A Systematic Study of Elastic Objects in Kernel Exploitation

Yueqi Chen
ychen@ist.psu.edu
The Pennsylvania State University

ABSTRACT

Recent research has proposed various methods to perform kernel
exploitation and bypass kernel protection. For example, security
researchers have demonstrated an exploitation method that utilizes
the characteristic of elastic kernel objects to bypass KASLR, dis-
close stack/heap cookies, and even perform arbitrary read in the
kernel. While this exploitation method is considered a commonly
adopted approach to disclosing critical kernel information, there
is no evidence indicating a strong need for developing a new de-
fense mechanism to limit this exploitation method. It is because
the effectiveness of this exploitation method is demonstrated only
on anecdotal kernel vulnerabilities. It is unclear whether such a
method is useful for a majority of kernel vulnerabilities.

To answer this question, we propose a systematic approach. It
utilizes static/dynamic analysis methods to pinpoint elastic ker-
nel objects and then employs constraint solving to pair them to
corresponding kernel vulnerabilities. In this work, we implement
our proposed method as a tool - ELOISE. Using this tool on three
popular OSes (Linux, FreeBSD, and XNU), we discover that elastic
objects are pervasive in general caches. Evaluating the effective-
ness of these elastic objects on 40 kernel vulnerabilities across three
OSes, we observe that they can enable most of the vulnerabilities
to bypass KASLR and heap cookie protector. Besides, we also ob-
serve that these elastic objects can even escalate the exploitability
of some vulnerabilities allowing them to perform arbitrary read in
the kernel. Motivated by these observations, we further introduce
a new defense mechanism to mitigate the threat of elastic kernel
objects. We prototype our defense mechanism on Linux, showing
this mechanism introduces negligible overhead.

CCS CONCEPTS

« Security and privacy — Operating systems security; Software
security engineering.

KEYWORDS
OS Security; Vulnerability Exploitation

ACM Reference Format: Yueqi Chen, Zhenpeng Lin, and Xinyu
Xing. 2020. A Systematic Study of Elastic Objects in Kernel Ex-
ploitation. In roceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS’20), November 9-13,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS’20, November 9—13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7089-9/20/11...$15.00
https://doi.org/10.1145/3372297.3423353

Zhenpeng Lin
zplin@psu.edu
The Pennsylvania State University

Xinyu Xing
xxing@ist.psu.edu
The Pennsylvania State University

2020, Virtual Event, USA. ACM, New York, NY, USA, 20 pages.
https://doi.org/10.1145/3372297.3423353

1 INTRODUCTION

Over the past years, security researchers have introduced many
defense mechanisms to harden the kernel, preventing it from being
exploited (e.g., [18, 58, 77]). Under the protection of these tech-
niques, common exploitation methods are no longer useful. For
example, the design of KASLR no longer allows an attacker to hijack
the control flow of the kernel and thus reliably jump to a particular
exploited function in memory.

Responding to the effort of kernel defense development, secu-
rity researchers recently devote significant energy to developing
methods to circumvent exploitation mitigation and kernel protec-
tion commonly adopted by OSes (e.g., [3, 20, 24, 27, 31, 34, 37, 41—
43, 45, 46, 57, 61]). Among all these efforts, one commonly adopted
approach is to leverage an overwriting primitive to manipulate
an elastic kernel object and thus bypass KASLR. Technically, this
method first leverages an overwriting capability to manipulate a
length field in a kernel object. The length field indicates the bound-
ary of an elastic buffer enclosed in the kernel object. By manipu-
lating this field, the attacker can trick the kernel into authorizing
him/her to read a memory region that he/she otherwise cannot be
entitled to. As we elaborate in Section 2, by placing a pointer in the
overread region referencing a global variable, the attacker could
utilize a disclosure channel to uncover that pointer to the userspace
and compute the kernel base address accordingly.

In the past, security researchers have utilized anecdotal kernel
vulnerabilities to demonstrate the effectiveness of this exploitation
practice in bypassing KASLR. They even show that this method
can be extended, potentially helping an attacker disclose a stack-
/heap cookie and even perform arbitrary read. However, by far, it is
unclear whether this exploitation approach is useful for a majority
of kernel vulnerabilities!. As such, we have no clue whether this
method should raise our serious concern and motivate us to develop
a new kernel defense to mitigate the threat of elastic kernel objects.

To answer this question, one instinctive reaction is to demon-
strate exploitability by manually crafting exploits of many kernel
vulnerabilities. However, given the sophistication of the kernel code,
this approach inevitably introduces a significant amount of manual
effort, limiting the possibility of scaling this approach to various
OSes. Moreover, given the complexity of kernel exploitation, the
conclusion drawn through this manual approach might heavily rely
upon the expertise of security researchers.

In this work, we design and develop a systematic method to
explore the effectiveness of the exploitation method mentioned
above. Our basic idea is to utilize static/dynamic analysis to identify

INote that without further clarification, the kernel vulnerabilities we refer to are those
that corrupt (or, in other words, manipulate) data on a heap area. The vulnerabilities
with only a read capability are excluded.

https://doi.org/10.1145/3372297.3423353

xfrm_replay_state_esn ext4_file_operations

- L AY J—
___Jgul obj|bmp_1enJ.“ mepl |F_op I, L__

overread

|<— bmp_len —>|

Figure 1: The illustration of the anecdotal exploit perform-
ing buffer overread and uncovering the function pointer f_op
referencing the kernel function ext4_file_operations.

overwrite

elastic kernel objects and then employ constraint solving to pair
elastic objects with corresponding kernel vulnerabilities. We im-
plement this approach as a tool and name it after ELOISE standing
for “ExploitabLe Object dIScovEry”. Using this tool, we show that
elastic kernel objects are pervasive in the kernel implementation
across three popular OSes (Linux, XNU, and FreeBSD). For many
vulnerabilities identified in these OSes, our tool could track down
at least one elastic kernel object (and sometimes more), which al-
lows an attacker to disclose heap/stack cookie, bypass KASLR, or
perform arbitrary read. Motivated by this observation, we further
introduce a new defense mechanism to mitigate the threat of elastic
kernel objects. Our basic idea is to isolate elastic kernel objects in
independent caches. In this way, most of the kernel vulnerabilities
are no longer able to manipulate the data in an elastic object and
thus trick the kernel into disclosing the critical information to the
userspace.
In summary, this paper makes the following contributions.

o We design and develop a systematic method, demonstrating that
a commonly adopted exploitation method is a severe threat to
existing kernel defenses. It allows a majority of kernel vulnera-
bilities to disclose heap/stack cookie or bypass KASLR (27 out of
40). Besides, it enables some vulnerabilities to perform arbitrary
read in the kernel (8 out of 40).

o We implement our systematic method as a tool — ELOISE that
facilitates the discovery of elastic kernel objects and their pair-
ing with corresponding vulnerabilities. A user study shows that
the tool could significantly expedite the development of kernel
exploits.

o We design and prototype a new defense mechanism on Linux to
mitigate the threat of elastic kernel objects. Experiments show
that the new defense significantly mitigates the threat of elastic
objects and, more importantly, introduces negligible overhead to
an OS (0.19%).

2 BACKGROUND

In this section, we define elastic kernel objects. Then, we briefly
describe how to use these objects to perform exploitation and thus
bypass kernel mitigations, followed by the challenges of this ex-
ploitation method. Finally, we discuss the threat model.

What is an elastic object? An elastic object always contains a
length field that controls the size of an elastic kernel buffer. When
the kernel access the data in the buffer, the length field indicates the
range of the data that the kernel can read or write. As is summarized
in the Appendix A.1, the implementation of an elastic structure/ob-
ject is very diverse. For example, an elastic object could be a kernel
object that encloses the elastic buffer as part of the object (see the

1st in Figure 5) or an object that contains a pointer referencing a
buffer outside the object (see the 2nd in Figure 5). Using elastic ob-
jects, the kernel developers could minimize their need for manually
managing allocated memory [21] and, more importantly, upgrade
the performance of kernel execution by improving the cache hit
rate [64].

How to use an elastic object to bypass exploit mitigation? We
use a real-world example to illustrate how to leverage an elastic
object to perform kernel exploitation and bypass mitigation. As is
depicted in Figure 1, xfrm_replay_state_esn is an elastic kernel object
that contains an elastic buffer bmp at the end of the kernel object.
bmp_Llen is a length field that controls how many bytes the system
call recvmsg could read data from bmp and return to the userland.
To perform exploitation, an attacker could utilize the overwriting
ability from the vulnerability to enlarge the value of bmp_len and
thus obtain the ability to disclose the data in bmp buffer and the
kernel object adjacent to xfrm_replay_state_esn. As is illustrated in
Figure 1, the kernel object next to xfrm_replay_state_esn contains
a function pointer referencing ext4_file_operations. Through the
buffer overread, the attacker could disclose the address of the func-
tion, calculate the base address of kernel code, and eventually bypass
KASLR.

In addition to bypassing KASLR, an elastic object can also facili-
tate the disclosure of stack/heap cookies and even enable arbitrary
read. For example, if the elastic buffer is located on the stack, an
overread of this buffer can cause access to unauthorized data on the
stack (such as stack cookie). If the buffer is located on the heap and
its adjacent slot is in free status, the overread could unveil the freed
slot’s metadata and thus leak the encoded heap cookie accordingly.
For some vulnerabilities, an attacker can tamper the value of the
pointer arbitrarily. In this case, the attacker can access nearly any
memory addresses, and an arbitrary read can be easily granted.
Challenges of using elastic objects for kernel exploitation.
To perform the exploitation described above, an adversary first has
to ensure a kernel implementation uses the elastic kernel objects.
However, given the complexity of kernel code and the diversity
of kernel versions, it is extremely labor-intensive to track down
such kernel objects by auditing kernel code manually. Second, even
if a kernel implementation relies upon elastic kernel objects, the
adversary also has to guarantee the existence of leaking channel.
Through this channel, he/she could pass the data stored in the elastic
buffer (i.e., the buffer the size of which is indicated by the length
fields in the kernel object) back to a userland process. However,
there has not yet been a systematic approach to pinpointing the link
between elastic kernel objects and the userland process. Third, after
identifying the elastic kernel objects with the potential to leak data
to userland, it does not imply the adversary could utilize that object
to leak critical kernel information. Given a vulnerability corrupting
data in a particular cache/zone, an attacker cannot guarantee he/she
could allocate his desired kernel object to the same cache. Even if
both the vulnerable and elastic objects share the same cache/zone,
the attacker still needs to ensure the vulnerability gives him a
sufficient ability to manipulate the length field tied to the elastic
buffer.

Threat model & assumptions. In addition to the defense mecha-
nisms that the exploitation method aims to bypass, this work first

assumes that the kernel is armed with other exploitation mitiga-
tions and kernel protection mechanisms, such as SMEP and SMAP
protection [17], KPTI protection [19], and W®R. These protections
and mitigations are the kernel defenses most commonly enabled
and adopted in FreeBSD, Linux, and XNU. Second, we assume the
kernel heap freelist has been randomized on both Linux and XNU
(FreeBSD has no such protection). However, since there have al-
ready been exploitation methods [6, 28, 44] decisively bypassing
kernel freelist randomization, without further clarification, this
research does not consider it the obstacle of the general exploita-
tion method. Third, it is very typical that an attacker has only one
zero-day vulnerability in hand. Therefore, we do not assume the
attacker has additional vulnerabilities to facilitate the exploitation
and thus the mitigation circumvention. Finally, the capability of a
vulnerability used in this work indicates at which memory region
an adversary could overwrite data freely. Since an attacker can
obtain a vulnerability capability from a PoC program which only
panics kernel, we conservatively assume an attacker cannot find
capabilities other than that manifested through the PoC program.
For example, if a PoC program overwrites only four bytes of kernel
memory on the heap at the time of kernel panic, we conservatively
assume the attacker could obtain only the four-byte overwriting
capability.

3 TECHNICAL APPROACH

To tackle the challenges mentioned above, we first introduce a
method to identify a set of elastic object candidates in the kernel.
Then, we specify how to filter out the elastic objects useful for
bypassing exploitation mitigation. Finally, we introduce the method
for pairing kernel vulnerabilities with corresponding elastic objects.

3.1 Identifying Elastic Object Candidates

Tracking down elastic structure candidates. Recall that an elas-
tic object has to contain a length field. As a result, we first examine
the existence of an integer variable in kernel structures. Due to the
complexity of kernel implementation, the definition of a structure
could involve other structural variables. To ease the integer variable
identification and reduce possible mistakes, before looking for the
integer field in structures, we go through each of the field members
in the structure and flatten that structure as follows.

Given a structure S, if its field member f; is a structural variable,
we replace f; with all its field members [fi1, fi2, ..., fin]. If the
field member f; is an array with more than two dimensions, we
compute its total size and replace it with a single-dimensional
array accordingly. If the field member f; is a union variable or a
nested union, we duplicate the corresponding field member lists by
copying the field members in each union and thus obtain a set of
new structures {S1, So, ..., S, } where u is the number of different
definitions inside the union.

In this work, we repeat the process above recursively until no
more operations above can be further applied. Intuition suggests
that by following the recursive procedure to pre-process a structure,
each of the field members in that structure can be turned into either
an ordinary data type (e.g., char, int*) or a single-dimensional ar-
ray. With this, we can easily pinpoint integer variables in structures
and deem a structure with an integer field as our candidate.

Pinpointing elastic object candidates at allocation sites. With
the candidate structures in hand, our next step is to first track
down all the sites of heap memory allocation. Then, we examine
whether allocated objects at these sites are in the types of candidate
structures. Finally, we examine whether reaching these allocation
sites requires any root privilege. In this work, we preserve all the
objects that survive the checks above, and treat them as our elastic
object candidates.

To pinpoint the sites of heap memory allocation, we search
for critical kernel functions in the kernel source code. In Linux,
FreeBSD, and XNU, there are two types of kernel functions respon-
sible for allocating memory on the heap. One is kmalloc, kalloc, and
malloc series which are used for object allocation on the general
cache/zone. The other is kmem-cache, mcache_alloc and uma_zalloc se-
ries which are designed for allocation on the special cache/zone. In
our design, we deem the invocation of these functions in the kernel
code as the sites of memory allocation.

To determine the type of objects allocated at these sites, we
analyze the return values of these functions. The reasons are @
their return values are always pointers referencing the objects
allocated, and @ by analyzing the type of the return value, we can
easily point out whether the type of an allocated object is within
the set of candidate structures. To be more specific, when analyzing
the types of return values, we follow a use-def chain and resolve
memory alias. As is stated in Section 4, we implement our use-
def chain analysis by using LLVM. As a result, when performing
use-def analysis, we keep track of those instructions relevant to
type casting, pointer dereferencing, and argument passing. The
operands of these instructions explicitly reveal the object type. By
using this information, we can easily infer and conclude the type
of each allocated object accordingly.

