuidExp can generate
an infinite number of candidate slices that follow the trigger slice.
Therefore, along with the AST, the Code Generator receives as in-
put the search space that consists a set of opcodes and parameters
that can contribute to the task of satisfying the current exploit sub-
goal. GuidExp explores execution paths constructed with opcodes
and parameters given in the search space. Thus, with having the
search space, the Code Generator eliminates the execution paths
that perform unrelated operations to the exploit. Candidate slices
are appended to the trigger slice so that they trigger the vulnerabil-
ity in the exact same way the trigger slice does.

Fig. 3 demonstrates howGuidExp explores execution paths. Here,
qi , red and gray nodes represent AVM program states. State q0 is
the initial state, and represents the initial settings of the AVM. The
execution of the trigger slice transitions the program state to qv ,
which occurs after the vulnerability is triggered. Then, GuidExp
generates distinct candidate slices to explore new execution paths.
The execution of every candidate slice results in a different program
state, leading to one of three types of states:
(1) Red nodes represent program states that result in an error (e.g.,
type error, reference error, argument error) or perform an illegal
call stack operation (e.g., popwhen the call stack has zero elements).
GuidExp does not append to the candidate slice whose executions
terminate on a red node, since no matter what opcode is appended
to the candidate slice, its execution raises the same error (see § 4.4).
(2) Gray nodes represent program states that do not lead to a pro-
gram error. Candidate slices that do not visit a red node are in both
syntactically and semantically correct form, so they can be extended
with more instructions to obtain new candidate slices. However,
these candidate slices (that land on a gray node) cannot satisfy the
current exploit subgoal. Thus, GuidExp needs to continue generat-
ing more candidate slices by appending new instructions to these
candidate slices (of whose execution ends on a gray node).
(3) The candidate slice that satisfies the current exploit subgoal
is denoted by a green node and "Checkpoint(τi)" in Fig. 3. When
a checkpoint is synthesized, GuidExp stops generating further
candidate slices for the current exploit subgoal, since it has already
been satisfied. Then, GuidExp synthesizes new candidate slices to
satisfy the next exploit subgoal. These candidate slices are generated
by appending new instruction permutations to the checkpoint to

follow the same execution path that satisfies the previous exploit
subgoals. GuidExp, therefore, builds the exploit code (denoted by
"The Exploit" in Fig. 3) by stitching the checkpoints after all of the
given exploit subgoals are satisfied.

Generated candidate slices are sent to the Invariant Validator,
which is the third main unit of the second phase and monitors run-
time behaviors of candidate slices. As GuidExp does not modify the
implementation of the AVM, it cannot make runtime observations.
Therefore, GuidExp utilizes invariant to decide whether the corre-
sponding exploit subgoal is satisfied. GuidExp inserts the invariant
at the end of the execution of candidate slices to avoid altering
their intended behaviors. We expect that the invariant would be
given by security experts along with the search space as inputs for
GuidExp. The result that the invariant generates (denoted by Deci-
sion(Candidate Slice, τi) in Fig. 2) is input for the Exploit Subgoal
Manager which appraises the decision.

In the final phase, the execution result of candidate slices is
evaluated by the Exploit Subgoal Manager. If the execution of a
candidate slice results in an error, the AVM raises an error message.
The error message indicates the type of the error with an error
code [5]. GuidExp uses the error message to disqualify subsequently
generated candidate slices based on the type of the error. If the
result is a false, the result indicates that the candidate slice is
executed without raising any error. However, the candidate slice
does not achieve the corresponding target exploit subgoal. In this
case, GuidExp discards the candidate slice and informs the Code
Generator to synthesize a new candidate slice to be tested.

If the result is a true, the candidate slice (denoted by Checkpoint-
(τi) in Fig. 2) achieves the corresponding target exploit slice. In this
case, the Exploit Subgoal Manager stops the candidate slice gen-
eration process and informs the Exploit Subgoal Parser to parse
the next target exploit subgoal. The Exploit Subgoal Parser reads
the next search space and invariant. Simultaneously, the Exploit
Subgoal Manager sends the candidate slice back to the Code Gener-
ator so that the Code Generator can use the candidate slice as the
skeleton for the next exploit subgoal and this process keeps going
until all target exploit subgoals are achieved.

2.6 Building the ROP Chain

GuidExp aims to synthesize an exploit script that performs an
ROP attack. ROP attacks can perform different types of malicious
activities based on the sequence of gadgets (also known as the
ROP chain) they execute, e.g., producing a shell, running arbitrary
code or invoking a system call. Therefore, an ROP attack needs to
build the correct gadget sequence to achieve its malicious intention.
GuidExp builds the ROP chain that executes ’int 0x80’, which
is used to invoke system calls. GuidExp builds and executes the
ROP chain in the final exploit subgoal, ’Building and Executing
the ROP Chain’. The ROP chain consists of 38 lines of codes and
contains ten distinct gadgets. GuidExp builds the chain by itself
after locating these ten gadgets. To locate a gadget, GuidExp needs
to synthesize a function which scans libc libraries and returns the
address of the given gadget. After locating the first gadget, GuidExp
invokes the same function definition with different gadget to locate
all required gadgets.

390

ACSAC 2020, December 7–11, 2020, Austin, USA Fadi Yilmaz, Meera Sridhar, and 2

Figure 3: Exploit Script Generation Process

The ROP chain GuidExp builds has the same gadget order with
a ROP chain generated by the tool called ROPgadget [46], which
also builds an ROP chain from gadgets that it locates and that can
be accessed during the execution of given binary.

3 IMPLEMENTATION

In this section, we introduce an example of vulnerability and walk
the reader through how GuidExp produces the exploit script for
this vulnerability.

3.1 Target Vulnerability

CVE-2015-5119 vulnerability was one of the Kaspersky’s Devil’s
Dozen Flash vulnerabilities that gained immense popularity among
criminals and was added to numerous exploit kits in 2015 [48].

1 public class malClass extends Sprite {

2 public function malClass () {

3 var b1 = new ByteArray ();

4 b1.length = 0x200;

5 var mal = new hClass(b1);

6 b1[0] = mal;}}

7 public class hClass {

8 private var b2 = 0;

9 public function hClass(var b3) {b2 = b3;}

10 public function valueOf () {

11 b2.length = 0x400;

12 return 0x40;}

13 }

Listing 1: The PoC for CVE-2015-5119

The target vulnerability resides in the implementation of AVM
versions up to 18.0.0.194 for Windows, OS X, and Linux [7]. A
zero-day attack abusing this vulnerability was discovered after the
attackers stole 400GB of confidential company data and made them
publicly available [51]. The vulnerability happens due to a lack of
a control mechanism of side effects of implicit function calls, e.g.,
invoking valueOf() to get the value of an instance while assigning
it to another instance.

Listing 1 shows how the vulnerability is triggered. The class
malClass, which invokesmalicious valueOf(), creates a ByteArray
instance, b1, and sets its length as 0x200 in Line 3, 4. A ByteArray
instance is a packed array of bytes that has methods and properties
to optimize working with binary data. Line 5 creates an instance
which belongs to hClass, with b1 as its attribute and assigns it to
the index 0 of b1. In Line 10, the valueOf() function is overridden
to free b2 attribute of hClass instances by altering its length. The
AVM memory management system prefers first to deallocate the

object, and then to reallocate it to a bigger memory chunk in case
it needs a bigger memory space. Therefore, the assignment hap-
pens in Line 6, leading to freeing b1, and reallocating it to a bigger
memory chunk, since the length of b2 (0x400) is now larger than it
was (0x200). However, the AVM does not check this side effect, so
the index 0 of b1 still references the freed memory chunk, allowing
writing the return value (0x40) to the freed memory chunk.

3.2 Preparation: Defining Exploit Subgoals,

Inputs & Outputs

As mentioned in §2.3, GuidExp takes as input a collection of exploit
subgoals and outputs the exploit script if the target vulnerability
is exploitable. In this section, we discuss the details of the inputs
that the security experts need to provide to GuidExp in order to get
the exploit script that performs an ROP attack. While in practice
GuidExp takes all exploit subgoals as input at the beginning of
the exploit generation process, for simplicity, here we discuss this
process only in the context of the first exploit subgoal.

