
IOP Conference Series: Earth and Environmental Science

PAPER • OPEN ACCESS

Analysis to Heap Overflow Exploit in Linux with
Symbolic Execution
To cite this article: Ning Huang et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 252 042100

View the article online for updates and enhancements.

Recent citations
Minglei Li et al-

Winfred Yaokumah et al-

This content was downloaded from IP address 123.15.36.11 on 08/06/2021 at 02:19

https://doi.org/10.1088/1755-1315/252/4/042100
http://dx.doi.org/10.1109/ITNEC48623.2020.9084789
http://dx.doi.org/10.1109/ITNEC48623.2020.9084789
http://dx.doi.org/10.4018/978-1-7998-3149-5.ch002
http://dx.doi.org/10.4018/978-1-7998-3149-5.ch002
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuutMY6k48f5cClYx8O5JMp_0NbLSKwPh8bPpgMczou3fheokU7bv3JGxoYab-I9U9abQv2QWNA9r3FH7kSBC_r6kFWcSksZq8kntq30CDaW9qswliw_3mo7JpH2u52mRiULgSSVRwwLvFWoc0ZdIMbZxb0r9i5B38YHLNXIz9K_4G3ne-gRXCzwtVr8aakp1Cein1lHFPcFmmrXbjmlTQcAk5mBQRluxXFV9oX-SVBA_jfjz-HfLc5c49WqGgHAzOFOsjIFWnGNNUkF0rk9Q&sig=Cg0ArKJSzCUwSxmDPOlY&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/ecs-blog/call-for-nominations-editor-in-chief/%3Futm_source%3DIOPConferenceServicesEIC%26utm_medium%3DIOPConferenceServices%26utm_campaign%3DSENSEIC

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

1

Analysis to Heap Overflow Exploit in Linux with Symbolic
Execution

Ning Huanga, Shuguang Huangb and Chao Changc

School of Electronic Engineering, National University of Defense Technology, Hefei
230037, China

atrukimurarin@163.com, b809848161@qq.com, c1063311751@qq.com

Abstract. Heap overflow is a common error of buffer overflow in Linux. The control
flow of a program may be hijacked when the program satisfies several specific
conditions. The existing automatic exploit generation technologies for buffer overflow
find vulnerability trigger point and generate exploit by checking the control flow state.
However, the heap overflow data rarely lead to a control flow hijacking as well as
protection mechanisms limit the trigger condition. It is difficult to analyze the
exploitability of heap overflow automatically through the existing analysis technology.
For the heap overflow errors in Linux, we summarize the features of exploit on the
basis of analyzing the instances, building the detection model of the exploitability of
heap overflow, and proposing a method for analyzing the exploitability of heap
overflow based on the model. The proposed method monitors the input data and
insecurity functions of the program by using taint analysis; builds the path constraints
and data constraints which satisfy the conditions of heap overflow exploit through
selective symbolic execution; solves the abovementioned constraints and generates the
test case automatically. All the steps of our method can be finished automatically by
using the symbolic execution tool S2E. The experiments show that this method can
automatically analyze and detect the exploitability of heap overflow errors.

1. Introduction
The development of information technology has highlighted the discovery and exploit of software
vulnerability. Many vulnerabilities can be mined effectively by mining technologies, but only a part of
these vulnerabilities can be exploited, thereby causing serious consequences. The rapid and accurate
analysis of the exploitability of vulnerability has come to a key problem of vulnerability analysis and
detection [1] [2].

Heap overflow error is a common buffer overflow weakness. The exploit of heap overflow
vulnerabilities may lead to the hijacking of a program control flow and arbitrary code execution. Linux
has set several protection mechanisms to prevent control flow hijack through heap overflow attack.
Several well-known mechanisms include double free, double linked conflict detection, and chunk size
detection. However, the exploit instances have shown that heap overflow remains an effective attack
on several instances in recent years.

Many related research and results are available for automatic detection and exploit generation of
control flow hijacking vulnerability [3] [4], such as AEG [5], CRAX [6] [17], MAYHEM [7] and

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

2

PolyAEG [8]. These methods mainly use taint analysis and symbolic execution to determine the
hijacking point of the program, solve the path constraints from a source point of data input to a
hijacking point, and generate exploit. However, the following restrictions apply to analyze the
exploitability of heap overflow: (1) In normal cases, the heap overflow data will indirectly cover key
data that may cause IP register hijacking. (2) The trigger of a heap overflow exploit depends on the
allocation and free operations to the chunks by the operating system. Existing detection techniques
lack the analysis of these problems.