To determine the privilege required to allocate a kernel object,
we check that, in between, whether there is at least one path that
does not involve the kernel function call capable(CAP_SYS_ADMIN) for
Linux, priv_check, priv_check_cred for FreeBSD, and priv_check_cred()
for XNU. The reason is that a call to any of these functions on the
paths toward an allocation site indicates root permission and the
failure of exploitation?. Besides, we also check whether any of the
callee functions along the path towards an allocation site accesses
a device that only privileged users can visit. The reason behind
this is that access to privileged devices implies a high privilege
for corresponding object allocation. In this work, we examine the
function’s access to privileged devices by using device operator
structure (e.g., struct cdevsw). Such a structure contains a function
pointer through which we can obtain the access control list of the
corresponding devices. If the device’s permission is root, we will
exclude corresponding allocation sites and candidate objects.
Profiling elastic object candidates. Recall that our proposed
method includes a component that pairs a vulnerability with cor-
responding elastic kernel objects for mitigation circumvention. To
enable this component, as we will discuss in Section 3.3, we need to
know the property of elastic objects (e.g., the cache/zone to which
an elastic object belongs). As a result, we further perform analysis
and profile kernel object as follows.

2Note that system calls without the root permission requirement can also be in the
privilege category. However, they do not tie to the highest permission. In this work,
we, therefore, treat them as unprivileged ones.

[+] ip_options
(1) [cache] kmalloc_16*
(2)[len offset] [8, 9
(3)[ptr offset] NA
(4)[alloc site] net/ipv4/ip_output.c:1251
(5)[leak anchor] net/ipv4/ip_sockglue.c:1356
(6)[capability] stack canary, KASLR

Sample record

(1] = &buffer
(2] = &objA->buffer
(3] = objA->p

[n]= objB->N

copy_to_user (dst, sr‘c,lIl)

I I IN\ E Heap
ret addr | &\ | buffer I::'I> overread |
(1]} [N p and N are in the same object
canary I [p N]
overread T // ¥
n
[[k [n] |
buffer | W [buffer &> overread |
Stack Arbitrary memory

Figure 2: The illustration of backward taint analysis starting
from copy_to_user(). Argument n originates from field N inside
elastic object objB. From different paths, taint analysis con-
cludes argument src could come from three different vari-
ables indicated by 0~©.

For allocation functions in kmem-cache, mcache_alloc, Or uma_zalloc
— series, their first argument is always a static or global pointer
referencing a special cache/zone. For example, to allocate a ker-
nel object in the type of struct seq_file, the allocation function
kmem_cache_zalloc() puts seq_file_cache as its first argument, explic-
itly specifying the cache/zone the object belongs to. For a kernel
object allocated in this manner, we can easily point out the cor-
responding cache/zone in which the object fits. Different from
allocation functions designed for the special cache/zone, alloca-
tion functions in kmalloc, kalloc, and malloc series use constant or
sometimes constant plus a variable as its first argument, indicating
the size of the allocated object. For the functions with a constant
as their first argument, we can easily associate the kernel object
with the corresponding cache/zone. For example, if the Linux ker-
nel allocates an object with 132 bytes, we can associate the cache
kmalloc-192 with the object because a 132-byte kernel object is too
large for kmalloc-128 and overly small for kmalloc-256. For the allo-
cation functions with the first argument in the form of a constant
plus a variable, at this particular stage, we temporarily tie the corre-
sponding object to all the general caches/zones with the size greater
than the constant.

3.2 Filtering out Object Candidates

Recall that the length field in an elastic object indicates the size of a
kernel buffer. Also, to use an elastic object to perform exploitation,
one must ensure there is a channel to disclose the data in the buffer
to the userspace. However, the object candidates identified above do
not imply that their enclosed integer variable represents the size of

a kernel buffer nor that they support data disclosure. As a result, we
further narrow down objects with such properties. To do this, we
summarize a set of critical kernel functions (Table 3 in the Appendix)
and deem the calling sites of these functions as the leaking anchors
through which an attacker could potentially uncover data in a
kernel buffer to the userspace. With these leaking anchors in hand,
we then perform a backward data flow analysis, filtering out the
candidate objects that satisfy the properties mentioned above.

As is shown in Table 3 (presented in the Appendix), all the critical
kernel functions contain two important parameters. One indicates
the length of kernel data to be disclosed to the userland (e.g., the
second argument attrlen in the function nla_put_nohdr()). The other
specifies the address from which the kernel data would be retrieved
(e.g., the last argument data in the function nla_put_nohdr()). In this
work, we take both of these arguments as the taint sources and
perform interprocedural backward taint analysis for each of the
taint sources individually.

Starting from the taint sources indicating the length of kernel
data (e.g., the argument n in Figure 2), we keep track of the data
flow reversely and examine the memory regions from which these
arguments originate. If the value of the length argument originates
from a variable allocated on the stack or global memory region, we
discard the invocation site of the corresponding kernel function
because, as is mentioned earlier, the success of the exploitation
relies upon the power of overwriting data on the kernel heap. A
length argument originating from a stack, or global variable does
not hold the requirement of launching the attack successfully. For
the length argument tied to a variable on the kernel heap region
(e.g., n=objB->N in Figure 2), we preserve the calling sites and further
perform backward analysis for the taint source corresponding to the
data argument mentioned above (e.g., the argument src in Figure 2).
Slightly different from our backward taint analysis applied to the
length argument, we first follow the data flow reversely and track
down all the sites where the corresponding data argument is ini-
tialized (e.g., @ src=gbuffer, @ src=gobjA->buffer, and & src=objA->p).
Starting from these variable assignment sites, we then analyze the
type of the variable accordingly.

For the variable referencing a memory region on the stack (e.g.,
the dotted line @ in Figure 2), we conclude that an adversary could
potentially obtain an ability to overread data on the stack if an
overwriting capability allows the adversary to manipulate the cor-
responding length argument through the variable identified on the
heap (e.g., obj->N in Figure 2). By using this stack overread capabil-
ity, we can further conclude the capability of disclosing the stack
canary and the return address to bypass KASLR. Concerning the
variables allocated on the non-stack region (i.e., the heap area?),
they could be categorized into the following two types, providing
an adversary with different exploitability.

The first type indicates the variable referencing the address of
one field in a kernel object (e.g., the dotted line ® in Figure 2). For
this type of variable, we conclude that an adversary could poten-
tially obtain an ability to bypass KASLR or forge a legitimate heap
cookie. The reason is that an adversary could utilize an overwriting
capability to vary the corresponding length argument (e.g., objB->N

3Note that the kernel needs to determine the size of the buffer on the global area at
the compilation time. Therefore, a variable tied to a data argument cannot be present
on the global region if the data argument references an elastic buffer.

kmalloc-128 [0, 8>=128 [8, 16)=1024 region under
vul obj | I | N | | the control
- 0 3”716 22" T of attacker
kmalloc-192 ' N |
le—oOriginal s"Lze_)|
buffer | multiple objects / slots

ptr ptr+k ptr+i024~ —

Figure 3: The summarization of vulnerability capability &
demonstration of buffer overread through the capability.

in Figure 2), follow the corresponding path to trigger the critical
function (e.g., copy_to_user()), and eventually obtain an overread
primitive on the heap. Using a state-of-the-art technique [11, 12]
to manipulate heap layout, the adversary could easily turn this
overread ability on the heap into the ability to bypass KASLR and
heap cookie protector.

The second type of variables are pointers enclosed in the kernel
objects (e.g., the dotted line ® in Figure 2). For this type of vari-
able, before drawing any conclusion, we take one additional step,
which continues backward taint analysis, and examines whether
the variable, as well as that tied to the length argument, are both in
the same object. In this work, we conclude that the kernel objects
with such a property can potentially provide an adversary with the
ability to not only bypass KASLR but, more importantly, perform
arbitrary kernel read. The reason behind this conclusion is as fol-
lows. For variables (associated with the length and data arguments)
enclosed in the same kernel object, an adversary could potentially
allocate the object in the cache/zone same as that of the vulnerable
object and thus utilize the overwriting ability to manipulate both
variables accordingly (e.g., manipulating p and N in Figure 2). Since
the variable tied to the length argument indicates how many bytes
of data one could read, and the other variable specifies from which
memory region one could read the data, the manipulation capability
turns the overwriting vulnerability into an arbitrary read primitive.
With this primitive, the adversary could read the content in the
interrupt descriptor table (IDT), compute the base address, and
thus circumvent KASLR. Besides, as the previous research [43] has
already demonstrated, the adversary could also use this arbitrary
read primitive to dump memory and search for the string “root:!:”
in the memory. Since this string is part of the file “/etc/shadow”, the
adversary could disclose a user’s hashed password and potentially
recover the password by using password cracker (e.g., John the
Ripper password cracker [56]).

In this work, for each of leaking anchors surviving from the
analysis above, we store the corresponding conclusive capabilities
in a database for the consecutive analysis (e.g., “stack canary” and
“KASLR” depicted in Figure 2). For the elastic kernel objects and
corresponding structures included in the candidate set but not asso-
ciated with any critical functions, they do not satisfy the definition
of elastic kernel objects (i.e., having a channel to disclose data in
the elastic kernel buffer to userspace). Therefore, we discard such
objects and structures from the candidate set. By following the
analysis above as well as the way to knock off unqualified elastic
objects, we can eventually filter out all the elastic kernel objects
useful for exploitation and, thus, mitigation circumvention.

3.3 Pairing Vulnerabilities with Objects

Through the analysis above, we could obtain the information re-
garding each of the elastic objects. As is shown in Figure 2, the
information includes (1) the caches or zones tied to each object, (2)
the offset of the length field corresponding to the head of the object,
(3) the offset of the elastic buffer corresponding to the object head if
the pointer referring the elastic buffer and the length field share the
same object, (4) the sites where the kernel allocates the object, (5)
the leaking anchor(s), and (6) conclusive capability inferred through
the paths toward the corresponding leaking anchor(s).

With the information in hand, given a vulnerability, we could
use the following approach to pair that vulnerability with elastic
objects accordingly. First, we utilize a debugging tool (GDB [65])
to track the execution of a PoC program triggering the vulnera-
bility but not necessarily performing actual exploitation. Based
on our observation from the debugging tool, we then identify the
cache where the vulnerability corrupts data. Besides, we manually
summarize, to which specific memory locations in that cache, the
vulnerability gives an attacker the ability to overwrite data. At each
location, what value range could be under an attacker’s control.
For example, as is shown in Figure 3, through our manual analysis
against an out-of-bound vulnerability, we can discover that the vul-
nerability overflows a vulnerable object in the cache kmalloc-128
and corrupts data in it adjacent spot. Recall that we can allocate an
elastic object at that adjacent spot by using the technique proposed
in [11, 12]. Therefore, we can manually summarize the region under
corruption is the first and the third 8 bytes of that elastic object,
and the values put into these two regions have to be greater than
128 and equal to 1024, respectively.

In this work, we deem these summarized results as the capa-
bility of a vulnerability and utilize a list of 2-tuples [(VCache1,
Cap1), ., (VCache,, Capm)] to model such a capability.
Here, VCache; indicates the cache the vulnerability could corrupt,
and Capj represents the range of unauthorized memory region at
which vulnerability could overwrite data. Considering that, in one
particular cache, a vulnerability might have the ability to modify
data at multiple memory regions, we represent the Cap; as a list
of assertions [(R;1|Op;1|Vj1), ., (Rjx|0pjx|Vjx)]. In this
assertion list, the notation R;; indicates the unauthorized memory
area where, through the corresponding vulnerability, an attacker
could manipulate. The notations Opji and Vj altogether specify
the attacker’s control over that region. To illustrate this, we again
take, for example, the case shown in Figure 3. Using the represen-
tation above, we could write the capability of that vulnerability
as (kmalloc-128, [([@, 8)>128), ([8, 16)=1024)1). Here,
kmalloc-128 denotes the cache the vulnerability could corrupt. [0,
8)>128 and [8, 16)=1024 indicate the ranges of values that an
adversary could put into the corresponding memory regions.

By using the modeling approach above to describe the capability
of a vulnerability, we can automatically pair a vulnerability with
those elastic objects useful for exploitation. To be specific, given a
vulnerability, we first filter out all the elastic objects, if the caches or
zones they tie to (indicated by the notation OCachey - - - OCachey,)
happen to have an overlap with the caches associated with the
vulnerability (i.e., 3¢ € [1,n], 3j € [1, h] | (VCache; = OCache;j)).
For each elastic objects filtered out, we then examine whether the

memory regions under manipulation cover its length field*. With
this examination, we can preserve the elastic objects with their
length field covered and thus narrow down the elastic objects useful
for exploitation further. For the elastic kernel objects preserved, last
but not least, we check if an adversary could use his overwriting
ability to manipulate the length field and thus go over the boundary
of the elastic buffer. Take the vulnerability capability mentioned
above, for example. Assume the length field of an elastic object is
at the third 8 bytes, and the object contains a pointer referencing a
buffer in an object located at the cache kmalloc-192. Given part
of the vulnerability capability ([16, 24)=1024), we can conclude
the attacker could change the size of the elastic buffer to 1024 and
thus overread the buffer and access the data in its entire adjacent
slot (see Figure 3). With this ability, we can further conclude the
attacker could potentially forge heap cookies and bypass KASLR
because he/she could keep that slot adjacent to the buffer either
unoccupied or occupied with an object enclosing a function pointer.

In this work, to determine the overread ability and thus conclude
corresponding exploitability, we utilize the following strategies.
For the elastic buffer on the heap, we check whether the newly
manipulated buffer size is at least twice as large as the cache (at
which the buffer is located). With this, regardless of the position of
the buffer in an object, we can always guarantee to overread the
entire adjacent slot or kernel object and thus potentially give an
adversary the ability to bypass KASLR or forge a legitimate heap
cookie. For the elastic buffer on the stack, we compute the stack
frame where the elastic buffer is located and then examine whether
the newly manipulated buffer size is larger than the frame size.
With this, we can ensure an adversary could always have access
to the stack canary and the return address. It should be noted that
the restriction we impose upon the process of determining possible
exploitability is very tight. Even if some of them do not hold, it is
still possible to bypass corresponding mitigation. In this work, we
impose universal, tight restrictions. First, it is because the design
eases our process in finding elastic kernel objects and concluding
exploitability. Second, it is because the tight restriction represents
the lower bound of a concluded exploitability.

Through the series of examinations above, for any individual
vulnerability, we can easily track down the corresponding elastic
objects friendly for exploitation. However, this does not imply that
the vulnerability could automatically inherit the security implica-
tion tied to the elastic objects. On the paths toward the leakage
sites after the manipulation of an elastic object, the kernel might
use the manipulated fields as branch predictors. With an improper
modification on some of the fields, the kernel execution might be
detoured, and the kernel would no longer invoke the critical func-
tions like copy_to_user(). In some situations, the kernel may even
accidentally touch invalid or non-permitted memory regions and
thus trigger general page fault (GPF) and even kernel panic. As a
result, before concluding the process of pairing vulnerabilities with
elastic objects, we perform further analysis as follows.

Given a vulnerability and one of its corresponding elastic objects
identified through the method mentioned above, we first retrieve all

4Note that we also examine the manipulable memory region covers the elastic buffer if
both the pointer referring the elastic buffer and the length field share the same object.
In this work, we record the elastic object with this property because this indicates the
object could potentially offer the capability of arbitrary read.