In our running example, the first target exploit subgoal in a
typical ROP attack, as shown in Fig. 1b, is ‘Corrupting a Buffer
Space Implicitly’. ROP attacks need to obtain a buffer space to
locate reusable code segments in sensitive system resources such
as libc or ELF binaries through this exploit subgoal. The exploit
subgoal can be achieved by appending the trigger slice with the
following source code:
1 Exploit.collection.push(new Vector <uint >(0 x200))

This line of code creates a Vector instance with length 0x200 that
accepts only uint (unsigned integers) elements. The Vector in-
stance is assigned to the memory chunk previously freed with the
malicious function calls in Listing 1 since the garbage collector
works with “last-in, first-out” principle and the memory chunk is
the last element freed by the AVM.

In order to synthesize this source code, we first need to provide a
search space. A search space consists of the opcodes and parameters
in the equivalent bytecode representation of this source code. The
optimal bytecode representation here consists of twelve opcode-
parameter pairs, and includes nine different AS bytecode opcodes [6,
84]: getglobalscope, getslot, getproperty, setproperty, find-
propstrict, pushshort, applytype, construct, callproperty
and six different parameters; the constant pool indices of the Strings
Exploit, collection, uint, Vector , push, and the value of 0x200.

The invariant for the first exploit subgoal should test whether a
candidate slice corrupts the length property of a Vector instance.

391

Guide Me to Exploit: Assisted ROP Exploit Generation for ActionScript Virtual Machine ACSAC 2020, December 7–11, 2020, Austin, USA

To do that, the invariant should check the length of currently al-
located Vector instances, and return true if one of the Vector
instances have a length of a large number, such as 0x10000000. An
optimal invariant to perform this check is the following:
1 for(var i=0; i< Exploit.collection.length; i++){

2 if(Exploit.collection[i]. length > 0x10000000){

3 _corrupted = Exploit.collection[i];

4 return true;}}

Line 1 iterates over all Vector instances allocated during the exe-
cution of each candidate slice and Line 2 checks whether any of
the Vector instances has a length greater than 0x10000000. Line 3
holds the corrupted Vector instance to be used in later stages of the
exploit. Line 4 returns true and is reached only if such a corrupted
Vector instance is created.

In this example above, we expect the security expert to specify a
sequence of the exploit subgoals, in which the first exploit subgoal
consists of the search space and the invariant we mentioned above,
and the PoC to allow GuidExp to know the execution path in which
the vulnerability is triggered.
3.3 Phase 1: Exploit Subgoal Processing

In the first phase, GuidExp reads the first exploit subgoal and pro-
duces the corresponding search space and invariant. The search
space is sent to the Code Generator and the invariant is the input
for the Invariant Validator. For the first exploit subgoal, GuidExp
reads the search space and the invariant mentioned in §3.2.
3.4 Phase 2: Generating Candidate Slices and

Validating Invariant

In our running example, the code generator must make use of the
dangling pointer, which occurs after the trigger slice is executed.
The dangling pointer points to the length property, which is a
32-bit value, of the subsequently created Vector instance, which
enables the exploit to corrupt the length property by using b1. As
the modern computer architecture adopts little-endian format,
the index 3 of b1 corresponds to the most significant byte. Thus, the
exploit code corrupts the length property of the Vector instance
by replacing Line 6 of Listing 1 with the following source code:
6 b1[3] = mal;

This overrides the most significant byte of the length property
and its new value becomes 0x40000200. Therefore, the exploit
can access any memory chunk in the memory that running AVM
instance can access during its execution.

The Invariant Validator receives the invariant from Phase 1 and
is responsible for inserting the invariant for the current exploit
subgoal into candidate slices that the Code Generator generates.

In our running example, the Invariant Validator injects the invari-
ant that it receives from the first exploit subgoal, into the candidate
slice. Since the Invariant Validator does not know which Vector
instance will be corrupted, it must be supported with a global
and static Vector collection. GuidExp automatically checks all
instance creation in candidate slices and if the created instance
type is Vector, GuidExp pushes the Vector instance to the global
Vector collection. The Invariant Validator therefore can keep track
of all Vector instances created during the execution of the candi-
date slice. In addition, Line 3 of the optimal invariant stores the
corrupted Vector instance if a candidate slice succeeds to create
one. The Invariant Validator modifies the trigger slice to add the
definition of the collection to global scope.

3.5 Phase 3: Evaluating Candidate Slices

In our running example, the candidate slice, "Checkpoint(τ1)", that
satisfies the first exploit subgoal is given in Listing 2. Lines high-
lighted in green in Listing 2 are inserted by the Invariant Validator,
and lines highlighted with light blue in Listing 2 are generated and
inserted by the Code Generator. GuidExp uses "Checkpoint(τ1)"
as the skeleton code for synthesizing "Checkpoint(τ2)". Note that
when Checkpoint(τ1) is used as a skeleton, the code injected by
Invariant Validator will be ignored.

GuidExp performs the same procedure with "Checkpoint(τ1)"
and the second exploit subgoal to find Checkpoint(τ2). GuidExp
repeats this until all exploit subgoals are achieved. When all target
exploit subgoals are achieved, the Exploit Subgoal Manager outputs
the exploit code. Thus, security engineers can analyze the exploit
code to see how the target vulnerability is exploited, and how the
exploit code uses the vulnerability to perform an actual attack
against their security protections.

1 public class malClass extends Sprite {

2 public function malClass () {

3 protected static var collection:* = new Vector.

4 <Vector.<uint>>();

5 var b1 = new ByteArray ();

6 b1.length = 0x200;

7 var mal = new hClass(b1);

8 b1[3] = mal;

9 Exploit.collection.push(new Vector<uint>(0x200));

10 for(var i=0; i< Exploit.collection.length; i++){

11 if(Exploit.collection[i].length > 0x10000000)

12 return true;}}

Listing 2: Source code representation of malclass in

Checkpoint(τ1)

4 OPTIMIZATION TECHNIQUES

Finding the correct permutation of instructions given in exploit
subgoals requires testing all possible permutations in the worst
case. As mentioned in §3.2, in our running example, the exploit sub-
goal contains nine opcodes and six parameters, and the bytecode
sequence satisfying the exploit subgoal consists of twelve instruc-
tions. Hence, GuidExp must generate and run 5412 candidate slices
in the worst case to test all possible permutations, which is not prac-
tical. In this section, we discuss four optimization techniques that
we successfully implemented to address this challenge and reduce
the number of candidate slices to be tested, leveraging language
features of the AS language.

Table 1 demonstrates the efficiency results for our optimization
techniques for our running example. Rows are labeledwith numbers
given in parentheses. The left cell of a row describes the value
given in the corresponding right cell. Rows written in bold show
the effectiveness of our optimization techniques and having exploit
subgoals. If a value requires to be calculated, the calculation formula
is given in the same cell, below the value. Numbers in parentheses
used in these calculations refer to the value of the corresponding
rows.

392

ACSAC 2020, December 7–11, 2020, Austin, USA Fadi Yilmaz, Meera Sridhar, and 2

4.1 Deconstructing an Exploit into Subgoals

As mentioned in §2.3 and demonstrated in Fig. 1b, GuidExp splits
the target exploit script into many smaller exploit subgoals in order
to facilitate the exploit generation task. This is our first optimization
technique, and we refer to this henceforth as exploit deconstruction.

With exploit deconstruction, GuidExp targets synthesizing ex-
ploit subgoals in sequence instead of synthesizing the entire ex-
ploit script at once. Therefore, GuidExp can define a checkpoint
for every exploit subgoal on the execution path of the exploit
script. When GuidExp synthesizes a candidate slice that reaches a
checkpoint, GuidExp prunes all other execution paths that cannot
reach the checkpoint, or those that need a longer path to reach the
checkpoint. Fig. 3 demonstrates how exploit deconstruction prunes
execution paths that GuidExp needs to explore. After reaching
the Checkpoint(τ1), GuidExp focuses on synthesizing the candi-
date slice that reaches Checkpoint(τ2) through Checkpoint(τ1),
although it is possible that there are execution paths that do not
visit Checkpoint(τ1) but do reach Checkpoint(τ2). However, the
number of execution paths that GuidExp needs to explore increases
exponentially in each level as GuidExp appends the permutations
of instructions given in the current search space to the trigger slices.
Thus, with having exploit deconstruction, our experiments show
that we disqualify the vast majority of execution paths. For our
running example, the efficiency of exploit deconstruction technique
for synthesizing Checkpoint(τ1) and Checkpoint(τ2) is given in the
eighth row of Table 1.

