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Abstract—The capability leak of Android applications is one
kind of serious vulnerability. It causes other apps to leverage its
functions to achieve their illegal goals. In this paper, we propose
a tool which can automatically generate capability leaks’
exploits of Android applications with path-sensitive symbolic
execution-based static analysis and test. It can aid in reducing
false positives of vulnerability analysis and help engineers find
bugs. We utilize control flow graph (CFG) reduction and call
graph (CG) search optimization to optimize symbolic execution,
which make our tool applicable for practical apps. By applying
our tool to 439 popular applications of the Wandoujia (a famous
app market in China) in 2017, we found 2239 capability leaks
of 16 kinds of permissions. And the average analysis time was
4 minutes per app. A demo video can be found at the website
https://youtu.be/dXFMNZWxEc0.

Index Terms—capability leak, Android, inter-component
communication, symbolic execution

I. INTRODUCTION

Capability Leak, also known as Permission Re-Delegation

[1], occurs when a vulnerable application performs a priv-

ileged action on behalf of a malicious application with-

out permission. Inter-component communication between

Android applications is common. A lot of apps provide

some special functions for other apps by exported compo-

nents. However, many developers do not fully understand

the confused use rules in Android application components.

They either expose the components unintentionally [2], or

expose them intentionally but fail to check the component

caller’s permissions. It causes several security problems. For

example, a capability leak MASTER CLEAR is found in

Samsung Epic 4Gs phone image [3]. It is easy to delete

all user data by constructing an intent. Therefore, research

of capability leaks of Android applications is important and

significant.

In this paper, we elaborate capability leak of Android

applications as follows: if there is an app B, without per-

mission p, can invoke A’s code protected by permission

p directly (without user’s UI operation) from A’s exported

components, we say that app A has a permission p capability

leak. In our paper, we take into account all APIs protected by

permissions even if external intent data do not flow in these

APIs. Because some APIs do not need any parameters and

APIs without external input data can also cause immense

destruction.

Our main contributions are as follows:

1) We propose a tool which can automatically generate

capability leaks’ exploits of Android applications.

2) We utilize CFG reduction and CG search optimization

to optimize symbolic execution, which make our tool

can apply to practical apps.

3) We analyzed 439 popular apps of various categories.

And we found 2239 capability leaks of 16 permissions,

including some very serious capability leaks.

II. SYSTEM OVERVIEW

Figure 1 depicts an overview of our work, which is

mainly divided into four parts. In the first part, we extract

app’s call graph , control flow graphs for each method and

find all Android permission-protected APIs (i.e. tgtAPI).

Then we reduce our CG by removing methods that are

not in paths between exported-components’ methods (i.e.

startPoint) and tgtAPI. In the second part, we find all paths

between startPoint and tgtAPI, which represent all possible

capability leak paths. We utilize CFG reduction and CG

search optimization to optimize the process of finding paths.

Then we extract the intent constraints of each path and

convert these intent constraints into SMT2 language in the

third part. Using the Microsoft Z3 constraint solver [4] to

solve, we generate intent test cases based on the results of

Z3. In the fourth part, test-app utilizes the intent test cases

to launch the instrumented app. Then our tool reads the test

log and generate the detection report of the detected app.

The detection report includes capability leaks of detected
app and exploits of these capability leaks. In the following

sections, we will introduce each part in detail.

A. Extract CG and each method’s CFG

To obtain a call graph suitable for analysis of Android

apps, the call graph must take into account implicit calls

of Android app. Android implicit calls include component

lifecycle methods, callback methods, inter-component com-

munication methods. Our tool is based on soot [5] and we

use identical methods as described in previous works [6] [7],

where the call graph is continuously updated with identified

callback registrations until a fixed point is reached.

To know what permissions the API’s invocation needs, we

use the APIPermissionMap provided by the Androguard [8],

which stores the map between Android permissions and the
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Fig. 1. System overview

Android API. We utilize it to find all Android permission-

protected APIs (tgtAPIs). Then we utilize backward traversal

from tgtAPI and forward traversal from startPoint to remove

nodes (methods) not in the paths between startPoint and

tgtAPI, which can substantially reduce the search scope

when find all paths between startPoint and tgtAPI.