(1&C2&C3

4 & C5 & C6

leaking anchors

E:> overread
f

— |1 =obj.f>0=1[0, 8>0 !
N7| obj |2 = 0bj.N < 8= [8, 16) <8

T - -

Figure 4: The illustration of constraint extraction from two
paths. ELOISE preserves only the constraints pertaining to
the manipulated fields in elastic object obj (i.e., 1 & c2).

its paths towards leaking anchors (see Figure 4). Along each path,
we first extract all the pointer dereferences. Then, we refine the set
of branching constraints that must hold in order to reach out to the
leakage site. For each of the dereferenced pointers, we ensure the
pointer references a legit memory area if memory manipulation
inevitably touches its original value. For the constraint set, we pay
particular attention to the constraints in which the manipulated
fields in the elastic object are enclosed or has data dependency with
the variable involved. For example, as is illustrated in Figure 4, after
the manipulation of an elastic kernel object, manipulated values
fill the length field N and one of its adjacent fields f. By performing
the analysis above, we can first identify two distinct paths through
which an attacker could potentially disclose data through an elastic
buffer. Then, we can filter out all the constraints pertaining to the
length field and its adjacent field (e.g., C1=obj. f>0; C2=0bj.N<8 shown
in Figure 4). In this case, the constraints filtered out indicate the
conditions that an attacker has to satisfy when crafting manipu-
lated values for corresponding fields. In this work, we, therefore,
introduce these constraints as the additional restrictions to the pro-
cess of pairing vulnerabilities with corresponding elastic objects
(e.g., c1ac2 in Figure 4).

As is depicted in Figure 4, similar to the way to model a vulnera-
bility capability, we represent each manipulated field by using the
offset to the head of the elastic object, and summarize the corre-
sponding constraints in the format of (range|op|value). Here,
the notation range denotes the memory area tied to the manipu-
lated field in the elastic object, and the notation op | value specifies
the condition the manipulated field has to satisfy. For example, "[8,
16)<8" depicted in Figure 4 indicate that the length field locates at
the second 8 bytes of the elastic kernel object. In order for being
able to follow the path on the left, the value put into the length
field has to be less than 8.

4 IMPLEMENTATION

In this research, we implemented our idea as a tool and named it
after ELOISE. In the following, we present some important imple-
mentation details pertaining to the design mentioned above. We
release our code and exploits at [2] to foster future work.

Bitcode generation. As is discussed in Section 3, our proposed
method is based on static analysis. In our implementation, ELOISE
utilizes default settings to generate LLVM bitcode files, compiling

Linux, FreeBSD, and XNU kernels by using defconfig, GENERIC
and xnudeps configuration, respectively. Then, it takes as input a
list of unlinked LLVM bitcode files. During static analysis, both
compilation optimization and the heavy usage of load/store in-
structions could increase the burden of alias analysis as well as
control-flow graph construction. As a result, in order to minimize
their indirect impact upon our elastic kernel object identification,
improve static analysis efficiency, and reduce false negatives for
elastic object identification, ELOISE dumps bitcode files by using
WriteBitcodeToFile() provided by LLVM. To be specific, ELOISE in-
vokes this method in between mem2reg pass and optimization passes,
which reduces redundant load/store instructions and constructs
SSA form for variables.

Control-flow graph construction and alias analysis. In a re-
cent work [47, 48], researchers extend LLVM and implement a new
tool for building a call graph for the Linux kernel. Technically, the
tool leverages a multi-layer type analysis method® to construct
a field-sensitive call graph. In the implementation of ELOISE, we
borrow the call graph construction pass from this tool and use
it as a building block for our kernel control-flow graph construc-
tion. To better serve our purpose, we customize the call graph
by cutting off nodes and associated edges in the call graph that
represent functions in .init.text section. This is because these func-
tions cannot be invoked after kernel booting and are not useful
for exploitation. Based on our customized call graph, we further
construct our context-sensitive control-flow graph. To be specific,
we add intra edges between basic blocks based on the successors
specified in the instruction BranchInst. Besides, we introduce inter
edges by connecting callsite to the corresponding function entry
and linking ReturnInst back to the same callsite. As is mentioned
in Section 3.1, our proposed technique also relies upon alias anal-
ysis results to determine the type of allocated kernel objects and
perform backward taint analysis. Therefore, ELOISE extracts alias
analysis results by reusing the AliasAnalysis pass provided by LLVM
project. In comparison with one-level context-sensitive Andersen’s
algorithm, the precision of this alias analysis is roughly the same. It
should be noted that, in the process of elastic object identification,
we propagate a tainted variable to its aliasing variable only if we
confirm the two variables have a must-alias relationship. With this
strategy, while we might introduce an under-tainting issue, this
approach could significantly minimize false positives (i.e., avoiding
from pinpointing the kernel objects that are not actually elastic).
Elastic object identification. To identify elastic object candidates,
we track down memory allocation functions in kernel code. Then,
we analyze the return values of these functions, determining their
types. In our implementation, ELOISE utilizes the following three in-
structions to infer type information. For the instruction Getelementpr,
its arguments contain a pointer referencing an object as well as the
type information of that object. Through this instruction, ELOISE
can easily obtain the type information pertaining to the object. For
the instruction Bitcast, one of its arguments is a pointer referencing
an object. Through the other two arguments, which specify the
types being cast before and after, ELOISE can also interpret the
type information easily. With respect to the instruction calllnst
— , a pointer referencing an object could be enclosed as part of

5The LLVM pass released on GitHub [40] has implemented only a 2-layer type analysis.

its arguments. Similar to the two instructions above, ELOISE can
easily infer the type information for that object based on the type
information specified along with the corresponding argument.
Elastic object filtering. In Section 3.2, we filter out the elastic
object candidates by performing backward taint analysis from the
length argument in the critical kernel function (e.g., the variable n
< in the function copy_to_user(void __user* to, const void* from,
< unsigned long n)). During our analysis, the length argument can
be obtained through multiple dereference. For example, in the multi-
layer dereference A->B->1en, B is the actual elastic object that encloses
the length field. As a result, to avoid mistakenly taking A as the
elastic object, ELOISE taints only one LoadInst backward if a multi-
layer dereference involves at the leaking anchor. As is mentioned
in Section 3.2, we also need to determine which memory region
the corresponding function arguments refer to (e.g., stack, heap,
or global). In our implementation, ELOISE distinguishes memory
regions by following the rules below. If the memory region is from
Allocalnst instructions which allocate memory on stack, we deem
the region as part of the stack. If the memory region is represented
by a global/static variable, we assign it to a global area. Otherwise,
we conservatively treat it as a memory region on the heap.
Critical constraint set extraction. As is described in Section 3.3,
before pairing a vulnerability with elastic objects, we need to collect
the constraint sets from the paths that lead kernel execution to the
leaking anchor but not detour it to other sites or trigger accidental
execution termination. To do this, ELOISE analyzes LLVM IR to
determine the usage of object fields in each path towards leaking
anchors based on the semantics of instructions. For example, if
a field in an object is used in the instruction cmpInst, ELOISE first
interprets the comparison by its Predicate (e.g., ICMP_ULT means the
greater relationship “>”). Then, it checks which branch can reach
the corresponding anchor. In this example, we keep the “>” operator
if only the TRUE branch can reach the anchor. We flip the the operator
into “<” if only the FALSE branch reaches the anchor or the length
argument can be updated in TRUE branch. Otherwise, we discard this
comparison because the corresponding constraint is not relevant to
the practice of restricting kernel execution from flowing towards
the leaking anchor.

Object and vulnerability pairing. In our implementation, ELOISE
utilizes the Z3 solver [60] to pair a vulnerability with elastic ob-
jects. More specifically, we use Bitvec to represent the layout of
an object and machine arithmetic to describe the corresponding
memory range. For example, given a constraint "[8, 16)<8" in an
object with the size of 128 bytes, we create x = Bitvec('x', 128%8)
to represent the object layout, use x << (8+8)>> (112x8) to depict its
range [8, 16), and finally employ the representation (x << (8x8)>>
— (112%8)< 8) to indicate the constraint. Given an elastic object,
for each path towards a leaking anchor, ELOISE first conjuncts the
corresponding constraints on that path with a set of constraints
indicating the capability of the corresponding vulnerability. Then,
ELOISE feeds those combined constraints to the Z3 solver. If a so-
lution is successfully identified, it means the elastic object could
be paired with the capability of the vulnerability and can be used
for exploitation. Otherwise, we conclude that the elastic object
under our examination cannot facilitate the exploitation of that
vulnerability. It should be noted that, in the process of pairing, if
one of the constraints tied to a path involves a variable (e.g., [0,

8)<cache_detail.20), ELOISE conservatively skips that path simply
because the lack of information about that variable introduces un-
certainty for using that object for exploitation. Admittedly, this
implementation inevitably influences the number of elastic objects
available for exploitation. However, as we will show and discuss in
Section 5, even with such a conservative implementation, for nearly
all kernel vulnerabilities, ELOISE can point out at least one elastic
kernel object for bypassing corresponding exploit mitigation.

5 EVALUATION

We design three experiments to evaluate the effect of elastic ob-
jects on kernel protection circumvention across three open-sourced
kernels (Linux, FreeBSD, and XNU).

5.1 Experiment Design

Experiment I: evaluating our tool and characterizing elastic
objects. As is described and discussed above, ELOISE relies upon
static analysis. However, the accuracy of static analysis heavily
relies upon the correctness of the kernel’s control flow graph and
the level of optimization introduced at the compilation stage. As a
result, ELOISE inevitably introduces false positives (i.e., mistakenly
identifying an object as an elastic one) and false negatives (i.e.,
failing to pinpoint an elastic object or successfully identifying an
elastic object but failing to associate it with a disclosure channel). In
this work, we design an experiment to evaluate the false positives
(FP) and false negatives (FN).

To evaluate false negatives, ideally, we should follow a two-
step procedure. First, we go through all the object allocation sites
in the kernel implementation and determine whether the type
of the allocated objects is one of the elastic structures defined in
Section 3.1. Second, for every elastic object confirmed in the first
step, we extract its corresponding elastic buffer and then examine
whether the kernel can pass the data in the elastic buffer to the
userland through the disclosure functions defined in Table 3 (e.g.,
copy_to_user () or copyout()). After each step, we compare the results
obtained through the manual efforts with those reported by ELOISE
and thus pinpoint the false negatives accordingly.

Given the complexity and huge codebase of kernel implemen-
tation, this manual approach, however, is infeasible. Take Linux
kernel as an example. Its implementation (v5.5.3) contains about
14 million lines of C code, 53,775 allocation sites, and 75,100 sites
that invokes one of the kernel functions listed in Table 3. Even
after successfully confirming an allocated object is in the type of
an elastic structure, a kernel expert still needs to manually walk
through tens of thousands of C code lines to determine whether
the allocated object has a connection with the corresponding dis-
closure kernel functions. As such, we study false negatives through
a random sampling approach.

First, we randomly sampled 800 out of 6,383 elastic structures
(Note that these structures have no FN for sure). Then, we manually
identify all of their allocation sites in Linux, followed by checking
their connection with the disclosure functions. In this work, we
identify false negatives by comparing our manually analyzed re-
sults with those of ELOISE. We argue this false-negative measure
is representative even if we do not perform this analysis on all the
allocation sites nor apply this manual effort on other kernels (i.e.,

FreeBSD and XNU). It is because @ our allocation site sampling is
random, covering 12.5% of the kernel allocation sites; @ the design
of three kernels shares many common properties, and the false
negatives observed on one kernel could be potentially generalized
to other kernels; ® our manual analysis relies upon the workforce
of three Linux kernel researchers who have extensive experience
in reporting Linux kernel bugs and publishing kernel research at
top tier system and security conferences.

To evaluate false positives, we leverage automated tools along

with our manual effort. For Linux and FreeBSD kernels, we first
instrument panic functions at the sites where ELOISE identifies the
allocation of elastic objects, and the sites where ELOISE discovers
the disclosure of the data from an elastic buffer. Then, for each
instrumented site, we use Syzkaller[25] to assist us in checking
whether there is indeed a concrete input that could reach these sites
to allocate elastic objects and thus disclose data in the elastic buffers.
Following the kernel fuzzing, we manually examine the sites which
the fuzzing fails to reach because these unreachable sites could
result from either our inaccurate static analysis or the limitation
of our fuzzing technique. In this work, we take the unreachable
cases as the false positives of ELOISE only if our manual review
still cannot find a concrete input to reach out to our interest sites.
It should be noted that there are no fuzzing tools publicly available
for the XNU kernel. As a result, we solely rely upon manual effort
for the false-positive study on XNU. For all the true positives, we
then conduct further experiment to understand the pervasiveness
of elastic objects and study their characteristics.
Experiment II: evaluating the ability to bypass mitigation.
Recall that one of our objectives is to study whether elastic kernel
objects could enable many kernel vulnerabilities to bypass widely
deployed exploit mitigation methods, such as KASLR, heap protec-
tor, and stack canary. To answer this question, we select 40 kernel
vulnerabilities and summarize the capability of each kernel vul-
nerability. Then, we use ELOISE to examine whether one of the
identified elastic objects could be paired with these vulnerabilities
and hence enable kernel protection bypassing.

Due to the space limit, we list these 40 vulnerabilities in Table 7
and describe how we manually summarize vulnerability capabil-
ity in the Appendix. We argue that the selected vulnerabilities
are representative. First, this list includes all types of vulnerabili-
ties that corrupt data on the kernel heap (i.e., out-of-bound write,
use-after-free, and double-free). Second, it covers all the heap cor-
ruption vulnerabilities used in various Linux kernel exploitation
research (e.g., [11, 39, 79, 80]). Third, it includes 10 Linux kernel
vulnerabilities randomly sampled from syzbot [26] (a Linux kernel
vulnerability dashboard). These randomly sampled vulnerabilities
are identified by Syzkaller recently but have not yet assigned with
an CVE ID. Finally, it encloses all XNU and FreeBSD vulnerabilities
publicly disclosed in the past three years.

It should be noted that, although the National Vulnerability Data-
base lists many CVEs relevant to FreeBSD and XNU, a majority of
them cannot be used for our evaluation because the detail of the
vulnerabilities is incomplete or completely missing or the trigger
of the vulnerabilities requires a particular hardware. As such, we
chose our FreeBSD and XNU test cases by following three criteria.
O A vulnerability has to demonstrate its capability through a PoC
program that triggers the vulnerability but, not necessarily, has to

perform actual exploitation. @ The vulnerability has to allow us
to trigger it without requiring a particular hardware device nor
root privilege. ® By running the publicly released PoC program
to trigger the vulnerability, the kernel panic or failure (typically
declared along with a released writeup) has to be reproducible. To
ease our experiment, we migrate the Linux, FreeBSD, and XNU vul-
nerabilities above to one particular version of Linux kernel (v5.5.3),
one specific FreeBSD (v12.1), and one specific XNU kernel (XNU-
4903.221.2), respectively. They are all the latest versions of the
kernels at the time we conduct our experiment.

Experiment III: evaluating the utility of ELOISE in exploit
development assistance. To evaluate the effectiveness of ELOISE
in expediting exploit development, we conduct a user study un-
der IRB permission (#STUDY00010080). In particular, we recruit
our subjects from a pool of CTF players and a pool of security
analysts who have extensive experience in debugging Linux ker-
nel and writing kernel patches. Our primary recruitment method
is to invite participants through emails. In our invitation email,
we describe our study objective as a paid task that quantitatively
measures the time spent on exploit development and qualitatively
surveys the difficulty in writing an exploit. In our email, we also
require all the participants to @ have experience in exploiting Linux
kernel vulnerabilities, ® be familiar with the commonly adopted
exploitation method discussed in this paper, and & be comfortable
for conducting this study online. To evaluate whether applicants
qualify for this study and form groups, we asked all applicants to
sign the participation agreement and complete a self-assessment
form (see Figure 6 in Appendix A.5). The collected self-assessment
forms indicate that, among the 8 participants, 6 subjects meet with
our requirements. Regarding the expertise level, 4 subjects have
about three years of experience in exploiting kernel vulnerabilities
(high expertise), and the rest 2 subjects have about one year of
the corresponding experience (moderate expertise). Based on these
responses, we randomly assign each group with 2 highly skillful
subjects and 1 subject with moderate experience. From the highly
skillful subjects, we randomly picked one from each group as the
leader to fill in the short survey form during the experiment.