4.2 Operand Stack Verification

Computation in the AVM is based on executing the code sequence
of method bodies, the constant pool, and the heap for non-primitive
data objects created at run-time. The code sequence is composed of
instructions. Each instruction modifies the state of the AVM or has
an effect on the run-time environment by means of input or output.
To manage the execution of method bodies, the AVM employs an
operand stack, which holds operands for the instructions and stores
their results. The scope stack is part of the run-time environment
and stores objects that are to be searched by the AVM.

Since GuidExp generates a candidate slice for every permutation
of instructions given in the search spaces, some candidate slices
could perform illegal operand stack operations. These illegal oper-
ations can cause two types of errors related to the operand stack:
(1) stack underflow, which occurs when an instruction tries to pop
elements from the operand stack while the operand stack holds no
element, (2) stack overflow, which occurs when a function returns
before popping all elements it pushed onto the operand stack.

In our second optimization technique, operand stack verification,
GuidExp simulates the operand stack for the candidate slice it gen-
erates to decide whether the candidate slice causes an operand stack
violation before sending the candidate slice to the Invariant Valida-
tor. If a candidate slice causes the stack underflow error, GuidExp
marks the instruction permutation that the candidate slice contains
as ill-prefix and discards the candidate slice. GuidExp also elim-
inates the subsequently generated candidate slices which contain
an ill-prefix instruction permutation because they will raise the
same error regardless of instructions they add to an ill-prefix
permutation. If a candidate slice causes the stack overflow error,

Description Value

(1) Number of opcodes in AS language 164 [84]

(2) Number of parameters in our trigger slice 33

(3) Number of instructions needed to append to the
trigger slice to produce Checkpoint(τ1) 12

(4) Number of instructions needed to append to the
Checkpoint(τ1) to produce Checkpoint(τ2) 23

(5) Number of candidate slices that GuidExp needs to 16412 ∗ 3312
generate to produce Checkpoint(τ1) (1)(3) ∗ (2)(3)

(6) Number of candidate slices that GuidExp needs to 16435 ∗ 3335
generate to produce Checkpoint(τ2) (1)(3)+(4) ∗ (2)(3)+(4)

(7) Number of candidate slices that GuidExp needs to
generate to produce Checkpoint(τ2) 16412 ∗ 3312 + 16423 ∗ 3323
with exploit deconstruction (5) + (1)(4) ∗ (2)(4)

(8) Efficiency of exploit deconstruction ≈ 1045
for the first exploit subgoal (6)/(7)

(9) Number of candidate slices that GuidExp
needs to generate to produce Checkpoint(τ1)
by utilizing the first exploit subgoal 5412 (please see §4)

(10) Efficiency of restricting the ≈ 1024
search space in the first exploit subgoal (5)/(9)

(11) Number of tiles in the first subgoal 8

(12) Efficiency of instruction tiling ≈ 1013.5
for the exploit subgoal (9)/(11)(11)

(13) Number of candidate slices GuidExp needs to 2,396,744
generate to satisfy the first exploit subgoal

∑(11)−1
n=1 (11)n

(14) Number of candidate slices that pass the operand
stack verification 29,167

(15) Number of candidate slices that pass the operand
stack verification and feedback from the AVM 12,229

(16) Percentage of candidate slices discarded by the

operand stack verification for the first exploit 98.78%
subgoal 1 − (14)/(13)

(17) Percentage of candidate slices
discarded based on the feedback from 58%
the AVM for the first exploit subgoal 1 − (15)/(14)

Table 1: Efficiency calculation of optimization techniques

GuidExp eliminates the candidate slice but does not mark the in-
struction permutation it contains as ill-prefix, because candidate
slices that cause stack overflow error might be followed by instruc-
tion sequences that consume remnant elements in the operand
stack. As shown in the sixteenth row of Table 1, GuidExp can
disqualify 98.78% of the generated candidate slices by using the
operand stack verification technique for our running example.

4.3 Instruction Tiling

Instructions in AS bytecode typically need to be used in particular
sequences, together, to represent semantically meaningful activities.
E.g., the opcode "add", which pops two values from the top of the
operand stack and then pushes the result back to the operand stack,
requires that these two values be pushed onto the operand stack
previously. Therefore, the opcode "add" and the opcode "push"
are commonly used together to perform the summation.

Our third optimization technique, instruction tiling, uses such
relationships between instructions, to create instruction chains that

393

Guide Me to Exploit: Assisted ROP Exploit Generation for ActionScript Virtual Machine ACSAC 2020, December 7–11, 2020, Austin, USA

can perform meaningful activities such as calling a variable, coerc-
ing a type of variable, or calling a property of an object. We refer
to such an instruction chain as a tile. GuidExp generates candidate
slices adding or replacing a tile instead of an instruction. Thus,
the number of candidate slices that GuidExp synthesizes decreases
dramatically as the number of permutations of tiles is significantly
smaller than the number of permutations of instructions. GuidExp
expects security experts to specify tiles using their expertise on
ActionScript semantics.

4.4 Feedback from the AVM

The Code Generator sends candidate slices that do not violate the
operand stack to the Invariant Validator to be executed in the AVM
in Phase 2 in Figure 2. However, the AVM can raise different types
of run-time errors during the execution of candidate slices that
GuidExp cannot detect before their execution. The AVM raises
these errors when candidate slices perform an illegal operation,
such as reading outside of an array boundaries, or if the AVM can-
not keep running because of resources restrictions. For example,
if a candidate slice contains an infinite loop, the AVM will raise
the out-of-memory error. The Code Generator marks the instruc-
tion permutation that the error-raising candidate slice contains as
ill-prefix, and discards the candidate slice. The Code Genera-
tor also stores ill-prefix permutations in a search tree so that
it can quickly decide whether future candidate slices contain an
ill-prefix. Therefore, the Code Generator discards subsequently
generated candidate slices if they contain an ill-prefix permuta-
tion, since instruction sequences are prefix-closed, and will raise
the same error. As shown in the seventeenth row of the Table 1,
in experiments with our running example, by using the feedback
from the AVM, GuidExp discards 58.07% of the candidate slices.

5 EXPERIMENTAL RESULTS

All experiments were conducted on a virtual machine with a 3.4
GHz Intel Core i7 processor with 8 GB RAM. We used VMware
Workstation 15 to emulate the virtual machine with Ubuntu 16.04
LTS. PoC scripts were created using Adobe Flex SDK 4.6 [4], mxmlc,
and Mozilla Tamarin Project AS Compiler, asc.jar [67]. GuidExp
was written in Java with NetBeans IDE 8.0.2 JDK v.1.8.

We synthesized exploit scripts for eleven different AVM vulner-
abilities, including our running example vulnerability, CVE-2015-
5119. We selected these vulnerabilities because these vulnerabilities
were frequently used in famous exploit kits such as Nuclear [29],
Neutrino [48], Angler [48], Gong Da [83], and Cool [83]. In addition,
these vulnerabilities are well-publicized so that we can create the
corresponding exploit subgoals for these vulnerabilities accurately.

We conducted two set of experiments. In the first set, GuidExp
utilized an open-source core implementation of the AVM, avmplus
[3] provided by Adobe, to execute candidate slices GuidExp gener-
ated for our running example vulnerability. Table 2 demonstrates
our experimental results with the open-source core implementation
of the AVM for our running example vulnerability. We give the
number of generated candidate slices and executed candidate slices
during synthesizing each exploit subgoal. GuidExp outputs the
exploit script within slightly below 15 minutes.