B. Get Intent Conditions of Paths between StartPoint and
TgtAPI

CG and CFG are directed cyclic graph. In our paper,

the paths that we search between startPoint and tgtAPI are

Eulerian path. To reduce the scale of problem, we optimize

search process and reduce each method’s CFG by data-flow

analysis.
1) CG Search Optimization: Suppose there is a path

ABCDE, where A, B, C, D and E are methods. A is

startPoint and E is tgtAPI. At First, we use the way of sec-

tion II-B2 to reduce CFG of each method. Then we compute

all intent constraints of all paths between two methods (i.e.

A and B, B and C, C and D, D and E). And we utilize Z3

to solve all intent conditions of all paths between methods

(named intentConditionSet). This process will be introduced

in section II-C in detail. intentConditionSet will be saved and

use repeatedly. It will save a lot of time, because an edge

(method invocation) will be in multiple paths. Finally, we

get intent conditions of this path (i.e. ABCDE) by using

intersection operation for these intentConditionSets. When

we compute intent conditions of a path, we merge identical

intent conditions and remove conflict intent conditions. This

reduces the number of intent conditions that need to be

combined when we search a path and it avoids duplicate

and useless intent test cases. We also use function summary

which stores all possible intent conditions of paths from

current method to tgtAPI. When the method is analyzed

again, the result is taken directly and do not need further

analysis.

1 / / b e f o r e r e d u c t i o n
2 p u b l i c v o id doTask1 ( S t r i n g pName ) {
3 i n t p i d =643;
4 i f ( x > 5)
5 {
6 i f ( i n t e n t . g e t A c t i o n . e q u a l s ( ” k i l l ” ) )
7 { / / b r anch1
8 S t r i n g key=” p i d ” ;
9 p i d = i n t e n t . g e t I n t E x t r a ( key ) ;

10 . . .
11 } e l s e { . . . } / / b r a n c h 2
12 }
13 e l s e
14 {
15 i f ( y < 6) { . . . } / / b r a n c h 3
16 e l s e { . . . } / / b r a n c h 4
17 i f ( z > 7) { . . . } / / b r a n c h 5
18 e l s e { . . . } / / b r a n c h 6
19 }
20 k i l l P r o c e s s ( pName , p i d ) ; / / t g t A P I
21 }
22 / / a f t e r r e d u c t i o n
23 p u b l i c v o id doTask2 ( S t r i n g pName ) {
24 i n t p i d = 6 4 3 ;
25 i f ( x>5)
26 {
27 i f ( i n t e n t . g e t A c t i o n . e q u a l s ( ” k i l l ” ) )
28 { / / b r a n c h 1
29 S t r i n g key=” p i d ” ;
30 p i d = i n t e n t . g e t I n t E x t r a ( key ) ;
31 } e l s e {} / / b r a n c h 2
32 }
33 e l s e {} / / b r a n c h 3
34 k i l l P r o c e s s ( pName , p i d ) ; / / t g t A P I
35 }

Listing 1. Reduce CFG

2) CFG Reduction: In our paper, we only focus on

statements related to external intent (intent from another

application), because the unique input of inter-component

communication is intent. We utilize a light-weight inter-

procedural data-flow analysis from sources [9] (only use

sources related to external intent, for example: getIntent(),

onReceive(Intent)) to remove the statements that are not
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related to the external intent. Our inter-procedural data-flow

is mainly based on the reaching definition technique [10],

which focuses on statically determining which definitions

may reach a given point in the code. But we do not

remove intent-irrelevant condition statements if their branch

statements contain intent-relevant statements. For example,

as shown in Listing 1, the statement if(x > 5) can not

be removed because the true branch of if(x > 5) has

intent-relevant statements. But we can remove if(y < 6)
and if(z > 7). We also reserve statements that intent-

relevant statements depend. For example, the statement

String key = ”pid” will not be removed in listing

1. Since most statements are not related to intent, it is

possible to substantially reduce the CFG. Thus, our method

is efficient. As shown in Listing 1, there are 6 branches

in total 6 paths in the doTask1 method. But none of the

5 branches have any statements related to intent data, so

we can simplify doTask1 method into doTask2 method and

doTask2 method only has 3 branches in total 3 paths.