We only include Linux kernel vulnerabilities in the experiment
because the Linux kernel is fully open-sourced and thus we avoid
introducing the reverse engineering skillset which is noise to our
experiment. While conducting the user study, it is possible that
some participants have already established the prior knowledge for
some Linux kernel vulnerabilities or already known some public
exploits that leverage elastic objects to bypass KASLR. As a result,
to prevent the measurement bias introduced by these prior knowl-
edge, we design our kernel vulnerability sets without those kernel
vulnerabilities that already covered by the participants’ knowledge
base (Question 6 in self-assessment form, Figure 6). In the the first
row of Table 9, we list the 5 vulnerabilities satisfying our selection
criteria.

For both groups, we first gave the 5 vulnerabilities and their
corresponding PoCs that trigger the vulnerabilities but not perform
exploitation. Then, we asked both groups to develop exploits to
bypass KASLR by using the exploitation method mentioned in this
paper. We provided the kernel objects with function pointer for the
two groups to help them leak the base address. For Group A, we
also equipped them with our tool ELOISE, which assists them in

Cache ‘ Struct ‘ Potential ‘ Privilege ‘ Constraints
FreeBSD
kmem.32 ‘ i40e_nvm_access ‘ H ‘ 0 ‘ [12, 16) < 4097
Linux
kmalloc-8 ipv6_opt_hdr H 0 [1,2) < Arg
1dt_struct H&A 0 [8, 12) < 65536
kmalloc-16 . . anchorl: H 0 anchorl: [8, 9) < Arg
Ip_optionsx anchor2: S anchor2: [8,9) # 0
fb_info H NET_ADMIN [768, 776) = kaddr
kmalloc-32 ip_sf_socklistx H 0 [4,8)#0
cache_reader ¥ H 0 [0, 8) # cache_detail.20
kmalloc-192 | cfg80211_scan_request* H&A NET_ADMIN [24, 32) # null
XNU
mbuf ‘ mbuf ‘ H ‘ 0 ‘ 0

Table 1: Elastic kernel objects sampled from Table 4~6. The
“Potential” column specifies the potential that the object
provides for a vulnerability. H and S indicate the potential of
leaking data from the heap and stack region, respectively. A
indicates the potential of performing arbitrary kernel read.
In the “constraints” column, 0 denotes data disclosure im-
poses no critical constraints. Arg represents a system call ar-
gument under a user’s control; kaddr stands for any valid ker-
nel address; cache_detail. 20 indicates the 20'" field of the vari-
able in the type of struct cache_detail.

searching elastic objects and pairing vulnerabilities with objects
accordingly.

In this experiment, we kept track of the performance of two
groups through short surveys every 30 minutes and thus evaluated
the utility of ELOISE both quantitatively and qualitatively. As is
shown in Figure 7, the survey partitions an exploit development
into 3 critical stages — @ vulnerability capability exploration, @
elastic object identification, ® memory layout manipulation. While
receiving the survey, the participants need to specify the stage of
their exploit development and report their progress at that stage.
This short survey could be completed in one minute without in-
tervening the exploitation development too much. If completing
one stage of exploit development, the participants also need to
turn in their results. From the response to the survey inquiry, we
roughly measured the time spent at each stage and thus quantify
the utility of ELOISE. At the end of the user study, we also handed
out a post-test survey (see Figure 8) through which we qualitatively
evaluate the utility of ELOISE and understand the challenges in
exploit development. Due to the space limit, we leave the three
survey forms in Appendix A.5.

5.2 Results of Experiment I

Falsely identified & missing elastic objects (FP/FN). By using
ELOISE, we track down 97 elastic kernel objects tied to 98 disclo-
sure functions on Linux, FreeBSD, and XNU. We compare these
objects and disclosure functions with those randomly sampled and
manually confirmed. We find our manually audited objects and dis-
closure functions are a subset of those pinpointed by ELOISE. This
discovery cannot directly conclude zero false negatives because
the kernel’s scale limits our ability to manually audit all objects.
However, it implies the false negatives of ELOISE are minimal.
For 97 kernel objects that ELOISE identifies, we confirm 74 as the
true positives, which indicates the false positives are moderate, and
the reporting results of our proposed method is valuable. For those
falsely identified elastic objects, we further explore the root cause

and discover the false positives root in the inaccurate kernel call
graph construction. For example, for the kernel objects probe_resp
— and ctl_table, the allocation of which can only occur in the
functions ieee80211_set_probe_resp() and register_leaf_sysctl_tables
— () when hardware devices are plugged in, ELOISE mistakenly
links these objects with unprivileged system calls.

Objects’ exploitability & pervasiveness. For the elastic kernel
objects surviving from our examination (i.e., true positives), we
sample a small amount from Table 4~6 and list them in Table 1. The
results in both tables specify the kind of exploitation the elastic ob-
ject could potentially facilitate. As we can observe from Table 4~6,
for nearly all kernel objects identified (70 out of 74), they can po-
tentially facilitate a vulnerability to disclose data from kernel heap
and thus bypass exploitation mitigations such as KASLR and heap
cookie protector. For 28 elastic kernel objects, we observe they can
potentially perform arbitrary kernel read because these objects
enclose both the length field and a pointer referencing the elastic
buffer. For a small number of elastic objects (5 out of 74), they can
provide a vulnerability with the potential to overread data from
kernel stack and thus leak stack canary accordingly. By manually
examining kernel code, we note that Linux, FreeBSD, and XNU
use these kernel objects widely (with 39,483, 44,956, and 22,307
sites allocating or using one of these objects in Linux, FreeBSD,
and XNU, respectively). Following all these observations, we safely
conclude the elastic kernel objects and their usage are pervasive in
three different kernels.

Elastic objects that require high privilege. In Table 1, 4, 5 and 6,
we also specify the privilege needed for reaching out to these ob-
jects. As we can observe, most of the elastic kernel objects (60 out of
74) require no permission for allocation and information disclosure
(indicated by 0 in the table). For the remaining kernel objects, either
their allocation or consecutive information disclosure requires the
privilege such as CAP_NET_ADMIN or CAP_AUDIT_READ. By default,
the kernel does not grant both of these permissions to an ordinary
user. However, this does not mean these objects are not helpful
for exploitation because a recent research [13] has already demon-
strated that an ordinary user can create a user namespace and thus
naturally bypass the permission check accordingly.

Objects’ cache/zone coverage. In Table 1, 4, 5 and 6, we also
categorize the elastic kernel objects based on the cache or zone to
which they belong. As we can observe from Table 4~6, the identified
objects cover most of the general and some special caches/zones
(e.g., kmalloc-16384 in Linux, mbuf in FreeBSD, and pipe_zone in XNU).
For some objects that enclose the elastic buffer, their size can vary.
Therefore, the kernel can allocate them to general caches/zones
with the size greater than that specified in the table. In Table 1, 4, 5
and 6, we also highlight these objects with a star symbol. These
cache/zone-flexible kernel objects (18 out of 74) could significantly
enrich the availability of kernel objects for exploitation and thus
potentially escalate the exploitability of a vulnerability.
Constraints tied to objects & their security implication. In
Table 1, 4, 5, and 6, we finally specify the constraint set that one
has to satisfy in order for disclosing kernel data to the userland
successfully. As we can observe, there are only one kernel object
ip_options that contains more than one set of constraints tied to
different leaking anchors. It indicates that, except for this object,
every elastic object discloses kernel data from only one leaking

CVE-ID or Capability Suitable Security
Syzkaller-ID objects # Impact
FreeBSD
2016-1887 | zone_mbuf:[0, 256)=* 1 BA, AR ®
Linux
bf96...[74] ip_dst_cache:[64, 68)=" 0 NA
PP kmalloc-96:[0, 8)=kaddr 3 SC. HC, BA

kmalloc-96:[8, 16)=kaddr

2018-5703 NA 0 NA

kmalloc-64:[0, 8)=kaddr: SC, HC
2017-8890 | ¢ 16)=kaddr:[16,[18)3238:[18,)= | 12+ BA, AR
2017-7533 kmalloc-96:[0, 11)="[11, 12)=1\0’ 2 HC, BA
2017-15649 kmalloc-4096:2160, 2168)=" 0 NA
XNU
2019-8605 Kalloc.192:[0, 192)=" 4+ (1) | HC BA AR
2017-2370 Kalloc.256:[0, 256)=" 3 HC, BA

Table 2: Exploitability summary sampled from Table 7. #
in the third column indicates # of elastic objects useful for
the exploitation of the corresponding vulnerability. # in the
parentheses indicates # of elastic objects useful for exploita-
tion, but the paths to their leaking anchors include variables.
In the last column, SC, HC, and BA signify, the vulnerability
could disclose stack canary, heap cookie, and base address,
respectively. AR indicates it could perform arbitrary kernel
read.

anchor. As such, as we can observe from Table 1, only the object
ip_options provides a vulnerability with the potential to disclose
data not only from the kernel heap but also from the kernel stack.

From the column “Constraints” in Table 1, 4, 5 and 6, we can
also observe that there are a few kernel objects (marked with a
dagger symbol), the constraint sets of which involve variables. As
we specify in Section 4, when pairing objects with vulnerability, we
conservatively discard the paths associated with these constraints
and ignore the corresponding kernel objects accordingly. While
this inevitably reduces the total number of elastic objects available
for exploitation, their influence upon exploit mitigation bypassing
is negligible because the elastic objects falling into this category
are minimal (10 out of 74).

5.3 Results of Experiment II

Summary of effectiveness in bypassing mitigation. Due to
the page limit, we only sample some vulnerabilities from Table 7
and show them in Table 2. The results in both tables indicate the
exploitability of the vulnerabilities under the facilitation of elastic
kernel objects. As we can observe from Table 7, about 67.5% (27
out of 40) vulnerabilities successfully demonstrate the ability to
bypass not only KASLR but also heap cookie protector. Among
these 27 vulnerabilities, 12 vulnerabilities also provide us with the
ability to uncover stack canary and 8 vulnerabilities also exhibit the
capability of performing arbitrary kernel read. These observations
indicate that elastic kernel objects could generally make existing
kernel protection futile.

Exploit diversity. From Table 2 & 7, we can also observe that
for all exploitable vulnerabilities (except for the one indicated by
CVE-2017-2370), there are more than one elastic kernel objects
useful for exploitation and mitigation circumvention. For some
vulnerabilities, the number of useful kernel objects is even larger

®FreeBSD has no heap cookie protection and thus no security impact on heap protector.

(e.g., the one indicated by CVE-2017-7184 listed in Table 7). From
the column “Capability” in both tables, we can discover that this
richness results from @ the ability to corrupt kernel heap data in
various caches/zones and @ the ability to overwrite elastic objects
with less restriction.

In this work, we argue that the richness of the elastic objects
could also be very disconcerting. On the one hand, it is because more
elastic objects offer more opportunities to bypass mitigations (e.g.,
the vulnerability tied to CVE-2017-8890 demonstrating the ability
to bypass various mitigations). On the other hand, it is because the
richness potentially diversifies the way to craft a working exploit,
making the pattern-based exploitation detection more challenging.
Analysis of failure cases. For the 13 vulnerabilities that ELOISE
fails to pinpoint a suitable object, we perform a manual diagno-
sis and have the following discovery. As of the vulnerabilities
tied to CVE-2018-5703, CVE-2018-12233,CVE-2018-1000112, and
3d67[68], their PoC programs only demonstrate the ability to over-
write the data inside the vulnerable object. These vulnerabilities
naturally fall short of the power of manipulating any fields in elas-
tic objects. For vulnerabilities corresponding to CVE-2018-18559,
CVE-2017-15649,CVE-2017-10661, CVE-2019-6225, and 422a[69],
while their PoC programs demonstrate the ability to corrupt some
data in general caches/zones, ELOISE cannot track down any ker-
nel object with its length field overlapping with the corrupted re-
gion. For the vulnerability indicated by CVE-2018-4243, although
ELOISE identifies objects overlapping with the corrupted region, the
vulnerability provides only the ability to overwrite the length field

with all zeros. Regarding vulnerabilities associated with CVE-2019-5603,

CVE-2019-5596, and bf96(74], the corruption happens in special
caches/zones in which no elastic objects are available for further
exploitation.

5.4 Results of Experiment III

The A/B test experiment results show that Group A, equipped with
ELOISE, succeeded in disclosing the base address of kernel image
and bypassing KASLR for all 5 vulnerabilities, whereas Group B
failed all. To get insights on this significant difference, we reviewed
the surveys gathered from both groups while they analyzed vulner-
abilities and developed exploits. For more detailed results, readers
could refer to Appendix A.5.

From our collected survey results, we found that it took roughly
0.5~2 hours for the two groups to finish exploring the capability of
one vulnerability. On the one hand, it indicates that the two groups
have no apparent difference in expertise level. On the other hand,
this result shows that the capability exploration is not a heavy
workload for security analysts with Linux kernel debugging experi-
ence. This conclusion aligns with our post-test survey, in which all
participants stated that the capability exploration is not a challeng-
ing task when the corresponding PoC program is provided. They
reported that after the PoC program is given, they can rely on the
built-in debugging features in the kernel (e.g., KASAN) to quickly
learn which cache is corrupted and which part of the memory is
corrupted. Then, they can disable KASAN, use GDB to trace kernel
execution, and thus determine the value of overwritten data under
their control.

From our collected survey (summarized in Table 9), we also dis-
covered that under the guidance of our tool ELOISE, Group A could
complete the identification of elastic objects in less than 0.5 hours.
In contrast, Group B was stuck in this identification stage and made
no progress for any of these 5 vulnerabilities in 24 hours. This signif-
icant difference implies the ELOISE’s benefits in identifying elastic
objects in the kernel and facilitating the exploitation. Following
this observation, we also reviewed our post-test survey results. We
observed that Group B thought the most challenging part of the
exploitation is searching for the elastic objects and “felt frustrated”
when facing the large codebase. For Group A, the post-test survey
indicates that the most challenging part for exploit development is
how to stabilize exploitation. They stated that unexpected kernel
activities could intervene in the heap layout manipulation, mak-
ing the disclosed data useless for bypassing KASLR. For example,
Group A reported that their exploits leak all zero or other trash
value from time to time. They put lots of effort into taming noisy
kernel activities.

Based on our A/B test experiment, we argue that ELOISE is ben-
eficial for exploit development. Although it is not an end-to-end
automation tool, it could save security analysts’ efforts to search
for the elastic objects in the kernel and match them with the vul-
nerabilities. Using ELOISE, analysts could craft a working exploit
more efficiently.

6 DEFENSE MECHANISM

In this section, we first discuss existing defense mechanisms. Then,
we describe the design, implement and evaluation of our defense
approach. Due to the space limit, we leave alternative defense mech-
anisms and future research in Appendix A.4.