Hao et al [16] proposed a method AHEG for automatic heap exploit generation on the basis of
AEG. This method is implemented on the precondition that there is a path to hijack the EIP caused by
heap error. However, in the actual cases, the discovery of this path is restricted by some special
protection or check mechanisms of Linux.

Based on the abovementioned starting point, we propose an automatic exploit generation method
for heap overflow in Linux. This method marks the input that may trigger a heap overflow error as the
tainted source, takes functions as analysis units, extracts the features of the tainted data changes during
the heap overflow exploit, designs a progressive vulnerability detection model, and filters out
vulnerabilities that could lead to control flow hijack. Furthermore, we propose certain new solutions
for several problems encountered in the field of automatic exploit generation for heap overflow. The
validity of the method is verified by testing several test sets and projects in Linux and provides a new
idea for improving the accuracy of the analysis for exploitability of heap overflow errors.

2. Background

prev_size

size

fd

bk

F

fd_nextsize

bk_nextsize

size of previous chunk
in the memory

size of the
chunk

allocation state of previous
chunk in the memory

address of previous
chunk in the bin

address of next
chunk in the bin

pointers only in the large bin

Figure 1. Structure of chunk header.

The Linux system uses a dynamic library, glibc, to manage the allocation, release, merger, or
several other operations of chunks. Glibc manages the freed chunk through a link list structure called a
bin. Every kind of chunk will be inserted to its corresponding bin after it is freed. Each chunk has its
specific header to record the information of the chunk. Fig. 1 depicts the structure of a chunk header.
According to the analysis on heap overflow exploits, we conclude that heap overflow exploit has three
basic types.

(1) Overwrite the chunk pointers in chunk headers, such as an unlink attack. This exploit type
requires the allocation and release of the chunks. In these processes, the pointers and flag bit in the
header must be modified to be able to use the fake information to cheat the system, bypass the
protection mechanisms, and direct them to an illegal controllable memory to achieve the exploit.

(2) Overwrite the chunk size in chunk headers, such as a house of force. We can use overflow data
to override the size of adjacent chunk and modify it as an arbitrary large. Afterward, write in the
modified chunk again to achieve the anywhere-write-anything.

(3) Overwrite the key data in the adjacent chunk. In certain cases, the key data may be stored in the
chunk. If the overflow data, which can be controlled by input, cover this area, then we can also
achieve the same goal as abovementioned.

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

3

We find that the program with heap overflow, which satisfies the following three conditions, will
lead to control flow hijacking by studying the types of heap overflow exploits above: chunk overflow,
exploitability of the chunk overflow, and exploitability of the key data. We define the following
features of the program to indicate whether the program satisfies the abovementioned conditions.

isOverflow (C): We use this feature to describe the chunk C is overflow.
isChunkExploitability (C): We use this feature to describe whether the overflow chunk C can be

controlled by tainted data.
isKeyExplotability (A): We use this feature to describe the exploitability of a key. Parameter A is

the attribute of the key data. Parameter A will be a variable pointer, function pointer, or several other
key data in different exploit modes.

isExploitable: We use this feature to describe whether the program satisfies all the attack
conditions. If all these features are satisfied, then the value of isExploitable will be true; else, it will
be false. Therefore, the value of isExploitable can also be expressed as Eq. 1:

() () ()isExploitable isOverflow C isChunkExploitable C isKeyExploitable A   (1)

3. Implementation

3.1. System Overview
We implement an automatic exploit generation method for heap overflow in Linux called HADE. Fig.
2 demonstrates the framework of the HADE. First, we send a crash file to the program that runs in the
virtual machine as seed inputs. The HADE works in the host and uses S2E [9] [10] as its symbolic
execution engine. The S2E will mark and then symbolize the seed inputs as tainted data. Afterward,
the optimized symbolic execution with path-guided algorithm [11] [12] enables the program to run
along a determined path and finally reach the code area that contains heap overflow errors. Fig. 3
shows the process of path selection in the optimized symbolic execution.