To our knowledge, the open-source core version contains only
one vulnerability which is our running example vulnerability. As-
suming that the security experts would have the source of their
application, we highlight the performance of GuidExp with the
open-source version. However, to demonstrate the generality of
GuidExp, we conducted the second set of experiments with the
closed-source Flash Player v11.2.202.262 [2] because this particular
Flash Player contains all eleven vulnerabilities we selected. Table 2
also shows our experimental results with the closed-source Flash
Player, v11.2.202.262, for our running example vulnerability. Run-
ning a closed-source AVM brings two interesting changes. First,
exploit generation process takes around 45 times longer compared
to our first set of experiments.

The slowdown is due to the starting/closing overhead of the Flash
Player. Note that there is no easy way to just start/stop the AVM
included in the closed Flash Player. To run an AS executable on the
closed-source AVM, we have to start/stop the full Flash Player every
time GuidExp generates a candidate slice. Specifically, starting
and closing a Flash Player takes 85ms on average, equivalent to
∼ 89% of the time required to test one candidate slice, producing
the slice takes ∼ 1%, executing the slice takes ∼ 6%, reading the
result takes ∼ 4%. However, the open-source version’s initialization
overhead is smaller. The initialization overhead only takes ∼ 11%
of the experiment for open-source AVM. With the applications that
their initialization and termination take significantly less time, the
overhead of using the closed-source version of these applications
should not affect the performance of our tool dramatically. Second,
since the error messages that the player outputs are shown to the
users in pop-ups, we cannot leverage the feedback coming from
the player. Thus, the number of candidate slices to be searched
is higher with the player. However, this is a characteristic of the
closed-source AVM version. GuidExp may easily fetch the error
messages raised by closed-source versions of other language virtual
machines.

Table 3 shows our experimental results with eleven other AVM
vulnerabilities we selected. In these experiments, GuidExp executes
candidate slices with the closed-source player. According to our
experiments, GuidExp can generate an exploit script for a vulner-
ability in less than 14 hours. Additionally, we demonstrate that
GuidExp can tolerate some level of inaccuracy (providing larger
search spaces) in defining exploit subgoals to allow security experts
to have some space. Please see the Appendix for details.

6 DISCUSSION

Challenges. One of the biggest challenges we faced in this work
is that the PoCs that we found online were not compatible with the
open-source AVM implementation [3]. In addition, some PoCs that
we found were written for different versions of the AVM, which
adopt different memory layouts for the run-time instances. There-
fore, we crafted our PoCs by tailoring these PoCs. We recalculated
offsets of the attributes used for triggering vulnerabilities, removed
external libraries used in the PoCs or if their source is publicly
available, we statically compiled these libraries with the core im-
plementation to include them.

Since we provide the exploit subgoals to GuidExp to conduct our
experiments, we need to obtain a deep understanding of how a ROP

394

ACSAC 2020, December 7–11, 2020, Austin, USA Fadi Yilmaz, Meera Sridhar, and 2

Number of Generated Number of Executed Percentage of Executed Synthesizing

Candidate Slices Candidate Slices Candidate Slices Time (s)

Exploit Subgoal open-source closed-source open-source closed-source open-source closed-source
Corrupting a Buffer Space Implicitly 2,396,744 12,229 29,167 0.51 1.21 9.35 605.58
Spraying Helper Elements 19,173,952 73,997 210,225 0.38 1.09 55.90 3,895.64
Locating Sprayed Elements 37,448 357 769 0.95 2.05 1.72 12.76
Disclosing the Offset of the Located Elements 55,345,757 282,392 508,339 0.51 0.91 138.26 6,845.86
Corrupting the Disclosed Buffer 4,793,488 21,591 41,342 0.45 0.86 17.03 963.86
Locating ELF Object Files 19,173,952 81,545 201,852 0.42 1.05 57.12 3,364.89
Locating libc Libraries 55,345,757 278,385 459,336 0.50 0.82 138.05 6,276.25
Locating Executable Segment 76,695,808 379,587 706,031 0.49 0.92 199.78 9,546.07
Locating Gadgets and Building the ROP Chain 435,848,049 1,648,451 2,954,400 0.37 0.67 240.92 11,512.47

Total Time (with the open-source AVM implementation): 858.13 (14m 18.13s)
Total Time (with the closed-source AVM implementation): 43,023.38 (11h 57m 03.38s)

Table 2: Exploit generation for CVE-2015-5119 with open-source core implementation of the AVM and closed-source Flash

Player

attack exploits given vulnerabilities and bypasses modern operating
system security mechanisms such as ASLR or DEP. However, the
PoCs we craft and the exploit code GuidExp synthesizes perform
their malicious activities implicitly. For example, the exploit script
corrupts the length of the Vector instance without calling the
.length property, but with exploiting the unusual situation of the
AVM that occurs after triggering the vulnerability. Therefore, we
could not use any AS debugger to observe run-time behaviors of
the exploit code to understand how the exploit script tricks the
AVM to perform its malicious intention surreptitiously. Hence, we
utilized GNU debugger [35] to debug the AVM and observe run-
time behaviors of the exploit code by scrutinizing the memory cells
to see how the instructions modify memory cells.

Limitations. GuidExp’s performance strictly depends on the ac-
curacy of the exploit subgoals. Having redundant instructions in an
exploit subgoal significantly increases the time that GuidExp needs
to generate the exploit script, since the number of permutations of
instructions increases exponentially as the number of instructions
increases linearly. The number of executed candidate slices works
as a coefficient for the performance of our tool since the tool ap-
plies the same approach to all of the executed candidate slices. We
mentioned the factors that affect the performance of our tool in §5.

Use Cases & Effort. Our exploit generation approach does not
leverage a typical fuzz tester or symbolic execution tool due to the
reasons discussed early in §1. Instead, we leverage the coherence
between tool-centered, human-assisted [88] vulnerability analysis

Table 3: Exploit generation for selected vulnerabilities

Selected Vulnerabilities Synthesizing Time Flash Player Version

CVE-2015-5119 11h 57m 03.38s v11.2.202.262

CVE-2013-0634 12h 09m 14.50s v11.2.202.262
CVE-2014-0502 12h 54m 15.19s v11.2.202.262
CVE-2014-0515 12h 51m 26.67s v11.2.202.262
CVE-2014-0556 12h 08m 35.29s v11.2.202.262
CVE-2015-0311 11h 56m 19.10s v11.2.202.262
CVE-2015-0313 12h 20m 47.98s v11.2.202.442
CVE-2015-0359 11h 05m 05.61s v11.2.202.262
CVE-2015-3090 12h 01m 33.16s v11.2.202.262
CVE-2015-3105 13h 25m 46.80s v11.2.202.262
CVE-2015-5122 12h 07m 02.59s v11.2.202.262

paradigm, which leverages human expertise to break the execution-
path-space into relatively smaller search spaces and the pattern
that ROP attacks follow.

The primary target audience of GuidExp is security experts who
have thorough knowledge about the AVM and the AS language.
Examples of such users include industry security testers, academics,
defense contractors, and government laboratories. GuidExp uses
the subgoals to narrow down the execution-path space, therefore,
the performance and success of GuidExp depend on the quality of
provided subgoals. However, a newbie can also benefit by using
GuidExp to synthesize simple exploits (GuidExp is not limited to
ROP) or achieve subgoals iteratively. The AEG process will take
longer with less accurate subgoals (i.e., larger search space), as the
size of the search space increases combinatorial rate.

GuidExp needs to be given accurate exploit subgoals to produce
the exploit script. This raises two important questions:
Q1: To what extent can GuidExp help craft exploits?

Even a senior security engineer can benefit significantly from
GuidExp, since deciding the exploitability of a vulnerability is
not a trivial task. We do believe that most of the time, the expert
might not create the exploit script immediately after disclosing
a vulnerability that extends the vulnerability triage process since
the expert cannot decide whether the vulnerability is exploitable.
For example, the subgoal "Disclosing the Address of the
Corrupted Vector" can be achieved by appending following code
to the related Checkpoint: uv[0]=uv[pos-5]-((pos-5)* 4)-0xc.
To write this code, the expert must calculate all the offsets and
indices accurately. However, when using GuidExp, it is sufficient
to provide a simple search space (“uv, pos, [], subtract, multiply”),
to produce the code given above. Additionally, GuidExp can detect
unexpected exploit pathways, which the expert may not be familiar
with, an essential prerequisite for staying ahead of attackers.
Q2 : How much manual effort is required to create search spaces?