C. Compute Path’s Intent Constraints
Z3 is a state-of-the-art theorem prover from Microsoft

Research. It can be used to check the satisfiability of

logical formulas over one or more theories. We uti-

lize Z3 to solve intent conditions. At first, we get

all statements of a path. Then we will process state-

ments separately to generate intent constraints in for-

mat of SMT2 language. These statements mainly in-

clude intent.getAction,intent.hasCategory, intent.get ∗
Extra, equals, if , variable definition and other operation

statements about value of intent attribute. For example,

if statement is if(str.equals(”success”)), the SMT2 lan-

guage is (assert (= str ”success”)). Z3 will return

the value of str is ”success”. Our tool can get correct string

and primitive values in most cases when compute path’s

intent constraints.

D. Test-app Test Instrumented App
The intent test cases that we generate satisfy the intent

conditions of paths, but there are some other conditions of

paths that we can not control. So we need use dynamic

way to test whether paths are reachable. We insert log

statements before tgtAPIs in detected app and repackage

detected app as a new app (named instrumented app). And

the log statement mainly records these information: test case

number, exported-component’s name, package name, tgtAPI
and etc. Then we develop test-app which do not have any

permissions and it utilizes test cases to test instrumented
app. If the tgtAPI can be triggered, the log will be generated,

indicating that the app occurs a capability leak. Then our tool

reads the test log to generate a detection report for detected
app. The exploits of capability leaks in detection report can

trigger the corresponding capability leak, and they can help

developers analyse bugs.

III. EVALUATION

To assess our work, we study the following research

questions:

RQ 1: What is the accuracy of path’s intent conditions

we generate?

RQ 2: Can our tool be applied to practical apps and

find capability leaks ? Can exploits help devel-

opers find bugs?

RQ 3: Our tool uses symbolic execution, what is run-

time efficiency of our work?

Fig. 2. APK Size and SLOC Distribution

The following experiment results are collected on Ubuntu

18.04 with a 3.6GHz Intel Core i7 CPU and 32GB RAM.

Our dataset consists of 18 categories of applications from

Wandoujia in 2017. We select 45 most popular apps for each

category and in total 810 apps, then remove hardened apps

[11] and apps that soot can not analyze [12]. Finally, we

get 439 apps. These apps size and SLOC(source lines of

code) are shown in figure 2. What we need to explain is

that the use of harden technology is becoming more and

more popular, which causes that we can not get the real

source code of app. Fortunately, our tool is proposed for

developers, and developers can use our tool to detect the app

before it is hardened, so our tool is still useful. To answer

RQ1, we divide 439 apps into five categories (0-9M,9M-

18M,18M-27M,27M-36M,36M-) according to app size. We

select 5 apps randomly from each category in total 25 apps

to evaluate our tool.

A. RQ1: Accuracy of Path’s Intent Conditions

We run our tool for these 25 apps and record the

statements that we can not handle (named unhandledSet).
At the same time, we manually check each statement we

can handle and record the statements that we can not

get correct value (named incorrectSet). For example, a

string value from network. allStatementsSet is a set of all

intent-relevant statements. We use the following correctness

metric to access the accuracy of intent conditions that we

generate:
size(allStatementsSet)−size(unhandledSet)−size(incorrectSet)

size(allstatementsSet)
The accuracy results are shown in figure 3. The accuracy of

path’s intent conditions is high and no app has a rate lower

than 90%. This indicates that for the overwhelming majority

of cases, our tool can generate correct intent conditions.
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Fig. 3. Accuracy of Intent Conditions