Symbolic Execution Part
Target

Program

Crash

Information
Collector

Exploit
Constraints
Constructor

Exploit
Constraints

Constraint
Solver

Exploit

Figure 2. Framework of HADE.

Heap
Overflow

Crash File

Figure 3. Path selection to the heap overflow point.

As is shown in Fig. 4, the exploit constraints constructor contains three sub-modules: heap
overflow detection, exploit mode matching and controllability detection of key data.

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

4

Heap Overflow
Detection

Controllability
of Overflow

Chunk

Key’s
Controllability

Detection

Data
Constraints of

Chunk

Data
Constraints of

Key

Path Constraint

Exploit
Constraint

Result of Heap
Overflow

Exit

There is no heap overflow
error in this path.

There is heap
overflow error

in this path. Exploit Mode
Matching

Figure 4. Implementation of Exploit Constraints Constructor.

Various modes of heap overflow exploits are available, and the exploit of every mode requires

different conditions. In the present study, we will introduce the following three exploit models that
have been constructed in the HADE: unlink, house of force, and house of lore. In addition to the three
models, people can construct other models of heap overflow exploit and add them to the HADE as
plugins.

The relationship between exploit constraint with data constraints and path constraint can be
described as Eq. 2:

exploitConstraint = dataConstraint pathConstraint (2)

By contrast, the data constraint consists of two parts: chunkConstraint, which indicates the data
constraint of the chunk for exploit; keyDataConstraint, which indicates the other data constraints of
other key data. Their relationship is as Eq. 3:

dataConstraint chunkConstraint keyDataConstraint  (3)

By analyzing the chunks that involved in heap overflow, we summarized three parts of chunk data

which is needed for exploit. They are: Data of overflow chunk, whose data constraints is
overflowChunkConstraint; Data of overflow data, whose constraints is overflowDataConstraint; Data
of fake chunk, whose constraint is fakeChunkConstraint. Their relationship is shown as Eq. 4:

chunkConstraint overflowChunkConstraint overflowDataConstraint fakeChunkConstraint   (4)

To analyze the exploitability of heap overflow, we need to collect some necessary information of

program states. We hook the function of the program that runs in QEMU [13] and retrieve the
information of each chunk. In accordance with the different operations on chunks, each chunk has four
kinds of states: initial (only after its allocation), written (while the chunk is written), freed (after the
chunk is free), and null (after the chunk pointer is null). The state of the chunk will be updated when
the hooked function is detected. The update rules are summarized in Table 1.

Table 1. Update rule of chunk.

Operation States of Chunks Rules of the State Transition
Allocate Allocated Init (C); add_to_chunklist (C)

Write Written byte  bytewrite
Free Freed del_from_chunklist (C), add_to_bin (C)
Null Null del_from_bin (C)

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

5

3.2. Automatic Analysis Steps
The whole module of exploit constraints constructor will work as the following steps.

(1) Heap overflow detection. We can easily recognize the memory area tainted by input because the
S2E will mark the input as tainted symbolized data. Thus, the chunk is checked each time after it is
written, and its size is compared with those of the symbolized blocks to determine the error point of
the program and determine the chunk that overflows.

We judge that chunk C is overflow by comparing the initial length of chunk C with the size of the
symbolic block S. Fig. 5 displays the change of the C state.

C

p p

C

concrete
value

symbolic
value

overflow
data

write(p1, length)

Initial State Written State After Written

Figure 5. Change in the state of the chunk.

We assume that the set Symb includes all the symbolic blocks in memory and the set Chunk
includes all the chunks which are allocated legally.

If chunk C is overflow, and the overflow data are tainted by symbolic data, then we add it to the
chunk set Chunkoverflow. We use Algorithm 1 to judge if the C is overflow.

Algorithm 1 Heap Overflow Detection
Input: Chunk, Symb
Output: Chunk overflow
foreach(C in Chunk)

foreach(S in Symb)
 if(C.addr + C.size  [S.addr, S.addr + S.size]):
 Chunk overflow  C

 break
end if

return Chunk overflow

(2) Heap overflow exploit mode matching. Various exploit models are built to match different
exploit modes, and the models are input to the HADE as its plugins. The HADE will hook the marked
function and match the execution states with our model when the program is running. Through exploit
mode matching, HADE builds the data constraints that can trigger the attack.