6.1 Existing Defense Mechanisms

Recall that the exploitation method discussed in this paper requires
manipulating the kernel heap layout. Intuition suggests that the
existing defense most likely to mitigate this exploitation method
is heap freelist randomization [16, 23]. However, this approach
cannot be an effective solution to our problem. One is because re-
search [16] has already demonstrated that freelist randomization
has no effects on mitigating exploitation against use-after-free and
double-free vulnerabilities. The other is because there have already
been many techniques proposed for bypassing this mitigation ef-
fectively (e.g., [6, 28, 44]).

In addition to memory layout manipulation, the exploitation
method also needs to accurately locate and modify the length field
in an elastic object. As a result, another possible existing defense
is structure layout randomization [15], which shuffles the fields in
a data structure at the compilation phase for preventing attackers
from predicting the offset of sensitive data within the structure.
In this work, we argue this defense is also not likely to be useful
nor practical for our problem because it relies upon a random seed
to perform randomization, and the protection of this seed is not
trivial. For example, Linux distros [35] have to expose the random
seed to their users for building third-party kernel modules. Besides,
there are intensive on-going discussions about how to prevent a
random seed from being accessed by unprivileged users on the
same machine [32].

Apart from above defenses, both Linux and XNU kernel import
"USERCOPY" checking [22] from PaX/Grsecurity team. This hard-
ening ensures that the length argument does not exceed the size of
cache/zone slot or stack frame. While this technique can mitigate
the threat of some elastic objects, it suffers from two problems. On
the one hand, it only enforces the length checking for copy_{from/
— to}_user() and copyout(). Other critical kernel functions for data
transferring are not included. On the other hand, the legit length
range is not restricted enough. It is still possible to leak sensitive
data residing in the cache/zone slot or stack frame.

6.2 Our Defense Approach

Design. To mitigate the threat of elastic objects, we propose a new
defense mechanism. It isolates elastic objects that ELOISE identifies
into individual shadow caches/zones. To be specific, we create
an isolated shadow cache/zone (e.g., kmalloc-isolated-16) for each
general cache/zone (e.g., kmalloc-16). Using shadow caches/zones,
we store elastic objects with the corresponding sizes. For example,
the elastic object 1dt_struct originally allocated in kmalloc-16 will
be assigned in kmalloc-isolated-16 after the isolation mechanism is
enabled.

With the isolation mechanism, an adversary has little chance to
leverage the vulnerability tied to other objects to manipulate the
length (and pointer) field in elastic objects. Besides, common heap
spray objects and kernel objects with sensitive information like
function pointers are also isolated from the elastic objects. They
could not be used for heap Fengshui and spraying. Admittedly,
an elastic object itself could also be potentially vulnerable, which
provides attackers with the ability to overwrite other elastic objects
sharing the same isolated shadow cache/zone. However, as showed
in the following section, vulnerable elastic objects are relatively
fewer than non-elastic vulnerable objects. Therefore, the cache-
isolation-based defense dramatically raises the bar for launching
the exploitation method and reduces leaked data’s significance. Note
that our defense approach is very different from a recently proposed
isolation mechanism — xMP [58]. xMP provides page granularity
isolation. With such isolation granularity, overwrite/overread still
work, and the exploitation method is still effective.
Implementation. We implemented and prototyped the proposed
isolation-based mitigation in the Linux kernel. To be specific, we
added the support of our mitigation method by creating the shadow
caches and other caches at the boot time. Further, we modified the
kernel source code by adding one more flag (e.g., __GFP_ISOLATE). In
our implementation, we used this flag as an additional argument
for the functions that allocate kernel objects (e.g., kmalloc()). Using
this flag as an indicator, our modified kernel could determine if
the allocated objects should be placed in the shadow caches. To
determine which allocation should happen at the shadow cache, we
use the output of ELOISE. It indicates which calls indeed allocate
elastic objects. In this way, we can ensure that the elastic objects
can be isolated from other kernel objects physically.
Performance Evaluation. We evaluate the performance overhead
of the proposed mitigation on a machine with a 1.6 GHz CPU, 16GB
RAM, and 500 GB HDD. Our hardened kernel is modified from
a plain Linux kernel, which is v5.5.3 (same as the kernel version
used in our previous experiment). We conducted the measurements

using three sets of benchmarks. The first set is micro-benchmarks
from LMbench v3.0 [51], which tests the latency and bandwidth of
common system calls and I/O operations. The second set is macro-
benchmarks from Phoronix Test Suite 9.8 [1], which runs five real-
world applications. To prevent the overhead from being hidden
behind sophisticated kernel execution, we especially designed the
third set benchmark to stress-test the impact of our mitigation ap-
proach. This set of customized benchmarks uses the system call
sequences to reach elastic object allocation and corresponding data
leakage intensively. In our experiment setup, we ran the three sets
of benchmarks for three rounds and calculated the average. Due
to the space limit, we list the detailed results in Table 8 (in the
Appendix). Overall, we could observe that the performance over-
head is negligible, with the average 0.19% performance drop. From
Table 8, we could also find that for TCP socket I/O throughput, the
hardened kernel even performs better (6.29% improvement). This
fluctuation is presumably because our mitigation approach changes
the hit rate of hardware cache, and the deviation of benchmarks
adds uncertainty to the measurement.

Security Evaluation. We also evaluated the security of our pro-
posed mitigation approach by re-pairing the vulnerabilities with
elastic objects. For all Linux vulnerabilities shown in Table 7 (ex-
cept for cvE-2017-7184 and cve-2017-17053), ELOISE no longer reports
elastic objects available for performing the exploitation after our
isolation mechanism is applied. It is because the elastic objects and
vulnerable objects are mostly different. They are isolated into two
caches. There is no longer a possibility to use vulnerable objects to
manipulate the length field of an elastic object. For vulnerable ob-
jects in cvE-2017-7184 and CVE-2017-17053, they are also elastic objects
allocated in the shadow caches. Technically, they can be leveraged
to overwrite data in the isolated caches and thus manipulate the
length field of an elastic object for data disclosure. However, we
argue that, even if this situation exists, it does not dilute our pro-
posed defense method because the disclosed data is not likely to
be useful for bypassing kernel mitigation. Taking the practice of
circumventing KASLR using cve-2017-17053 as an example, to use
the vulnerable object to reveal a kernel base address, in addition to
leveraging the elastic object, an attacker usually has to identify a
general object that encloses a function pointer. Then, the attacker
needs to place the object in the same isolated cache. However, due
to general and elastic kernel object isolation, such an object is no
longer available for this isolated cache.

7 RELATED WORK

The works most relevant to ours include escalating exploitability
for bypassing exploit mitigation and designing automated methods
to facilitating exploit development. Here, we summarize and discuss
them below.

Escalating exploitability. Side-channel based attack [24, 34] is
one common approach for exploitability escalation. Technically, it
leverages hardware features to disclose critical information from
the kernel. For example, by taking advantage of Intel TSX, Jang et
al. present a highly stable timing attack against KASLR [37]. Gruss et
al. propose to utilize pre-fetch instructions to circumvent KASLR

without triggering SMEP/SMAP protection [27]. Lipp et al. intro-
duce a method to read arbitrary kernel memory from userland by
exploiting out-of-order execution in modern processors [46].

Another exploitability escalation method is through new ex-

ploitation approaches. For example, ret2dir [39] injects exploita-
tion payload to physmap instead of user space to circumvent SMEP
and SMAP. To bypass a series of Linux kernel protection (except
for KASLR), the technique KEPLER [79] first transforms a control-
flow hijacking primitive into a stack overflow. Then, it utilizes that
overflow to enable an ROP attack in the Linux kernel. To avoid
being caught by CFI, Data-only attack [9] exploits the vulnerable
software through corrupting data flow instead of triggering critical
control flow examination.
Facilitating exploit development. Researchers have proposed
many exploitation automation techniques, ranging from the works
that assemble exploits fully automatically (e.g., [4, 7, 8, 33, 62,
63, 66]) to the works that partially facilitate exploit development
(e.g., [5, 29, 30, 36, 59, 78, 82]). However, they can barely tackle
the unique challenges in the kernel. Presumably, as such, we re-
cently witnessed many research efforts on the kernel exploitation
facilitation.

For example, Xu et al. propose two memory collision attack mech-

anisms [81] to assist heap spray in kernel Use-After-Free exploita-
tion. Lu et al. introduce a deterministic stack spraying exploitation
method and a reliable exhaustive memory spraying technique to
facilitate the exploitation of Use-Before-Initialization vulnerabil-
ities in the Linux kernel [49]. Following this, Cho et al. further
extend the stack spraying method in [14]. To expedite the explo-
ration of useful primitives for kernel Use-After-free exploitation,
FUZE [80] searches exploitable machine states by utilizing under-
context fuzzing along with symbolic execution. Chen et al. design
a capability-guided fuzzing technique that extracts the capability
for out-of-bound write vulnerabilities in the Linux kernel [10]. To
obtain the desired heap layout for kernel exploitation, SLAKE [11]
proposes a method to navigate kernel objects and then an algorithm
to elastic kernel layout automatically.
Uniqueness of our work. First, rather than exploiting hardware
features, we explore exploitability escalation by exploiting the capa-
bility demonstrated by kernel vulnerabilities as well as the nature of
kernel objects. Second, instead of developing yet another method to
circumventing exploit mitigation such as SMEP/SMAP, we focus on
the exploitation method that could bypass KASLR and heap/stack
cookies or perform arbitrary read in the kernel. Third, different
from the works that facilitate exploit development without consid-
ering mitigation circumvent, our proposed techniques facilitate an
attacker’s ability to assemble a working exploit with the capabil-
ity of bypassing widely deployed kernel mitigation. Last but not
least, rather than focusing on one particular type of vulnerability,
this work targets exploitability escalation and exploitation facili-
tation for all types of vulnerabilities that could demonstrate data
corruption on the kernel heap.

8 CONCLUSION

Using elastic objects to bypass kernel protection is a commonly
adopted exploitation practice. However, no systematic research
has been conducted to study the effectiveness of this exploitation

method. As such, it has not yet raised sufficient awareness and
motivates the development of a defense against such exploitation.
In this work, we show that elastic objects could nearly always
facilitate a kernel vulnerability to bypass exploitation mitigation
such as KASLR, heap cookie protector, and stack canary. Taking
a close look at existing kernel defense mechanisms, we discover
that none can be useful or practical for hindering the threat of
elastic kernel objects. Inspired by this finding, we introduce a new
lightweight defense mechanism. We conclude that the threat of
elastic objects can be, to some extent, mitigated if the kernel could
place elastic objects into separated caches or zones.

9 ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful feedback. This
work was supported by the 2020 IBM PhD Fellowship Program,
NSF 1718459, and ONR N00014-20-1-2008.

REFERENCES

[1] 2015. Phoronix Test Suite. http://www.phoronix-test-suite.com/.

[2] 2019. Code and Exploits for ELOISE. https://github.com/chenyueqi/w2l.

[3] 0x3f97. 2018. cve-2017-8890 root case analysis. https://0x3f97.github.io/exploit/
2018/08/13/cve-2017-8890-root-case-analysis/.

[4] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. 2011.
AEG: Automatic Exploit Generation. In Proceedings of the 2016 Network and
Distributed System Security Symposium (NDSS).

[5] Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili, and David Brumley. 2017. Your Ex-

ploit is Mine: Automatic Shellcode Transplant for Remote Exploits. In Proceedings

of the 38th IEEE Symposium on Security and Privacy (S&P).

Tan Beer. 2017. Exception-oriented exploitation on iOS. https://googleprojectzer

o.blogspot.com/2017/04/exception-oriented-exploitation-on-ios.html.

[7] David Brumley, Pongsin Poosankam, Dawn Xiaodong Song, and Jiang Zheng.
2008. Automatic Patch-Based Exploit Generation is Possible: Techniques and Im-
plications. In Proceedings of the 29th IEEE Symposium on Security and Privacy
(S&P).

[8] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley.
2012. Unleashing Mayhem on Binary Code. In Proceedings of the 33rd IEEE
Symposium on Security and Privacy (S&P).

[9] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer.

2005. Non-Control-Data Attacks Are Realistic Threats. In Proceedings of the

14th USENIX Security Symposium (USENIX Security).

Weiteng Chen, Xiaochen Zou, Guoren Li, , and Zhiyun Qian. 2020. KOOBE:

Towards Facilitating Exploit Generation of Kernel Out-Of-Bounds Write Vul-

nerabilities. In Proceedings of the 29th USENIX Security Symposium (USENIX

Security).

Yueqi Chen and Xinyu Xing. 2019. SLAKE: Facilitating Slab Manipulation for

Exploiting Vulnerabilities in the Linux Kernel. In Proceedings of the 26th ACM

SIGSAC Conference on Computer and Communications Security (CCS).

Yuegqi Chen, Xinyu Xing, and Jimmy Su. 2019. Hands off and putting SLAB/SLUB

fengshui in a blackbox. https://i.blackhat.com/eu-19/Wednesday/eu-19-Chen-

Hands-Off- And-Putting-SLAB-SLUB-Feng-Shui-In- A-Blackbox. pdf.

[13] Eric Chiang. 2019. User Namespaces. https://ericchiang.github.io/post/user-
namespaces/.

[14] Haehyun Cho, Jinbum Park, Joonwon Kang, Tiffany Bao, Ruoyu Wang, Yan
Shoshitaishvili, Adam Doupé, and Gail-Joon Ahn. 2020. Exploiting Uses of
Uninitialized Stack Variables in Linux Kernels to Leak Kernel Pointers. In 14th
USENIX Workshop on Offensive Technologies (WOOT).

[15] Kees Cook. 2017. security things in Linux v4.13. https://outflux.net/blog/archiv
es/2017/09/05/security-things-in-linux-v4-13/.

[16] Kees Cook. 2017. security things in Linux v4.14. https://outflux.net/blog/archiv
es/2017/11/14/security- things-in-linux-v4-14/.

[17] Jonathan Corbet. 2012. Supervisor mode access prevention. https://lwn.net/Art
icles/517475/.

[18] Jonathan Corbet. 2016. Exclusive page-frame ownership. https://lwn.net/Artic
les/700647/.

[19] Jonathan Corbet. 2017. The current state of kernel page-table isolation. https:
//lwn.net/Articles/741878/.

[20] SSD Secure Disclosure. 2017. SSD Advisory — Linux Kernel AF_PACKET Use-

After-Free. https://ssd-disclosure.com/archives/3484.

dp304. 2018. Alternative to flexible array members for avoiding multiple alloca-

tions. https://www.gamedev.net/forums/topic/696730-alternative- to-flexible-

array-members-for-avoiding-multiple-allocations/.