B. RQ2: Can our tool apply to practical apps?

1) Experiment Results: The analysis result of 439 apps

is shown in Table I, For each capability leak, we counted

the number of apps have the capability leak (i.e. App

Count column) and the number of the capability leak’s

points in all apps (i.e. All Count column). There are 2239

capability leaks of 16 kinds of permissions, including some

serious capability leaks, such as DISABLE KEYGUARD,

KILL BACKGROUND PROCESSES, MOD-

IFY AUDIO SETTINGS and so on. Therefore, our

tool can detect capability leaks efficiently.

TABLE I
CAPABILITY LEAKS LIST

Permission App Count All Count
DISABLE KEYGUARD 8 9

CHANGE WIFI MULTICAST STATE 1 1
SET WALLPAPER HINTS 4 4

BROADCAST STICKY 84 84
ACCESS FINE LOCATION 106 180

ACCESS COARSE LOCATION 94 157
CHANGE WIFI STATE 3 4

ACCESS NETWORK STATE 323 1071
GET TASKS 216 272

WAKE LOCK 56 81
ACCESS WIFI STATE 227 318

MODIFY AUDIO SETTINGS 4 4
SET WALLPAPER 1 1

BLUETOOTH 7 10
READ PHONE STATE 30 35

KILL BACKGROUND PROCESSES 7 8

2) Exploitation Analysis: App A is a popular lock screen

app and has been downloaded more than 10 million times.

We found that it has a DISABLE KEYGUARD capabil-

ity leak. We guess that there is an illegal login vulner-

ability. Then We use exploits generated by our tool to

attack app and they help us pass the lock sceen without

a password. The attack demo is on the youtube 1. We

have informed the app’s developers. App B is a clean

app, whose function is phone clean. And we found that it

has KILL BACKGROUND PROCESSES capability leak. It

may be used by other apps to kill processes. The attack demo

1https://youtu.be/rWdSiWUy2bc

is on the youtube 2. Except for capability leaks, we found

that a lot of apps crashed when we used our exploits to

launch them, which is a kind of local denial of service attack.

So these apps must be more robust, it may be leveraged by

other apps for vicious competition. Therefore, our exploits

are valid and help users find bugs.

C. RQ3: Runtime Efficiency
Table II presents static analysis part and dynamic test

part’s average, minimum, and maximum execution time of

439 apps. As shown in table II, The total average time for

each app analysis is less than 4 minutes. The maximum time

for static analysis app is 5168.494s, which is about 1.43h.

1.43h is a reasonable analysis time for generating highly

precise intent test cases and few apps’ static analysis is more

than 16 min in our statistics. Therefore, our optimization

for symbolic execution of inter-component capability leaks

detection is efficient, and our tool meets the requirement of

actual use.

TABLE II
EXECUTION-TIME

Period Execution Time
Average Minimum Maximum

Static 185.228s(3min) 0.078s 5168.494s(1.43h)
Dynamic 52.984s 7.414s 889.919s(14.82min)

IV. RELATED WORK

There are many static analysis works for detecting security

problems of inter-component communication (for example:

[13], [14]). But they all cannot determine whether the

vulnerability really exists and developers have to spend much

time in vulnerability analysis. Fang Liu et al. [15] proposed

the MR-Droid to find inter-component communication vul-

nerabilities among practical apps, which uses the map-reduce

system to detect communication vulnerabilities among large-

scale apps. The results of the tool are limited by the dataset

and it does not take into account malicious apps. Its result

can not indicate the detected app is security. And [16] also

has this problem.

V. CONCLUSION

We propose an effective tool which can automatically

generate capability leaks’ exploits of Android applications

with symbolic execution and test. It can aid in reducing

false positives of vulnerability analysis and help developers

find bugs. Our tool can apply to practical apps because of

our optimized symbolic execution. We analyzed 439 apps in

Wandoujia and found 2239 capability leaks of 16 kinds of

permission.
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