We implement that the HADE can recognize the following three kinds of exploit mode by
matching the exploit mode: unlink, house of force, and house of lore.

In order to describe the states of chunks more easily, we define the following function to show the
location states of two memory blocks:

 (1, 2)Neighbour block block

If the return value of Neighbour is true, it indicates the two memory blocks, block1 and block2, are
adjacent and the start address of block1 is smaller than the block2.

During the analyzing of the exploitability of heap overflow, we usually meet a problem that the
program may start to execute exception handling functions because of the failure operation to the
pointers of chunk. The root cause of this problem is that program cannot recognize the key values

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

6

correctly if they are tainted by symbolic values. To solve this problem and prevent the target program
exiting incorrectly, we have to concrete some specific symbolic values according to the memory state.
Therefore, we use the following function to express the concrete rules:

Concrete(,)addr size .

The definitions of the parameters in Concrete are:
addr: the start address of the concrete block;
size: the length of the concrete block.
The implementation of exploit mode matching is shown in Code 1.

Code 1 Exploit Mode Matching.
TA:
 /* Execute Algorithm 1 */

isOverflow(c)  Overflow_chunk_search(Chunk, Symb);
assert(! isOverflow(c));

TB:
memCondition  Memory_layout_condition();
(Rule, exploitType)  Judge_exploit_type(memCondition);

TC:
Concrete_symbolic(Rule, exploitType);

TD:
expTrigger  Judge_trigger(memCondition, exploitType);
chunkConstraint  Constraint_construction(Rule, expTrigger);

return chunkConstraint;

In Code 1, TA, TB, TC and TD indicate the different moments of program execution. All of these
moments may be different for programs. In some case, some of these moments may indicate the same
moment. HADE monitors the dynamically running programs at all times and does the corresponding
analysis and operation according to the execution states of programs. Table 2 shows the conditions for
the operation moments above in different modes of exploit.

Table 2. Conditions for the operation moments in different modes of exploit.

Exploit Mode TA TB TC TD

unlink
p1:Allocated
p2:Allocated

Neighbour (p1, p2)
p1:Written isOverflow (p1) p2:Freed

house of force
p1:Allocated

Neighbour (p1, topChunk)
p1:Written

isOverflow (p1)
p2:Allocated

isKeyExploitable (p2.size)
p2:Allocated

isKeyExploitable (p2.size)

house of lore
p1:Allocated

Neighbour (p1, p2)
isOverflow (p1)

p2:Freed
isKeyExploitable (fake)

p2:Allocated
fake:Allocated

When we find a chunk that is overflow by Algorithm 1 at moment TA, HADE begins to collect the

execution states of program.
When HADE collects enough execution states, the chunk’s layout condition of memCondition is

constructed. Based on the memCondition, we can judge what type of exploit the heap overflow may
match and get the exploit mode exploitType and concrete rule Rule at moment TB. The mapping from
memCondition to exploitType is shown as Table 3.

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

7

Table 3. Mapping from memCondition to exploitType.

memCondition exploitType
(p1, p2Chunk) (p1Chunkoverflow)

Neighbour(p1, p2)
unlink

(p1Chunk) (p1Chunkoverflow)
Neighbour(p1, topChunk)

house of force

(p1Chunk) (p1Chunkoverflow) (p2Chunk)
Neighbour(p1, p2)

house of lore

The concrete rule for each mode of exploit is shown in Table 4. With the executing of program, we

may find a problem that due to the checking mechanisms, some operation to the chunks may lead to
exception handling. Therefore, HADE need to concrete some key symbolic value to keep the program
executing dynamically and correctly at moment TC according to the exploit mode exploitType.

Table 4. Concrete rule Rule for each exploitType.

exploitType Rule
unlink Concrete(p1.addr, sizeof (p1.header.fd))

house of force
Concrete (p1.addr+p1.size+sizeof (p1.size), sizeof (p1.size))

Concrete ([esp]+4, sizeof (p2.size))

house of lore
Concrete (fake.addr, sizeof (fake.header))

Concrete (p2.addr, sizeof (p2.header))

At moment TD, we judge the final condition of heap overflow exploitability for different
exploitType. We use expTrigger to record the layout conditions memCondition and exploit mode
exploitType. Then, HADE builds suitable chunkConstraint on the basis of expTrigger. The
construction of chunkConstraint must follow the specific rules Rule. The data constraints built by
HADE for each exploit mode is shown as Table 5.