—_
2

[10

[11

=
)

o
=

http://www.phoronix-test-suite.com/
https://github.com/chenyueqi/w2l
https://0x3f97.github.io/exploit/2018/08/13/cve-2017-8890-root-case-analysis/
https://0x3f97.github.io/exploit/2018/08/13/cve-2017-8890-root-case-analysis/
https://googleprojectzero.blogspot.com/2017/04/exception-oriented-exploitation-on-ios.html
https://googleprojectzero.blogspot.com/2017/04/exception-oriented-exploitation-on-ios.html
https://i.blackhat.com/eu-19/Wednesday/eu-19-Chen-Hands-Off-And-Putting-SLAB-SLUB-Feng-Shui-In-A-Blackbox.pdf
https://i.blackhat.com/eu-19/Wednesday/eu-19-Chen-Hands-Off-And-Putting-SLAB-SLUB-Feng-Shui-In-A-Blackbox.pdf
https://ericchiang.github.io/post/user-namespaces/
https://ericchiang.github.io/post/user-namespaces/
https://outflux.net/blog/archives/2017/09/05/security-things-in-linux-v4-13/
https://outflux.net/blog/archives/2017/09/05/security-things-in-linux-v4-13/
https://outflux.net/blog/archives/2017/11/14/security-things-in-linux-v4-14/
https://outflux.net/blog/archives/2017/11/14/security-things-in-linux-v4-14/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/700647/
https://lwn.net/Articles/700647/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://ssd-disclosure.com/archives/3484
https://www.gamedev.net/forums/topic/696730-alternative-to-flexible-array-members-for-avoiding-multiple-allocations/
https://www.gamedev.net/forums/topic/696730-alternative-to-flexible-array-members-for-avoiding-multiple-allocations/

[22] Jake Edge. 2016. Hardened usercopy. https://lwn.net/Articles/695991/. xt

[23] Stefan Esser. 2016. iOS 10 - Kernel Heap Revisited. [53] Vitaly Nikolenko. 2016. CVE-2016-6187: Exploiting Linux kernel heap off-by-one.
[24] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump over https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit.
ASLR: Attacking branch predictors to bypass ASLR. In Proceedings of the 49th [54] Vitaly Nikolenko. 2018. Dissecting a 17-year-old kernel bug. https://duasynt.c
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). om/slides/bevx-talk.pdf.

[25] Google. 2019. syzkaller - kernel fuzzer. https://github.com/google/syzkaller. [55] Vitaly Nikolenko. 2018. Linux Kernel universal heap spray. https://duasynt.com
[26] Google. 2020. syzbot Dashboard. https://syzkaller.appspot.com/upstream. /blog/linux-kernel-heap-spray.
[27] Daniel Gruss, Clémentine Maurice, and Anders Fogh. 2016. Prefetch Side-Channel [56] OpenWall. 2020. John the Ripper password cracker. https://www.openwall.c
Attacks: Bypassing SMAP and Kernel ASLR. In Proceedings of the 23rd ACM om/john/.
SIGSAC Conference on Computer and Communications Security (CCS). [57] Alexander Popov. 2017. CVE-2017-2636: exploit the race condition in the n_hdlc

[28] Mathieu Hautebas. 2018. empty_list - exploit for p0 issue 1564 (CVE-2018-4243) Linux kernel driver bypassing SMEP. https://a13xp0OpOv.github.io/2017/03/24/C

iOS 11.0 - 11.3.1 kernel r/w. https://github.com/Jailbreaks/empty _list.

Sean Heelan, Tom Melham, and Daniel Kroening. 2018. Automatic Heap Lay-
out Manipulation for Exploitation. In Proceedings of the 27th USENIX Security
Symposium (USENIX Security).

Sean Heelan, Tom Melham, and Daniel Kroening. 2019. Gollum: Modular and
Greybox Exploit Generation for Heap Overflows in Interpreters. In Proceedings of
the 26th ACM SIGSAC Conference on Computer and Communications Security
(CCS).

[31] Jann Horn. 2018. A cache invalidation bug in Linux memory manage-

ment. https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-
bug-in-linux.html.

[32] Jann Horn. 2020. Linux Email list: CONFIG_DEBUG_INFO_BTF and CON-

FIG_GCC_PLUGIN_RANDSTRUCT. https://www .spinics.net/lists/bpf/msg16
648.html.

Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. 2015. Automatic Generation of Data-oriented Exploits. In Proceedings of
the 24th USENIX Security Symposium (USENIX Security).

Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side
Channel Attacks Against Kernel Space ASLR. In Proceedings of the 34th IEEE
Symposium on Security and Privacy (S&P).

Nur Hussein. 2017. Randomizing structure layout. https://lwn.net/Articles/7222
93/.

Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block Oriented Programming: Automating Data-Only Attacks. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS).

Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking Kernel Address
Space Layout Randomization with Intel TSX. In Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications Security (CCS).

M. Jones. 2010. User space memory access from the Linux kernel. https:
//developer.ibm.com/technologies/linux/articles/l-kernel-memory-access/.
Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D. Keromytis. 2014.
ret2dir: Rethinking Kernel Isolation. In Proceedings of the 23rd USENIX Security
Symposium (USENIX Security).

Kengiter and adityapakki. 2019. Crix: Detecting Missing-Check Bugs in OS
Kernels. https://github.com/umnsec/crix.

Andrey Konovalov. 2017. Exploiting the Linux kernel via packet sock-
ets. https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-

VE-2017-2636.html.

Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P. Kemerlis,
and Michalis Polychronakis. 2020. xMP: selective memory protection for kernel
and user space. In Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P).

Dusan Repel, Johannes Kinder, and Lorenzo Cavallaro. 2017. Modular Synthesis
of Heap Exploits. In ACM SIGSAC Workshop on Programming Languages and
Analysis for Security (PLAS).

Microsoft Research. 2020. Z3. https://github.com/Z3Prover/z3.

Chris Salls. 2017. Exploiting CVE-2017-5123 with full protections. SMEP, SMAP,
and the Chrome Sandbox! https://salls.github.io/Linux-Kernel-CVE-2017-5123/.
Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In Proceedings of the 2015 Network and
Distributed System Security Symposium (NDSS).

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK:(State of) The Art of War: Offensive Techniques
in Binary Analysis. In Proceedings of the 37th IEEE Symposium on Security and
Privacy (S&P).

Spudda6. 2010. Flexible array member in C-structure. https://stackoverflow.c
om/questions/3047530/flexible-array-member-in-c-structure.

Richard M. Stallman. 2019. GNU Debugger. https://www.gnu.org/software/gdb/.
Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
Proceedings of the 2016 Network and Distributed System Security Symposium
(NDSS).

syzbot. 2018. KASAN: slab-out-of-bounds Write in crypto_dh_encode_key. https:
//syzkaller.appspot.com/bug?id=a84d6ad70b281bfc5632f272f745104fb43d219d.
syzbot. 2018. KASAN: slab-out-of-bounds Write in mpol_parse_str. https://syzk
aller.appspot.com/bug?id=3d67d693e0529df8ac89ba55b00b54e5d967e021.
syzbot. 2018. KASAN: slab-out-of-bounds Write in pipe_write. https://syzkalle
r.appspot.com/bug?id=422a020e119fbac4c15d8fed114cc1696fe5c51a.

syzbot. 2018. KASAN: slab-out-of-bounds Write in sha512_final. https://syzkal
ler.appspot.com/bug?id=e4be30826¢1b7777d69a9e3e20bc7b708ee8f82c.

syzbot. 2018. KASAN: use-after-free Read in __lock_acquire (2). https://syzkalle
r.appspot.com/bug?id=1379béb21a2ffecd1ea4e2b564cc7e35d9f388b2.

via-packet.html. [72] syzbot. 2018. KASAN: use-after-free Read in snd_timer_open. https://syzkalle
[42] Andrey Konovalov. 2017. A proof-of-concept local root exploit for CVE-2017-6074. r.appspot.com/bug?id=e9287fe57ad2f862eedb05012481132486f3b887.

https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-6074/poc.c. [73] syzbot. 2018. KASAN: use-after-free Write in bpf_tcp_close. https://syzkaller.a
[43] Andrey Konovalov. 2018. A proof-of-concept exploit for CVE-2017-18344. https: ppspot.com/bug?id=6a6fd266a962be281b17¢864a073675150e36ca5.

//github.com/xairy/kernel-exploits/blob/master/CVE-2017-18344/poc.c. [74] syzbot. 2018. KASAN: use-after-free Write in dst_release. https://syzkaller.app
[44] Azeria Labs. 2020. Grooming the i0S Kernel Heap. https://azeria-labs.com/gro spot.com/bug?id=bf967d2c5ba62946c61152534c8b84823d848f05.

oming-the-ios-kernel-heap/. [75] syzbot. 2019. KASAN: use-after-free Write in __xfrm_policy_unlink. https://sy
[45] Lexfo. 2018. CVE-2017-11176: A step-by-step Linux Kernel exploitation. https: zkaller.appspot.com/bug?id=ebeba334a8a886e3d5dc25641e201e894d4d9657.

//blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part1.html. [76] syzbot. 2020. KASAN: use-after-free Read in route4_get. https://syzkaller.appsp
[46] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, ot.com/bug?id=5bb09c0c5b65ab2ce628ba26fe7cbd06144bd952.

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval [77] PaX Team. 2000. Design & implementation of PAGEEXEC. .

Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from [78] Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao, Wenjie Li, Xiaorui Gong,

User Space. In Proceedings of the 27th USENIX Security Symposium (USENIX
Security).

Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-Call
Targets with Multi-Layer Type Analysis. In Proceedings of the 26th ACM SIGSAC
Conference on Computer and Communications Security (CCS).

Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting Missing-Check Bugs
via Semantic- and Context-Aware Criticalness and Constraints Inferences. In
Proceedings of the 28th USENIX Security Symposium (USENIX Security).
Kangjie Lu, Marie-Therese Walter, David Pfaff, and Stefan Nirnberger and Wenke
Lee and Michael Backes. 2017. Unleashing Use-Before-Initialization Vulnerabil-
ities in the Linux Kernel Using Targeted Stack Spraying. In Proceedings of the
2017 Network and Distributed System Security Symposium (NDSS).

Wolfgan Mauerer. 2008. Professional Linux Kernel Architectures. Chapter 12.11.
Larry McVoy and Carl Staelin. 2015. LMbench - Toos for Performance Analysis.
http://lmbench.sourceforge.net/.

Patrick Mochel and Mike Murphy. 2020. sysfs - The filesystem for exporting
kernel objects. https://www.kernel.org/doc/Documentation/filesystems/sysfs.t

BingChang Liu, Kaixiang Chen, and Wei Zou. 2018. Revery: From Proof-of-
Concept to Exploitable. In Proceedings of the 25nd ACM SIGSAC Conference on
Computer and Communications Security (CCS).

Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. 2019. KEPLER: Facilitating
Control-flow Hijacking Primitive Evaluation for Linux Kernel Vulnerabilities. In
Proceedings of the 28th USENIX Security Symposium (USENIX Security).

Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Wei Zou, and Xiaorui Gong. 2018.
FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free Vul-
nerabilities. In Proceedings of the 27th USENIX Security Symposium (USENIX
Security).

Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan Zhang,
and Dawu Gu. 2015. From Collision To Exploitation: Unleashing Use-After-
Free Vulnerabilities in Linux Kernel. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS).

Insu Yun, Dhaval Kapil, and Taesoo Kim. 2020. Automatic Techniques to System-
atically Discover New Heap Exploitation Primitives. In Proceedings of the 29th
USENIX Security Symposium (USENIX Security).

https://lwn.net/Articles/695991/
https://github.com/google/syzkaller
https://syzkaller.appspot.com/upstream
https://github.com/Jailbreaks/empty_list
https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-linux.html
https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-linux.html
https://www.spinics.net/lists/bpf/msg16648.html
https://www.spinics.net/lists/bpf/msg16648.html
https://lwn.net/Articles/722293/
https://lwn.net/Articles/722293/
https://developer.ibm.com/technologies/linux/articles/l-kernel-memory-access/
https://developer.ibm.com/technologies/linux/articles/l-kernel-memory-access/
https://github.com/umnsec/crix
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-6074/poc.c
https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-18344/poc.c
https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-18344/poc.c
https://azeria-labs.com/grooming-the-ios-kernel-heap/
https://azeria-labs.com/grooming-the-ios-kernel-heap/
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part1.html
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part1.html
http://lmbench.sourceforge.net/
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit
https://duasynt.com/slides/bevx-talk.pdf
https://duasynt.com/slides/bevx-talk.pdf
https://duasynt.com/blog/linux-kernel-heap-spray
https://duasynt.com/blog/linux-kernel-heap-spray
https://www.openwall.com/john/
https://www.openwall.com/john/
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
https://github.com/Z3Prover/z3
https://salls.github.io/Linux-Kernel-CVE-2017-5123/
https://stackoverflow.com/questions/3047530/flexible-array-member-in-c-structure
https://stackoverflow.com/questions/3047530/flexible-array-member-in-c-structure
https://www.gnu.org/software/gdb/
https://syzkaller.appspot.com/bug?id=a84d6ad70b281bfc5632f272f745104fb43d219d
https://syzkaller.appspot.com/bug?id=a84d6ad70b281bfc5632f272f745104fb43d219d
https://syzkaller.appspot.com/bug?id=3d67d693e0529df8ac89ba55b00b54e5d967e021
https://syzkaller.appspot.com/bug?id=3d67d693e0529df8ac89ba55b00b54e5d967e021
https://syzkaller.appspot.com/bug?id=422a020e119fbac4c15d8fed114cc1696fe5c51a
https://syzkaller.appspot.com/bug?id=422a020e119fbac4c15d8fed114cc1696fe5c51a
https://syzkaller.appspot.com/bug?id=e4be30826c1b7777d69a9e3e20bc7b708ee8f82c
https://syzkaller.appspot.com/bug?id=e4be30826c1b7777d69a9e3e20bc7b708ee8f82c
https://syzkaller.appspot.com/bug?id=1379b6b21a2ffecd1ea4e2b564cc7e35d9f388b2
https://syzkaller.appspot.com/bug?id=1379b6b21a2ffecd1ea4e2b564cc7e35d9f388b2
https://syzkaller.appspot.com/bug?id=e9287fe57ad2f862eedb05012481132486f3b887
https://syzkaller.appspot.com/bug?id=e9287fe57ad2f862eedb05012481132486f3b887
https://syzkaller.appspot.com/bug?id=6a6fd266a962be281b17c864a073675150e36ca5
https://syzkaller.appspot.com/bug?id=6a6fd266a962be281b17c864a073675150e36ca5
https://syzkaller.appspot.com/bug?id=bf967d2c5ba62946c61152534c8b84823d848f05
https://syzkaller.appspot.com/bug?id=bf967d2c5ba62946c61152534c8b84823d848f05
https://syzkaller.appspot.com/bug?id=ebeba334a8a886e3d5dc25641e201e894d4d9657
https://syzkaller.appspot.com/bug?id=ebeba334a8a886e3d5dc25641e201e894d4d9657
https://syzkaller.appspot.com/bug?id=5bb09c0c5b65ab2ce628ba26fe7cbd06144bd952
https://syzkaller.appspot.com/bug?id=5bb09c0c5b65ab2ce628ba26fe7cbd06144bd952

le—— MAX —>] |
1st [len] buffer [[A] 1 [p1]p2] A] 3
le— len —f |
_________________ : p2
[p [len] Al 1\ [Len] B
2nd p p + len : pl pl + len
buffer | B| | buffer | (]
le— len —f | l=— len —

Figure 5: The alternative implementations of elastic kernel
objects.

A APPENDIX
A.1 Implementation of Elastic Kernel Objects

The kernel object xfrm_replay_state_esn shown in Figure 1 is just
one kind of implementation for an elastic kernel structure/object
which encloses not only a length field but also the elastic buffer.
Based on our manual analysis on Linux, FreeBSD, and XNU, we also
discover three alternative implementations. Here, we summarize
them below.