To measure the manual effort required to use GuidExp, we first
selected a UAF Flash vulnerability of which we found the open-
source exploit script for. We analyzed the exploit script to under-
stand its methods, and to deconstruct it. Then, we chose another
UAF Flash vulnerability and used GuidExp to synthesize an exploit
script for this vulnerability. We aim to synthesize the exploit script
that exploits the second UAF Flash vulnerability with the methods
we learned from the exploit script we analyzed. We consider our

395

Guide Me to Exploit: Assisted ROP Exploit Generation for ActionScript Virtual Machine ACSAC 2020, December 7–11, 2020, Austin, USA

expertise level “medium” since we are somewhat familiar with the
exploit pattern and the AS bytecode language. It took about an
hour to provide the subgoals (ignoring the time GuidExp takes)
to produce the exploit script for the second vulnerability by using
GuidExp. Without having a comprehensive user study it is hard to
judge the usefulness of our tool. Therefore, as a future work, we
plan to set up a detailed user study to accurately measure the level
of required expertise and the correlation between the level of the
expertise and required manual effort to synthesize exploit scripts
by using GuidExp. We plan to publish the results in future work.

Future Directions. Our AEG approach allows future improve-
ments and additional automation for GuidExp . For example, GuidExp
can be used in conjunction with an AVM-specific fuzzer to do vul-
nerability detection, subsequently the exploitation for disclosed
AVM vulnerabilities. In addition, currently, the code generation
phase is done in a brute force manner, that is, instructions are
added to existing slices until a solution is found. The search space
is reduced by allowing the security experts to pass in opcodes.
This makes further automation possible here: as the semantics of
opcodes is known, Constraint Logic Programming [43] (CLP) can
be used to automatically select the opcodes. GuidExp would still
receive checkpoints and invariants from the security experts, but
defining instructions for search spaces would require less human
interaction.

7 RELATEDWORK

The AEG problem is first proposed in [10], and several works [1, 8,
11, 14, 20, 30, 31, 34, 38, 39, 41, 42, 49, 59, 60, 73, 82, 89, 92, 94, 99,
100, 102, 104] address it for various types of vulnerabilities. AEG
tools combine high performance fuzzing and symbolic execution to
first identify software vulnerabilities and then to exploit them in an
autonomous fashion. Symbolic execution tools such as SAGE [37],
KLEE [19], BitFuzz [18], S2E [28], and FuzzBall [62] concentrate
on searching execution paths but not generating exploits. Hybrid
concolic testers [14, 52, 99] advance AEG tools by interleaving
random testing with concolic execution [61]. These tools reduce and
prioritize execution paths that their symbolic execution tool needs
to explore. GuidExp differs from typical AEG implementations
by not leveraging a fuzzer or symbolic execution tool, since these
approaches are not immediately helpful for synthesizing exploit
scripts for AVM vulnerabilities.

Compiler testing techniques that do automated test input gener-
ation [17, 21–23, 25, 26, 40, 53, 54, 58, 63, 87, 101, 105] are similar
to GuidExp in that they also test programs that take as input other
programs. These compiler testing techniques generate either diver-
sified set of inputs based on highly-specified generation rules or
new inputs by mutating existing inputs. The main difference be-
tween compiler testing techniques and GuidExp is the application;
compiler testing techniques aim to find as many bugs as possible.
They do not need to penetrate deep into the search space as long
as bugs can be triggered with simple inputs. GuidExp is designed
to serve users each of whom is interested in a single bug requir-
ing a long sequence of code to exploit with an actual attack. As
a result, GuidExp needs to search a relatively larger search space

compared to conventional compiler testing techniques, which com-
pels GuidExp to employ iterative searching and more intensive
human-computer interaction.

Improving fuzzers has been an active field for decades. First,
black-box fuzzing [64], a fuzzing approach in which fuzzers are not
informed of the target program and treat it as a black-box, was
proposed. Then, researchers put more focus on white-box fuzzinzg,
more recent fuzzing strategy, in which the fuzzers symbolically
execute the target application to gather constraints on inputs from
conditional branches encountered along the execution [37]. Black-
box fuzzing [64] andwhite-box fuzzing [37] refer to fuzzingwith and
without informed knowledge of the target program, respectively.

Coverage-based gray-box fuzzing (CGF) and smart gray-box fuzzing

(SGF) are the most efficient and recent approaches for automated
vulnerability discovery. A CGF randomly mutates some bits in
given seed files to generate new files. In contrast to white-box ap-
proaches [33, 36, 37, 77], which suffer from high overhead due
to constraint solving and program analysis, and black-box ap-
proaches [15, 24, 40, 95], which are limited due to lack of knowl-
edge about target applications, CGFs utilize lightweight code muta-
tion [12, 80, 90, 96, 97, 106]. These techniques are similar to GuidExp
as it also employs lightweight code mutation based on inputs it
receives. libFuzzer [97], AFL [96] and its extensions [9, 12, 13, 27,
55, 56, 74, 75, 92] constitute the most widely-used implementations
of CGF. SGF leverages a high-level structural representation of the
seed file to generate new files and is introduced as AFLSmart [78].
Although gray-box fuzzing embodiment can generate distinct ex-
ecutables to guide the fuzzer to new code regions, they are not
capable of efficiently generating grammatically valid AVM scripts
due to the high complexity of grammar rules adopted by the AVM.

ActionScript security has been studied extensively in the past,
including inconsistencies of security models of AS and JavaScript
for cross-platform web contents [79], interaction between AS and
DOM capability tokens [57], mitigation techniques for AS-based
DNS rebinding [45] and ROP attacks [76], malicious Flash URL
redirections [93], anomaly-based Flash malware detection [47, 98],
and lack of secure and airtight implementation of the AVM [91].
To our knowledge unlike our paper, no related work focuses on
generating exploits for AS.

8 CONCLUSION

We have presented the first guided (semi-automatic) AEG tool,
GuidExp, for AVM. We also showed that GuidExp can succesfully
produces ROP exploit scripts given vulnerabilities in the AVM by
exploring all execution paths that triggering these vulnerabilities
can lead to. Unlike the other AEG tools, GuidExp does not employ
a fuzz tester or a symbolic execution tool because they are not
efficiently helpful since (1) fuzz testers cannot efficiently generate
grammatically correct executables for the AVM due to the improb-
ability of randomly generating highly-structured executables that
follow the complex grammar rules that the AVM enforces, and (2)
symbolic execution tools encounter the program-state-explosion
problem due to the enormous number of control paths in early
processing stages of binaries executed by the AVM.

GuidExp adopts several optimization techniques to facilitate the
AEG process: (1) exploit deconstruction, which breaks the exploit

396

ACSAC 2020, December 7–11, 2020, Austin, USA Fadi Yilmaz, Meera Sridhar, and 2

script that GuidExp synthesizes into several smaller subgoals, (2)
operand stack verification, (3) instruction tiling, and (4) feedback
from the AVM. GuidExp receives hints from security experts and it
uses them to determine places where the exploit script can be split
so that GuidExp can concentrate on synthesizing these subgoals in
sequence instead of the entire exploit code at once. We report that
these techniques reduce the complexity of the process by a factor of
1045, 81.9, 1013.5, and 2.38 respectively, for our running example. In
addition to our running example, we report on GuidExp-produced
exploit scripts for ten other well-publicized AVM vulnerabilities.

ACKNOWLEDGMENTS

This research was supported by NSF CRII award #1566321 and we
would like to thank Dr. Koushik Sen for providing help.

REFERENCES

[1] Anno Accademico. 2013. Static Detection and Automatic Exploitation of Intent

Message Vulnerabilities in Android Applications. Master’s thesis. Politecnico Di
Milano.