As is illustrated in the first example shown in Figure 5, the first
alternative implementation is to have a large buffer defined in the
middle of a data object and a field within that object indicating the
actual buffer size or more precisely speaking the actual bytes used
for storing data. At the time of defining the actual number of bytes
used for storing data, kernel typically examines the length field
and ensures it does not go beyond the boundary of the large buffer.
However, we discover that the kernel does not always enforce this
essential check at the time of reading data from that buffer. As such,
it eases an attacker’s ability to manipulate the length field and thus
construct a buffer overread.

As is depicted in the second and third examples shown in Fig-
ure 5, the rest two alternative implementations do not enclose the
length field and elastic buffer in the same kernel object. Instead,
they place the length field and the elastic buffer in two individ-
ual kernel objects. The difference between the second and third
implementation is that one implementation contains an explicit
reference to the elastic buffer and, in contrast, the other implemen-
tation references the elastic buffer through a third intermediate
kernel object.

A.2 Summary of Critical Kernel Functions

Modern OS kernels use virtual memory for isolation and provide
separate address spaces for kernel and application processes. During
kernel execution, however, userland processes need to inspect the
on-going activities in the kernel and control kernel behavior from
time to time. The kernel also needs to copy extra arguments from
userland for processing and copy results back as a response to
system call invocation. As a result, kernels design and implement
various communication channels to facilitate data transfer between
kernel space and userspace. While many communication channels
(e.g., sysfs [52] in Linux) require root privilege or high privilege
(e.g., CAP_SYS_PTRACE) for data migration, unprivileged users in
a local or remote machine can still obtain data from kernel space
through unprivileged communication channels. In this work, the
exploitation method takes advantage of these unprivileged channels
to uncover kernel data to userland processes. In the following, we

summarize these communication channels and categorize them
into three types.

User Space Memory Access APIs [38]. User space memory ac-
cess APIs are those functions like copy_to_user() and copyout(). For
copy_to_user(), this API copies n bytes of data from kernel address
from to user address to. When executing this function, the Linux
kernel first ensures the destination memory region (i.e., (to, to + n])
is mapped in userspace. Then, the Linux kernel maps this region to
kernel space and disables SMEP/SMAP protections (PXN/PAN on
ARM) to avoid Oops or panic. For the function copyout (), it works
similarly to copy_to_user(), coping nbytes data from kernel_addr to
user_addr.

In addition to the two APIs mentioned above, kernels have other
APIs or macros like put_user_4 to transfer data from kernel space
to userspace. These APIs are similar to copy_to_user() and copyout
— (). However, they determine the amount of transfer data at
the compilation phase (e.g., 4 bytes in put_user_4). As such, the
exploitation method cannot manipulate such APIs. In this work, we
exclude such non-manipulable APIs and list only those manipulable
ones in Table 3.

Netlink socket family. This channel uses the networking frame-
work for kernel-user communication. Designed as a generic object
model [50], netlink passes all kinds of status information about
internal kernel activities to user processes (e.g., registration, re-
moval of new devices, and hardware-related events). Although
CAP_NET_ADMIN capability is generally required to build netlink
socket, as is mentioned in Section 5, unprivileged users like contain-
ers can easily bypass this restriction by creating a user namespace
(CLONE_NEWUSER). In Linux distributions (e.g., Ubuntu and Debian),
the namespace is broadly deployed. Therefore, unprivileged users
with CAP_NET_ADMIN capability can easily communicate with ker-
nel through netlink message. In Table 3, we summarize all the
kernel functions in this type. It should be noted that some com-
munication channels are a combination of two sequential function
calls.

General Networking. Different from the netlink socket family,
which only establishes communication channels between kernel
space and userspace in a local machine, APIs in general networking
category enable remote data transfer. The Linux kernel sends and
receives network packets by manipulating a socket buffer. Take
the practice of sending packets for an example. In the beginning, the
kernel allocates and reserves a socket buffer to store user data.
When protocol control and user data are passed through TCP/IP
layers, the kernel prepends/appends them to socket buffer and,
at the same time, performs data validation. After this entire proce-
dure, the NIC driver copies the entire network data in the socket
buffer to a hardware buffer. Besides, it capsules the kernel data
(e.g., authentication associated data in the link layer) into network
packets. As such, the APIs responsible for general networking op-
erations provide adversaries with the ability to disclose data to
remote hosts. In Table 3, we list all the functions in this type and
specify the number of data that the kernel can capsule into network
packets.

7FreeBSD has no heap cookie protection and thus no impact on heap protector.

Types of Channel

Function Prototypes

User Space unsigned long copy_to_user(void __userx to, const void* from, Wm;
Memory Access APIs int copyout(const void *kernel_addr, user_addr_t user_addr, Xgnogi\;\eR:c\AMNnbytes);
int nla_put(struct sk_buff* skb, int attrtype,m, const void* data);
int nla_put_nohdr(struct sk_buff *skb, int attrlen, const voidx data)
Netlink

int nla_put_64bit(struct sk_buff *skb, int attrtype,m, const void* data, int padattr)

voidx nlmsg_data(const struct nlmsghdrx nlh); void* memcpy(voidx dest, const void* src,m;

void* nla_data(const structure nlattr *nla); void* memcpy(voidx dest, const void* src, M);

General Networking

voidx skb_put_data(struct sk_buff* skb, const void* data,Wn);

void* skb_put(struct sk_buffx skb, unsigned int len); void* memcpy(voidx dest, const void* src, sm);

Table 3: The summary of the FreeBSD/Linux/XNU critical kernel functions responsible for migrating data from kernel space
to userspace. In the column of “function prototypes”, the parameters in bold specify the addresses from which the kernel data
originate. The parameters with wavy line indicate the amount of kernel data that an attacker can potentially disclose to the

userland.
Linux
Cache Struct Offset (len/ptr) Potential Privilege Constraints
kmalloc-8 ipv6_opt_hdr [1, 2)/NA H 0 [1,2) < Arg,p # null
sock_fprog_kern [0, 2)/[2, 10) H&A NET_RAW [0,2) < Arg
policy_load_memory [0, 4)/[4, 12) H&A 1] [0, 4) < Arg
fmalloe16 Idt_struct [8, 12)/[0, 8) H&A [[8.12) < 65536
ip_options (5, 9)/NA anchorl: H 0 [8,9) < Arg, anchorl in put_cmsg()
anchor2: S [8,9) # 0, anchor2 in do_ip_getsockopt()
iovec [8, 16)/[0, 8) H&A [1] 0
cfg80211_pkt_pattern [16, 20)/[8, 16) H&A NET_ADMIN 0
user_key_payloadx [16, 18)/NA H 0 [16, 18) < Arg
xfrm_replay_state_esnx [0, 4)/NA H NET_ADMIN 0
ip_sf socklistx 4, 8)/NA H 0 4,8) < Arg, [4,8)#0
kmalloc-32 clzchefreader F [2[4, 223)/NA H 0 [E), 8) # cac}gle[fdetaiLZO
tc_cookie [8, 12)/[0, 8) H&A NET_ADMIN [8,12)# 0
cfg80211_bss_iesx [24, 28)/NA H NET_ADMIN [24, 28) # 0, p # null
sg_header [4, 8)/NA H 0 0
inotify_event_info [36, 40)/NA H 0 0
fb_cmap_user [4, 8)/[8, 16), [16, 24), [24, 32) S (0] [4,8)#0
cache_request [40, 44)/[32, 40) H&A 0 [20, 24) # 0, [40, 44) # 0
Kkmalloc-64 msg_msg [24, 32)/[32, 40) H&A 0 [44 AE?);}, 32) < Artg, [2;3 32) < 41(138 -
s < compat_getdents_callback.3,
fnamex ¥ [44, 45)/NA H 0 p # null, [32, 45) . [40, 44) < Arg
ieee80211_mgd_auth_datax [48, 52)/NA H 0 0
tep_fastopen_context [32, 36)/NA S 0 [32, 36) < Arg
request_key_auth [48, 52)/[40, 48) H&A 0 [48, 52) < Arg, p # null
xfrm_algo_authx [64, 68)/NA H NET_ADMIN 0
kmalloc-96 cfg80211_wowlan_tcp (28, 32)[/8[03, 28:)3)[8E1568 8‘32)/NA’ H&A NET_ADMIN 0
xfrm_algox [64, 68)/NA H NET_ADMIN 0
xfrm_algo_aeadx [64, 68)/NA H NET_ADMIN 0
cfg80211_scan_request [32, 36)/[24, 32) H&A NET_ADMIN p # null, [24, 32) # null
kmalloc-192 mon_reader_bin [16, 20)/[24, 32) H&A 0 [16, 20) < 4096, [16, 20) # 0, [16, 20) < Arg,
cfg80211_sched_scan_request [40, 44)/[32, 40) H&A NET_ADMIN [8, 16) == kaddr, [48, 56) == kaddr, p # null
mon_reader_text 112, 116)/[116, 124, H&A 0 112, 116) < Ar,
kmalloc-256 station_info {120, 124)/%112, 1205 H&A NET_ADMIN [(2)) £
kmalloc-512 ext4_dir_entry_2x7 [6, 7)/NA H 0 [6,7) < compat_getdents_callback.3
xfrm_policy [372, 373)/NA S NET_ADMIN 0
kmalloc-1024 fb_info [816, 824)/[308, 816) H&A 0 [832, 836) == 0, [768, 776) == kaddr
. AUDIT_CONTROL
kmalloc-2048 audit_rule_datax [1036, 1040)/NA S AUDIT READ 0
kmalloc-16384 n_tty_data [8800, 8804)/NA H 0 [8800, 8804) < 4096
proc_dir_entry_cache A proc_dir_entry [177, 178)/NA H 0 p # null, [177, 178) < compat_getdents_callback.3
seq_file_cache A seq_file T [24, 28)/NA H 0 [24,28) # 0, [2?; 62’81(;4)1%3([:32138) < seq_file.1,

Table 4: Elastic kernel objects identified and confirmed in Linux. For a detailed explanation of the listed results, readers could
refer to the corresponding text in the Appendix. For the discussion of the results, readers should refer to the text in Section 5.

A.3 Detail of Evaluation

Elastic object identification. Table 4~6 list all the elastic kernel
objects that we identify and confirm on both Linux and XNU ker-
nels. To be specific, the results in the table (from the column on the

XNU

Cache Struct Offset (len/ptr) Potential | Privilege Constraints
user_ldt [4, 8)/NA H 0 [4, 8) <8192, [4,8) < Arg
kalloc.16 sockaddrx [0, 1)/NA H 0 [0, 1) <255
accessx_descriptorx [0, 4)/NA H 0 [0,4)#0
Kalloc.32 msg T [16, 18)/NA H 0 [16, 18) < msgrcv_nocancel_args.7, [16, 18) > 0
’ audit_sdev_entry [8, 16)/[0, 8) H&A 0 0
ralloc.64 Uiok (16, 24)/NA H 0 [16, 24) < 4096
user_msghdr_x [40, 44)/[32, 40) H&A 0 [40,44) # 0
Kalloc.80 kauth_filesecx [36, 40)/NA H 0 0
vm_map_copy [16, 24)/NA H 0 [16,24) 0
kalloc.192 nfsbuf [112, 116)/[136, 144) | H& A 0 [112, 116)>0
kalloc.224 audit_sdev [140, 144)/NA H 0 0
kalloc.1024 necp_clientx [800, 808)/NA H 0 [800, 808) < Arg
mbuf mbuf [24, 28)/NA H 0 0
pipe_zone pipe [0, 4)/[16, 24) H&A 0 [104, 108) # 0
NFS.mount nfsmount [196, 200) H 0 0
mecachenecp.flow | necp_client_flow [120, 128)/[128, 136) H 0 [120, 128) # 0, [128, 136) # null

Table 5: Elastic kernel objects identified and confirmed in XNU. For a detailed explanation of the listed results, readers could
refer to the corresponding text in the Appendix. For the discussion of the results, readers should refer to the text in Section 5.

FreeBSD
Cache Struct Offset (len/ptr) | Potential | Privilege Constraints
TWE_Paramx¥ [3, 4)/NA H 0 p # null, [3,4) < twe_paramcommand.3
kmem.16 iovec [8, 16)/[0, 8) H&A] 0
sockaddr [0, 1)/NA H 0 0
i40e_nvm_access [12, 16)/NA H] [12, 16) > 0, [12, 16) < 4097
kmem.32 vpd_readonly [16, 20)/[8,16) H&A 0 0
vpd_writeonly [20, 24)/[8,16) H&A 0 0
uio [24, 32)/NA H 0 [32, 36) # 2
kmem.64 gctl_req_arg [28, 32)/[40, 48) H&A 0 [24, 28) == 32
ips_ioctl [20, 24)/[8, 16) H&A 0 0
kmem.128 usb_symlink [80, 82)/NA H] p # null, [80, 81)+[81, 82) < 252
ucred [52, 56)/[176, 184) H&A 0 0
shmfd [0, 8)/NA H 0 0
kmem.256 iso_nodet [56, 64)/NA H 0 [56, 64) < uio.2
iso_mntf [48, 52)/NA H 0 [48, 52) < uio.3
Kmem.512 acc_fibt [8, 10)/NA H 0 [8, 10)< aac_softc.61
‘ dirent [20, 22)/NA H 0 [20, 22) < Arg
kmem.1024 buf [48, 52)/[24, 32) H&A 0 0
kmem.2048 fw_device [16, 20)/NA H 0 p # null,[16, 20) > 1024
mbuf mbuf [24, 28)/[8, 16) H&A 0 0
TMPFS node tmpfs_node [40, 48)/NA H 0 0

Table 6: Elastic kernel objects identified and confirmed in FreeBSD. For a detailed explanation of the listed results, readers
could refer to the corresponding text in the Appendix. For the discussion of the results, readers should refer to the text in
Section 5.

left to the right) indicate (1) the caches/zones to which each elastic
object belongs, (2) the structural type of each elastic object, (3) the
offset of the length field in each elastic object and, if applicable, that
of the pointer referencing the elastic buffer, (4) the security capa-
bilities that each object could potentially provide, (5) the privilege

needed for using each elastic object to perform exploitation, (6) the
constraints that an adversary has to satisfy in order for using each
object for disclosing critical kernel data successfully.

In Table 4~6, for clarification, we mark all the special caches/-
zones with a triangle symbol A and highlight with a star symbol *

CVE-ID or .. Suitable Securit
Syzkaller-ID Type Capability objects # Impacty
FreeBSD
2019-5603 UAF file_zone:[40, 44)=" 0 NA
2019-5596 UAF file_zone:[40, 44)=" 0 NA
2016-1887 OOB zone_mbuf:[0, 256)=" BA & AR
Linux
1379... [71] OOB kmalloc-512:[0, 512)=" 10 + (1) SC, HC, BA
3d67... [68] | OOB NA 0 NA
422a... [69] OOB kmalloc-64:[0, 4)=0x8 0 NA
5bb0... [76] UAF kmalloc-192:[16, 24)=0, kmalloc-192:[48, 56)=kaddr 1 HC, BA
6a6f... [73] UAF kmalloc-1024:[0, 8)=kaddr 3 HC, BA
a84d... [67] OOB kmalloc-32:[0, 4)=* 1 HC, BA
bf96... [74] UAF ip_dst_cache:[64, 68)=" 0 NA
edbe... [70] | OOB kmalloc-64:[0, 16)=", [16, 24)=192, [24, 64)=0 6 SC, HC, BA
€928... [72] UAF kmalloc-256:[120, 128)=kaddr 1 HC, BA, AR
ebeb... [75] UAF kmalloc-1024:[15, 24)=kaddr 1 HC, BA
2018-6555 UAF kmalloc-96:[0, 8)=kaddr, kmalloc-96:[8, 16)=kaddr 3 SC, HC, BA
2018-5703 OOB NA 0 NA
2018-18559 UAF kmalloc-2048:[1328, 1336)=" 0 NA
2018-12233 OOB NA 0 NA
2017-8890 DF kmalloc-64:[0, 8)=kaddr:[8, 16)=kaddr:[16, 18)<46:[18, 64)=" 12+ (1) | SC HC, BA, AR
2017-7533 | OOB kmalloc-96:[0, 11)=":[11, 12)=\0' 2 HC, BA
2017-7308 OOB kmalloc-1024:[0, 1024)=", kmalloc-2048:[0, 2048)=" 12 + (1) SC, HC, BA
kmalloc-32:[0, 32)=", kmalloc-64:[0, 64)=", kmalloc-96:[0, 96)=", kmalloc-128:[0, 128)="
2017-7184 OOB kme[dloc—)l%:[o, 192)=", kEnallo)c-256:[0, 256)=*,[kmailoc—512:[0, 512)=[*) 22+(2) | SCHC, BA, AR
2017-6074 DF kmalloc-256:[0, 8)=kaddr:[8, 16)=kaddr:[16, 18)<238:[18, 256)=" 11+ (1) SC, HC, BA
2017-2636 DF kmalloc-8192:[0, 8)=kaddr:[8, 16)=kaddr:[16, 18)<8174:[18, 8192)=" 10 + (1) HC, BA
2017-17053 DF kmalloc-16:[0, 8)=" 4 SC, HC, BA
2017-17052 UAF kmalloc-256:[0, 8)=kaddr, kmalloc-256:(8, 16)=kaddr 3 SC, HC, BA
2017-15649 UAF kmalloc-4096:[2160, 2168)=" 0 NA
2017-10661 UAF kmalloc-256:[192, 200)=kaddr, kmalloc-256:[200, 208)=kaddr 0 NA
2017-1000112 | OOB NA 0 NA
kmalloc-8:[0, 8)=*, kmalloc-16:[0, 16)=", kmalloc-32:[0, 32)="
2016-6187 | OOB knEallo)c-64:[O, 64)=", kEIlallo)c-128:[0, 128):*[) 24+(2) | SC HC, BA, AR
2016-4557 UAF kmalloc-256:[56, 64)=", kmalloc-256:[64, 72)=" 3 HC, BA
2016-10150 | UAF kmalloc-64:[24, 32)=", kmalloc-64:[32, 40)=" 3 SC, HIC, BA, AR
2016-0728 UAF kmalloc-256:[0, 8)=" 2 HC, BA
2014-2851 UAF kmalloc-192:[0, 8)=" 2 HC, BA
2010-2959 | OOB kmalloc-256:[0, 256)=" 11+(1) SC, HC, BA
2019-8605 | UAF kalloc.192:[0, 192)=" 4+(1) HC, BA, AR
2019-6225 | UAF kalloc.96:[8, 16)=" 0 NA
2018-4243 OOB kalloc.16:[0, 8)=0 0 NA
2018-4241 OOB kalloc.2048:[0, 2048)=" 5 HC, BA
2017-2370 OOB kalloc.256:[0, 256)=" 3 HC, BA
2017-13861 DF kalloc.192:[0, 192)=" 4+ (1) HC, BA, AR

Table 7: The exploitability summary of kernel vulnerabilities. For a detailed explanation of the listed results, readers could
refer to the corresponding text in the Appendix. For the discussion of the results, readers should refer to the text in Section 5.

the objects that could belong to all the caches/zones greater than
they are specified in the table. Besides, we utilize the symbol 0 to
signify no privilege is required if an attacker performs exploitation
with the corresponding object. Similarly, the same symbol 0 in
the constraint column indicates no restriction is imposed on the
manipulated elastic object. In the struct column, we use the dagger

symbol to indicate the objects the constraint sets of which involve
variables.

For the mathematical notations depicted in the constraint col-
umn, Arg signifies the argument of a system call, the value of which
is under the attacker’s control. p#null indicates that a pointer p
— referencing the elastic object should not equal to a null value.
The notations compat_getdents_callback. 3, msgrcv_nocancel_args.7, and

cache_detail. 20 all represent variables, the values of which are un-
decidable through static analysis. For example, cache_detail. 20 indi-
cates the 20*" field of the object in the structual type cache_detail.
The notation kaddr represents a valid kernel address. The formula
[768,776]1== kaddr, for example, indicates the value at the mem-
ory range [768,776] has to be a valid kernel address.

Last but not least, in the potential column, we use three different
characters to represent the potential capability of an elastic object.
The characters H and S indicate the object could potentially allow
an adversary to leak data from heap and stack, respectively. The
character A denotes the potential of performing an arbitrary kernel
read.

Kernel vulnerabilities and their exploitability. Table 7 lists all
the kernel vulnerabilities used for our evaluation. From the column
on the left to the right, the results shown in the table indicate
(1) the CVE-ID associated with the kernel vulnerability, (2) the
vulnerability type into which the vulnerability was categorized, (3)
the capability of the vulnerability summarized manually, (4) the
total number of elastic kernel objects useful for the exploitation of
the vulnerability, (5) the security implication tied to the exploitation.

In the capability column of Table 7, as is specified in Section 3.3,
the capability of each vulnerability is represented in the format
of cache:[range |operator |value, - - -]. For example, the formula
kmalloc-96:[0,8)=kaddr indicates the vulnerability offers the
ability to manipulate the first byte of an elastic kernel object, and the
manipulated value is a valid kernel address. As we can observe from
the table, in addition to using the notation kaddr to denote a valid
kernel address, we introduce the symbol * indicating an arbitrary
value. For example, kmalloc-2048:[1328,1336)=* signifies the
vulnerability allows an attacker to assign an arbitrary value to the
memory region [1328,1336).

In the column marked with “Suitable object #”, we specify the
total number of elastic kernel objects useful for exploitation and
mitigation circumvention. It should be noted that the number with-
out parentheses denotes the total amount of objects associated with
constraints involving no variables. The number with parentheses
indicates the amount of those associated with constraints involving
variables. As we discuss in Section 4, when pairing a vulnerability
with elastic objects, ELOISE ignores the paths involving variables
and discard corresponding kernel objects (if for that elastic object
ELOISE identifies no other paths without variable involvement).
This conservative design inevitably reduces the elastic objects avail-
able for exploitation. However, as we can observe in Table 7, even
without using objects in this type, vulnerabilities can still find al-
ternative objects for performing successful exploitation.

As is shown in Table 7, the vulnerabilities selected for our evalua-
tion cover all types such as out-of-bound write (OOB), use-after-free
(UAF), and double free (DF). In the last column of the table, for each
vulnerability, we also specify all their security impacts. The nota-
tions we use for indicating these impacts are SC, HC, BA, and AR.
They denote the capabilities of performing arbitrary kernel read
(AR) as well as bypassing stack canary (SC), heap cookie protector
(HC), and leaking base address or, in other words, KASLR (BA).
Vulnerability capability summarization. Table 7 also summa-
rizes the capability of each vulnerability. In our evaluation, we
extract the capability of each vulnerability from its PoC program

based on the criteria below. If a vulnerability is in the type of out-
of-bound write, we take its capability as the range of its overflow
region and the corresponding value under its control. If a vulnera-
bility is in the use-after-free category, we depict its capability based
on how the vulnerability manipulates the freed object via the cor-
responding dangling pointer. If a vulnerability is in the category of
double free, we treat its capability as the value under the control of
the corresponding spray objects (e.g., msg_msg used in many publicly
released exploits [53-55]). We will make all these vulnerabilities
available in virtual machines and release the exploits crafted by
using elastic kernel objects.

Performance overhead of our proposed defense. Table 8 lists
the performance of the Linux kernel with and without our proposed
defense mechanism. The results are observed from three different
benchmarks discussed in Section 6.2. We present the performance
change in the column of “overhead”. For latency measure, a nega-
tive percentage indicates performance improvement, whereas the
positive percentage represents the performance degradation. For
the throughput measure, the negative and positive rates mean per-
formance degradation and increase, respectively.

A.4 Alternative Defense Methods

In addition to the defense proposed in Section 6, there are alternative
defense solutions that might be useful for mitigating the threat of
elastic kernel objects. In the following, we discuss these methods
and analyze the challenges of their implementation.

The first possible solution is to build shadow memory for each of
the elastic objects allocated in the kernel. In that shadow memory,
we can record the actual size of the corresponding object. When
the kernel discloses data in an elastic buffer at any leaking anchor,
we could check whether the amount of the data migrating to the
userspace is within a legitimate range. Since the construction of
shadow memory inevitably introduces memory and performance
overhead, the key challenge of this solution is to develop a light-
weight method to minimize overhead in a systematic method.

Another possible solution is to design a mechanism to enable the
integrity check for the data in the length field. For example, we could
first expand each of the elastic structures and introduce a checksum
field. Then, when the kernel allocates the corresponding object
and initializes its length field, we could encrypt the length value
and store it in the checksum field accordingly. With this design, at
the time of disclosing data in the elastic buffer to the userland, the
kernel could easily retrieve and scrutinize the checksum. However,
the key challenge of implementing this idea is to ensure the addition
of the checksum will not influence the usability of the kernel. For
example, some elastic data structures designed for protocols have
specific formats. After allocating objects in these types, the kernel
references the data through corresponding offsets. If introducing
additional field into such objects, one has to ensure the newly added
checksum field does not incur incorrect data reference.

A.5 More Details of User Study

Section 5.1 describes the setup of our user study. Here, we provide
the three survey forms (i.e., Figure 6, 7, and 8) we used during the
experiment. In Table 9, we display the time took for each group
spent in solving the five vulnerabilities. As the short probing survey

1. Did you ever debug Linux kernel vulnerabilities before? Benchmark | w/o defense | w/ defense | Overhead
a. Yes LMbench - latency (ms)
b. No syscall() 0.3813 0.3796 -0.46%
2. How long is your experience in Linux kernel security? open()/close() 1.5282 1.5290 0.05%
3. Did you ever write an exploit for Linux kernel vulnerability? refld() 0.4596 0.4529 -0.94%
a Yos write() 0.4125 0.4127 0.05%
b. No select() (10 fds) 0.5114 0.5043 -1.39%
4. If you answer yes to 3, how do you usually bypass KASLR selecti)t;tl(())o fds) (1);223 ;;Z;g (;) 12::
a. L assume no KASLR fstat() 0.4576 0.4584 0.19%
b. I use hardware side-channel fork() + exit() 90.37 91.71 1.46%
c. I use information disclosure in dmesg fork() + execve() 255.18 257.85 1.05%
d. I bypass KASLR if the vulnerability provides read primitive fork() + /bin/sh 858.86 863.77 0.57%
e. Others sigaction() 0.4182 0.4192 0.25%
5. Do you know or ever use elastic structures for KASLR bypassing? Signal delivery 0.9337 0.9309 -0.30%
a. Yes Protection fault 0.6914 0.7093 2.58%
b. No Pipe 1/O 37497 37951 1.87%
6. Please list the CVE-ID or other ID or links of vulnerabilities you UNIX socket I/O 5.9786 5.882 -1.62%
have debugged or drafted exploits for. TCP socket [/O 9.7846 9-6776 -1.09%
UDP socket I/O 6.5358 6.2251 -4.75%
Figure 6: Self-assessment form. LMbench - throughput (MB/s)
Pipe I/0 4755.49 4753.89 0.03%
UNIX socket I/O 10385.07 10307.40 0.75%
1. Which vulnerability are your group working on? TCP socket /O 6327.32 6725.17 -6.29%
2. For this vulnerability, which stage are your group on? mmap() I/O 13559.20 13511.95 0.35%
a. Vulnerability capability exploration File I/O 7707.81 7702.82 0.06%
b. Elastic object identification Phoronix - latency (s)
c. Memory layout manipulation. FFmpeg 14.01 14.46 3.22%
GnuPG 17.39 17.35 -0.22%
Figure 7: Short probing survey form. Phoronix - throughput
Apache (request/s) 16700.23 16088.00 3.67%
1. Do you think exploring the capability of vulnerability is difficult? OpeHSSL (signs/s) 272.00 272.00 0
a. Yes 7-Zip (MIPS) 9970.00 9374.00 5.98%
b. N Customized bench - latency (ms)
- No N sock_fprog_kern 28.54 28.30 0.09%
2. Wilat n:)e;l;ofs do you usually use to explore the capability of 1dt.struct 33.81 31.48 2.52%
vulnerabiiity ip_options 29.29 30.67 2.40%
3. What do you think is the most challenging part of drafting the userf)lze}lf)_payload 34.04 35.33 -2.87%
exploits? xfrm_replay_state_esn 29.69 30.06 1.67%
Figure 8: Post-test survey form. 1p;gsffe(;cdkel;ﬁ i?;i 2322 _3;22
2010-2959 | 2017-7184 | 2017-7308 | 2017-8890 | ebeb..[75] inotify_event_info 32.68 3177 0.42%
Sage[A] B [A] B [A] B [a] B [A[B msg_msg 27.75 26.83 0.66%
1 1 05 2 2 2 2 1 1 1 1 tep_fastopen_context 28.79 28.65 -1.04%
5 o a5 1o 5 o 35 Tol 25 1o 3 request_key_auth 81.23 79.88 2.98%
3 1 NA 21 NA 21 NA 1 NA 1 NA xfrm_algo_auth 30.32 29.50 -0.28%
xfrm_algo 28.64 28.43 -0.11%
Table 9: Summary of our probing survey results. The # in the Xfrm—algo—_aead 31.36 31.39 0.13%
table indicates how many hours reported through the short xfrm_policy 31.07 3053 ~143%
probing survey that the two groups spent on the stage of a Average 0.19%

specific vulnerability. NA means the corresponding group
participant did not enter the stage while they develop the
exploit for a particular vulnerability.

Table 8: The performance of the Linux with and without our
proposed defense. For latency measure, the smaller the num-
ber is, the better the performance is. For throughput, the
larger the number is, the better the performance is.

is collected every 30 minutes, the time is accumulated according to
the survey results.

	Abstract
	1 Introduction
	2 Background
	3 Technical Approach
	3.1 Identifying Elastic Object Candidates
	3.2 Filtering out Object Candidates
	3.3 Pairing Vulnerabilities with Objects

	4 Implementation
	5 Evaluation
	5.1 Experiment Design
	5.2 Results of Experiment I
	5.3 Results of Experiment II
	5.4 Results of Experiment III

	6 Defense Mechanism
	6.1 Existing Defense Mechanisms
	6.2 Our Defense Approach

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References
	A Appendix
	A.1 Implementation of Elastic Kernel Objects
	A.2 Summary of Critical Kernel Functions
	A.3 Detail of Evaluation
	A.4 Alternative Defense Methods
	A.5 More Details of User Study