[2] Adobe, Inc. [n.d.]. Archived Flash Player versions. https://helpx.adobe.com/flash-
player/kb/archived-flash-player-versions.html.

[3] Adobe, Inc. [n.d.]. avmplus. https://github.com/adobe/avmplus.
[4] Adobe, Inc. [n.d.]. Download Adobe Flex SDK. https://www.adobe.com/devnet/

flex/flex-sdk-download.html.
[5] Adobe, Inc. [n.d.]. Run-Time Errors. https://help.adobe.com/en_US/

FlashPlatform/reference/actionscript/3/runtimeErrors.html.
[6] Adobe, Inc. 2007. ActionScript Virtual Machine 2 (AVM2) Overview. https:

//www.adobe.com/content/dam/acom/en/devnet/pdf/avm2overview.pdf.
[7] Adobe, Inc. 2015. Adobe Security Bulletin. http://tinyurl.com/ofdwo9c. Ac-

cessed" 2016-12-03.
[8] Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and V.N. Venkatakrishnan.

2016. Chainsaw: Chained Automated Workflow-based Exploit Generation.
In Proceedings of the 23th ACM Conference on Computer and Communications

Security (CCS).
[9] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and

Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.
In Proceedings of The Network and Distributed System Security Symposium (NDSS),
Vol. 19. 1–15.

[10] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley.
2011. AEG: Automatic Exploit Generation. In Proceedings of The Network and

Distributed System Security Symposium (NDSS).
[11] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.

2014. Hacking Blind. In Proceedings of the 2014 IEEE Symposium on Security and

Privacy (SP’14).
[12] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-

hury. 2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security. 2329–2344.
[13] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-

based greybox fuzzing as markov chain. IEEE Transactions on Software Engi-

neering 45, 5 (2017), 489–506.
[14] Konstantin Böttinger and Claudia Eckert. 2016. DeepFuzz: Triggering Vulner-

abilities Deeply Hidden in Binaries. Detection of Intrusions and Malware, and

Vulnerability Assessment (DIMVA) 9721 (2016), 25–34.
[15] Sergey Bratus, Axel Hansen, and Anna Shubina. 2008. LZfuzz: a fast

compression-based fuzzer for poorly documented protocols. Darmouth College,

Hanover, NH, Tech. Rep. TR 634 (2008).
[16] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. 2008. When

good instructions go bad: Generalizing return-oriented programming to RISC.
In Proceedings of the 15th ACM Conference on Computer and Communications

Security (CCS). ACM, 27–38.
[17] Colin J Burgess and M Saidi. 1996. The automatic generation of test cases for

optimizing Fortran compilers. Information and Software Technology 38, 2 (1996),
111–119.

[18] Juan Caballero, Pongsin Poosankam, StephenMcCamant, Dawn Song, et al. 2010.
Input generation via decomposition and re-stitching: Finding bugs in malware.
In Proceedings of the 17th ACM Conference on Computer and Communications

Security (CCS). 413–425.
[19] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted

and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams. In Proceedings of the 8th USENIX Symposium on Operating Systems Design

and Implementation ((OSDI)), Vol. 8. 209–224.

[20] Dan Caselden, Alex Bazhanyuk, Mathias Payer, Stephen McCamant, and Dawn
Song. 2013. HI-CFG: Construction by Binary Analysis and Application to Attack
Polymorphism. In Proceedings of the 18th European Symposium on Research in

Computer Security (ESORICS), Jason Crampton, Sushil Jajodia, and Keith Mayes
(Eds.). 164–181.

[21] Junjie Chen. 2018. Learning to Accelerate Compiler Testing. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings

(ICSE ’18). 472–475.
[22] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing

Xie. 2017. Learning to prioritize test programs for compiler testing. In 2017

IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE,
700–711.

[23] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. Test Case Prioritization for Compilers: A Text-Vector Based
Approach. In IEEE International Conference on Software Testing, Verification and

Validation (ICST).
[24] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,

XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through
App-based Fuzzing. In Proceedings of the 26th Annual Network & Distributed

System Security Symposium (NDSS).
[25] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.

2019. Compiler Bug Isolation via Effective Witness Test Program Generation. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE

2019). 223–234.
[26] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu

Zhang, and XIE Bing. 2018. Coverage Prediction for Accelerating Compiler
Testing. IEEE Transactions on Software Engineering (2018).

[27] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In Proceedings of the 39th IEEE Symposium on Security and Privacy ((SP)). 711–
725.

[28] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
platform for in-vivo multi-path analysis of software systems. ACM SIGARCH

Computer Architecture News 39, 1 (2011), 265–278.
[29] Cisco. 2016. Cisco 2016Midyear Security Report. https://tinyurl.com/y7kupmkr.
[30] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco

Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
2015. Losing Control: On the Effectiveness of Control-Flow Integrity Under
Stack Attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security (ACM CCS). 952–963.
[31] Jared D. DeMott, Richard J. Enbody, and WIlliam F. Punch. 2011. Towards an

Automatic Exploit Pipeline. In Proceedings of the 6th International Conference

for Internet Technology and Secured Transactions (ICITST).
[32] Pavel Dovgalyuk, Denis Dmitriev, and Vladimir Makarov. 2015. Don’t panic:

reverse debugging of kernel drivers. In Proceedings of the 10th Joint Meeting on

Foundations of Software Engineering.
[33] Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based directed white-

box fuzzing. In Proceedings of the 31st International Conference on Software

Engineering, (ICSE). 474–484.
[34] Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek. 2017. Au-

tomatic Generation of Inter-Component Communication Exploits for Android
Applications. In Proceedings of the 11th Joint Meeting on Foundations of Software

Engineering.
[35] GNU. 2019. GDB: The GNU Project Debugger. https://www.gnu.org/software/

gdb/.
[36] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. 2008. Grammar-based

whitebox fuzzing. ACM Sigplan Notices 43, 6 (2008), 206–215.
[37] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated

Whitebox Fuzz Testing. In Proceedings of the 16th Annual Network & Distributed

System Security Symposium (NDSS).
[38] Sean Heelan. 2011. Automatic Generation of Control Flow Hijacking Exploits for

Software Vulnerabilities. Master’s thesis. University of Oxford.
[39] Sean Heelan, Tom Melham, and Daniel Kroening. 2018. Automatic Heap Lay-

out Manipulation for Exploitation. In Proceedings of the 27th USENIX Security

Symposium (USENIX SS).
[40] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code frag-

ments. In Presented as part of the 21st {USENIX} Security Symposium ({USENIX}

Security 12). 445–458.
[41] Hu Hong, Chua Zheng Leong, Adrian Sendroiu, Saxena Prateek, and Liang

Zhenkai. 2015. Automatic Generation of Data-oriented Exploits. In Proceedings

of the 24th USENIX Conference on Security Symposium (USENIX SS). 177–192.
[42] Shih-Kun Huang, Min-Hsiang Huang, Po-Yen Huang, Chung-Wei Lai, Han-Lin

Lu, and Wai-Meng Leong. 2012. Crax: Software crash analysis for automatic
exploit generation by modeling attacks as symbolic continuations. In 2012 IEEE

Sixth International Conference on Software Security and Reliability. IEEE, 78–87.
[43] J. Jaffar and J.-L. Lassez. 1987. Constraint Logic Programming. In Proceedings

of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

397

https://helpx.adobe.com/flash-player/kb/archived-flash-player-versions.html
https://helpx.adobe.com/flash-player/kb/archived-flash-player-versions.html
https://github.com/adobe/avmplus
https://www.adobe.com/devnet/flex/flex-sdk-download.html
https://www.adobe.com/devnet/flex/flex-sdk-download.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/runtimeErrors.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/runtimeErrors.html
https://www.adobe.com/content/dam/acom/en/devnet/pdf/avm2overview.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/avm2overview.pdf
http://tinyurl.com/ofdwo9c
https://tinyurl.com/y7kupmkr
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/

Guide Me to Exploit: Assisted ROP Exploit Generation for ActionScript Virtual Machine ACSAC 2020, December 7–11, 2020, Austin, USA

Languages (Munich, West Germany) (POPL ’87). Association for Computing
Machinery, New York, NY, USA, 111–119. https://doi.org/10.1145/41625.41635

[44] Karthick Jayaraman, David Harvison, and Adam Kiezun Vijay Ganesh. 2009.
jFuzz: A concolic whitebox fuzzer for Java. In Proceedings of the First NASA

Formal Methods Symposium.
[45] Martin Johns, Sebastian Lekies, and Ben Stock. 2013. Eradicating DNS Rebinding

with the Extended Same-origin Policy. In Proc. of the 22nd USENIX Security Symp.

(SS). 621–636.
[46] JonathanSalwan. [n.d.]. ROPgadget. https://github.com/JonathanSalwan/

ROPgadget.
[47] Wookhyun Jung, Sangwon Kim, and Sangyong Choi. 2015. Poster: Deep Learn-

ing for Zero-day Flash Malware Detection. http://tinyurl.com/zvqpvfl.
[48] Kaspersky [n.d.]. Kaspersky Security Bulletin 2015. The overall statistics for

2015. http://tinyurl.com/zgkkdbj.
[49] Cha Sang Kil, Avgerinos Thanassis, Rebert Alexandre, and Brumley David. 2012.

Unleashing Mayhem on Binary Code. In Proceedings of the 2012 IEEE Symposium

on Security and Privacy (SP’12). 380–394.
[50] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM

19, 7 (july 1976), 385–394.
[51] Eduard Kovacs. [n.d.]. Two New Flash Player Zero-Day Bugs Found in Hacking

Team Leak. tinyurl.com/y25a6ve5.
[52] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea.

2012. Efficient state merging in symbolic execution. In Proceedings of the 33rd

ACM SIGPLAN Conference Programming Language Design and Implementation

((PLDI)). 193–204.
[53] Stephen Kyle, Hugh Leather, Björn Franke, Dave Butcher, and Stuart Monteith.

2015. Application of Domain-aware Binary Fuzzing to Aid Android Virtual
Machine Testing. In Proceedings of the 11th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments (VEE ’15). 12 pages.
[54] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs

via guided stochastic program mutation. ACM SIGPLAN Notices 50, 10 (2015),
386–399.

[55] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering. ACM, 475–485.
[56] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,

and Alwen Tiu. 2017. Steelix: program-state based binary fuzzing. In Proceedings
of the 11th Joint Meeting on Foundations of Software Engineering (FSE). 627–637.

[57] Zhou Li and XiaoFeng Wang. 2010. FIRM: Capability-based inline mediation of
Flash behaviors. In Proceedings of the 26th Annual Computer Security Applications

Conference (ACSAC).
[58] Christian Lindig. 2005. Random testing of C calling conventions. In Proceedings

of the 6th International Symposium on Automated analysis-driven debugging.
ACM, 3–12.

[59] Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian Liu, Limin Liu, Neng Gao,
Min Yang, Xinyu Xing, and Peng Liu. 2017. System Service Call-oriented
Symbolic Execution of Android Framework with Applications to Vulnerability
Discovery and Exploit Generation. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys).

[60] Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian Liu, Limin Liu, NengGaoMin
Yang, Xinyu Xing, and Peng Liu. 2016. Context-aware System Service Call-
oriented Symbolic Execution of Android Framework with Application to Exploit
Generation. CoRR (2016).

[61] Rupak Majumdar and Koushik Sen. 2007. Hybrid concolic testing. In 29th

International Conference on Software Engineering ((ICSE’07)). IEEE, 416–426.
[62] Lorenzo Martignoni, Stephen McCamant, Pongsin Poosankam, Dawn Song, and

Petros Maniatis. 2012. Path-exploration lifting: Hi-fi tests for lo-fi emulators.
ACM SIGARCH Computer Architecture News 40, 1 (2012), 337–348.

[63] WMMcKeeman. 1998. Differential testing for software. Digital Technical Journal
10 (1998), 100–107.

[64] Barton P Miller, Louis Fredriksen, and Bryan So. 1990. An empirical study of
the reliability of UNIX utilities. Commun. ACM 33, 12 (1990), 32–44.

[65] MITRE, Inc. [n.d.]. Common Vulnerabilities and Exposures Database. https:
//cve.mitre.org/. Accessed: 2018-01-24.

[66] MITRE, Inc. [n.d.]. CVE details - The ultimate security vulnerability data-
source. https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&
product_id=6761&version_id=&page=1.

[67] Mozilla.org. [n.d.]. Tamarin Project. https://www-archive.mozilla.org/projects/
tamarin/.

[68] National Institute of Standards and Technology. 2018. CVE-2018-15982. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15982.

[69] National Institute of Standards and Technology. 2018. CVE-2018-15982 Detail.
https://nvd.nist.gov/vuln/detail/CVE-2018-15982.

[70] National Institute of Standards and Technology. 2018. CVE-2018-4878. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-4878.

[71] National Institute of Standards and Technology. 2019. CVE-2019-8069 . https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8069.

[72] National Institute of Standards and Technology. 2019. CVE-2019-8070. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8070.

[73] V. A. Padaryan, V. V. Kaushan, and A. N. Fedotov. 2015. Automated Exploit Gen-
eration for Stack Buffer Overflow Vulnerabilities. Programming and Computer

Software 41 (2015). Issue 6.
[74] Peng, Hui and Shoshitaishvili, Yan and Payer, Mathias. 2018. T-Fuzz: fuzzing by

program transformation. In Proceedings of the 39th IEEE Symposium on Security

and Privacy ((SP)). 697–710.
[75] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017.

Slowfuzz: Automated domain-independent detection of algorithmic complexity
vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security. ACM, 2155–2168.
[76] David Pfaff, Sebastian Hack, and Christian Hammer. 2015. Proc. of the 7th Int.

Symp. on Engineering Secure Software and Systems (ESSoS). Chapter Learning
How to Prevent Return-Oriented Programming Efficiently, 68–85.

[77] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2016. Model-
based whitebox fuzzing for program binaries. In 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE). 543–553.
[78] Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexandru Razvan

Caciulescu, and Abhik Roychoudhury. 2019. Smart greybox fuzzing. IEEE

Transactions on Software Engineering (TSE) (2019).
[79] Phu H. Phung, Maliheh Monshizadeh, Meera Sridhar, Kevin W. Hamlen, and

V.N. Venkatakrishnan. 2015. Between Worlds: Securing Mixed JavaScript/Ac-
tionScript Multi-party Web Content. IEEE Trans. on Dependable and Secure

Computing (TDSC) 12, 4 (2015), 443–457.
[80] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,

and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In
Proceedings of the Network and Distributed System Security Symposium (NDSS),
Vol. 17. 1–14.

[81] Recorded Future. 2016. New Kit and Same Player: Top 10 Vulnerabilities Used
by Exploit Kits in 2016. https://www.recordedfuture.com/top-vulnerabilities-
2016/.

[82] Dusan Repel, Johannes Kinder, and Lorenzo Cavallero. 2017. Modular Syn-
thesis of Heap Exploits. In Proceedings of the 12th ACM SIGSAC Workshop on

Programming Languages and Analysis for Security (PLAS).
[83] Eric Romang. [n.d.]. Gong Da Exploit Pack Add Flash CVE-2013-0634 Support.

https://tinyurl.com/w6l4sjw/.
[84] Michael Schmalle. [n.d.]. AS3Commons - Opcodes. https://github.com/

teotigraphix/as3-commons/blob/master/as3-commons-bytecode/src/main/
actionscript/org/as3commons/bytecode/abc/enum/Opcode.as. Accessed
on=9-11-2019.

[85] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2011. Q: Exploit
Hardening Made Easy. In Proceedings of the 20th USENIX Security Symposium.

[86] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In Proceedings of the 14th ACM

conference on Computer and communications security (CCS). 552–561.
[87] Flash Sheridan. 2007. Practical testing of a C99 compiler using output compari-

son. Software: Practice and Experience 37, 14 (2007), 1475–1488.
[88] Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher Salls,

Ruoyu Wang, Christopher Kruegel, and Giovanni Vigna. 2017. Rise of the
HaCRS: Augmenting autonomous cyber reasoning systems with human as-
sistance. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. 347–362.
[89] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christo-

pher Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On
the Effectiveness of Fine-Grained Address Space Layout Randomization. In
Proceedings of the 2013 IEEE Symposium on Security and Privacy (SP’13).

[90] Sherri Sparks, Shawn Embleton, Ryan Cunningham, and Cliff Zou. 2007. Auto-
mated vulnerability analysis: Leveraging control flow for evolutionary input
crafting. In The 23rd Annual Computer Security Applications Conference (ACSAC

2007). IEEE, 477–486.
[91] Meera Sridhar, Abhinav Mohanty, Fadi Yilmaz, Vasant Tendulkar, and Kevin W.

Hamlen. 2018. Inscription: Thwarting ActionScript Web Attacks From Within.
In In the proceedings of the 17th International Conference On Trust and Security

and Privacy In Computing and Communications (TrustCom). 504–515.
[92] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
Proceedings of 23rd Annual Network and Distributed System Security Symposium

(NDSS), Vol. 16. 1–16.
[93] Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn Song. 2011. Design

and Evaluation of a Real-time URL Spam Filtering Service. In Proc. of the 32nd

IEEE Symp. on Security & Privacy (S&P). 447–462.
[94] Minghua Wang, Purui Su, Qi Li, Lingyun Ying, Yi Yang, and Dengguo Feng.

2013. Automatic Polymorphic Exploit Generation for Software Vulnerabilities.
In Procedings of the 9th International Conference on Security and Privacy in

Communication Systems (SecureComm). 216–233.

398

https://doi.org/10.1145/41625.41635
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
http://tinyurl.com/zvqpvfl
http://tinyurl.com/zgkkdbj
tinyurl.com/y25a6ve5
https://cve.mitre.org/
https://cve.mitre.org/
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1
https://www-archive.mozilla.org/projects/tamarin/
https://www-archive.mozilla.org/projects/tamarin/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15982
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15982
https://nvd.nist.gov/vuln/detail/CVE-2018-15982
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-4878
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-4878
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8069
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8069
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8070
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8070
https://www.recordedfuture.com/top-vulnerabilities-2016/
https://www.recordedfuture.com/top-vulnerabilities-2016/
https://tinyurl.com/w6l4sjw/
https://github.com/teotigraphix/as3-commons/blob/master/as3-commons-bytecode/src/main/actionscript/org/as3commons/bytecode/abc/enum/Opcode.as
https://github.com/teotigraphix/as3-commons/blob/master/as3-commons-bytecode/src/main/actionscript/org/as3commons/bytecode/abc/enum/Opcode.as
https://github.com/teotigraphix/as3-commons/blob/master/as3-commons-bytecode/src/main/actionscript/org/as3commons/bytecode/abc/enum/Opcode.as

ACSAC 2020, December 7–11, 2020, Austin, USA Fadi Yilmaz, Meera Sridhar, and 2

[95] Zhiqiang Wang, Yuqing Zhang, and Qixu Liu. 2013. RPFuzzer: A Framework for
Discovering Router Protocols Vulnerabilities Based on Fuzzing. KSII Transactions
on Internet & Information Systems 7, 8 (2013).

[96] Website. [n.d.]. american fuzzy lop. http://lcamtuf.coredump.cx/afl/.
[97] Website. [n.d.]. libFuzzer: A library for coverage-guided fuzz testing. http:

//llvm.org/docs/LibFuzzer.html.
[98] Christian Wressnegger, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. 2016.

Comprehensive Analysis and Detection of Flash-Based Malware. (2016), 101–
121.

[99] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. 2018.
FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free Vul-
nerabilities. In Proceedings of the 27th USENIX Security Symposium (USENIX

SS).
[100] Luhang Xu, Weixi Jia, Wei Dong, and Yongjun Li. 2018. Automatic Exploit

Generation for Buffer Overflow Vulnerabilities. In Proceedings of the 4th IEEE

International Conference on Software Quality, Reliability and Security Companion

(QRS-C).
[101] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and un-

derstanding bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN

conference on Programming Language Design and Implementation (PLDI). 283–
294.

[102] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian,
and Bin Liang. 2017. SemFuzz: Semantics-based Automatic Generation of Proof-
of-Concept Exploits. In Proceedings of the 24th ACM Conference on Computer

and Communications Security (CCS).
[103] Awad Younis, Yashwant K Malaiya, and Indrajit Ray. 2016. Assessing vulnera-

bility exploitability risk using software properties. Software Quality Journal 24,
1 (2016), 159–202.

[104] Ming Yuan, Ye Li, and Zhoujun Li. 2017. Hijacking Your Routers via Control-
Hijacking URLs in Embedded Devices with Web Interfaces. Information and

Communications Security (ICICS) 10631 (2017), 363–373.
[105] Chen Zhao, Yunzhi Xue, Qiuming Tao, Liang Guo, and Zhaohui Wang. 2009.

Automated test program generation for an industrial optimizing compiler. In
ICSE Workshop on Automation of Software Test. 36–43.

[106] Jinjing Zhao and Ling Pang. 2018. Automated Fuzz Generators for High-
Coverage Tests Based on Program Branch Predications. In 2018 IEEE Third

International Conference on Data Science in Cyberspace (DSC). 514–520.

9 APPENDIX

To demonstrate that GuidExp can tolerate some level of inaccuracy
(providing larger search spaces) in defining exploit subgoals to allow
security experts to have some space, we run GuidExp with 1.25,
1.5, and 2 times larger search spaces than the optimal search space
(the most accurate). Since GuidExp generates a candidate slice for
every permutation of instructions and parameters given in search
spaces, the performance of GuidExp is affected by combinatorial
rate with having unnecessary instructions and parameters in search
spaces. Table 4 shows exploit script synthesizing time of GuidExp
with larger spaces for CVE-2015-5119 with the open-source AVM
implementation.

399

http://lcamtuf.coredump.cx/afl/
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html

Guide Me to Exploit: Assisted ROP Exploit Generation for ActionScript Virtual Machine ACSAC 2020, December 7–11, 2020, Austin, USA

Table 4: Subgoal synthesizing time(s) with different size of search spaces

Exploit Subgoal Base Search 1.25x Size of Search Space 1.5x Size of Search Space 2x Size of Search Space

Corrupting a Buffer Space Implicitly 9.35 44.58 161.75 1,184.6
Spraying Helper Elements 55.90 310.05 1184.51 10,120.85
Locating Sprayed Elements 1.72 6.70 26.82 108.45
Disclosing the Offset of the Located Elements 138.26 827.14 3543.43 35,417,77
Corrupting the Disclosed Buffer 17.03 62.18 270.18 1104.61
Locating ELF Object Files 57.12 308.14 1,204.95 10,348.54
Locating libc Libraries 138.05 820.98 3,607.04 34,178.59
Locating Executable Segment 199.78 1,230.68 5,319.27 52.980.04
Locating Gadgets and Building the ROP Chain 240.92 1,679.20 7,252.01 67,518.73
Total: 858.13 (14m 18.13s) 5,289.65 (1h 28m 9.65s) 22,569.96 (6h 16m 09.96s) 212,962.18 (59h m 03.38s)

400

	Abstract
	1 Introduction
	2 Overview
	2.1 Structure of a Typical ROP Attack
	2.2 Intuition Behind Target Exploit Generation
	2.3 Defining Exploit Subgoals, Search Spaces & Invariant
	2.4 Constructing Exploit Script from Checkpoints
	2.5 Overview of GuidExp
	2.6 Building the ROP Chain

	3 Implementation
	3.1 Target Vulnerability
	3.2 Preparation: Defining Exploit Subgoals, Inputs & Outputs
	3.3 Phase 1: Exploit Subgoal Processing
	3.4 Phase 2: Generating Candidate Slices and Validating Invariant
	3.5 Phase 3: Evaluating Candidate Slices

	4 Optimization Techniques
	4.1 Deconstructing an Exploit into Subgoals
	4.2 Operand Stack Verification
	4.3 Instruction Tiling
	4.4 Feedback from the AVM

	5 Experimental Results
	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	9 Appendix