Table 5. Data constraints for each exploitType.

exploitType overflowChunkConstraint overflowDataConstraint fakeChunkConstraint keyDataConstraint

unlink p1.fd  k_addr - 12
p2.F  0

p2.prev_size  p1.size
-- fake.bk  X

house of
force

-- top_size  -1 --
p2.size  (X –
top_addr – 16)

house of lore -- p2.bk  fake.addr fake  X
fake.fd  p2.addr

fake.size  p2.size

(3) Overflow chunk’s controllability detection. This module is used to check the exploitability of
overflow chunk. Occasionally, specific data must be placed in an accurate position in the overflow
chunk for exploit. The data constraint of overflow chunk will also be constructed in the symbolic
blocks because our detection method is implemented on the basis of symbolic execution and taint
analysis. An exploitable overflow chunk’s structure is presented in Fig. 6.

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

8

Overflow data

p1 data
(Symbolic)

p1 data
(Concrete)

p1 header

Figure 6. Structure of the overflow chunk which can be controlled by input data.

In this step, the constraint of overflow chunk chunkConstraint consists of over flow Chunk
Constraint and overflowDataConstraint. Their relationship is shown as Eq. 5:

 chunkConstraint overflowChunkConstraint overflowDataConstraint  (5)

If and only if all byte constraints of the bytes in overflow chunk and overflow data are compatible

with their corresponding conditions, we call this overflow chunk is controllable and return the data
constraint of overflow chunk constraint.

(4) Key’s controllability detection. This module is used to monitor the key data in the program
memory. HADE detects the controllability of key data by checking the compatibility between
keyDataConstraint which is built in exploit mode matching and the byte constraints of key data. If
they are not compatible, it means the key data cannot overwritten by the keyDataConstraint that may
lead to the failure of the heap overflow exploit. In this case, we call the key data is uncontrollable.

4. Experimental Results and Discussion

4.1. Running Time of HADE
We use programs of Juliet Test Suite v1.2 as test programs to verify the detection ability of heap
overflow of HADE. All the experiments are run in the Ubuntu-32bit system. The hardware
environment includes: Intel Core i7 7th Gen CPU; 16GB memory; SSD with 256GB. As a contrast,
we also choose the CRAX for the same experiments. Both HADE and CRAX use S2E for the
symbolic execution.

There are 11 sets of programs in CWE122_Heap_Based_Buffer_Overflow for different types of
heap overflow errors. We divide our test programs into 11 groups according to the sets of
CWE122_Heap_Based_Buffer_Overflow. We firstly run all programs with crash files by HADE and
CRAX. The time for symbolic execution is shown in Fig. 7.

Figure 7. Average time of heap overflow detection with crash files.

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

9

Programs run along a certain execution path by optimized algorithm with crash files. Therefore,
there are not path selection when programs run with crash files. However, HADE still need more time
than CRAX. This result means that HADE pays more time to run the same execution path than CRAX.

Figure 8. Time comparison between HADE and CRAX.

To find out the reasons for the difference in time, we record the time that each step of HADE needs
and compare them with CRAX. The result is shown in Fig. 8.

There are mainly two steps HADE must finish that CRAX has not. The first step is to detect the
heap overflow errors; the second step is to analysis the exploitability of overflow chunk. The heap
overflow errors detection result that analyzed by HADE and CRAX is shown in Table 6. HADE is
able to generate the overflowChunkConstraint and overflowDataConstraint for all programs. By
comparison, CRAX can generate neither of them.

Table 6. Heap overflow detection results.

Tool overflowChunkConstraint overflowDataConstraint
HADE ✓ ✓
CRAX × ×

Therefore, we can conclude that each step of HADE needs less time of symbolic execution than

CRAX, but the sum of them is more than CRAX.

4.2. Exploit Mode Match Ability of Heap Overflow

Table 7. Experimental results by the HADE.

Program Name Input Source Symbolize Input Length
CWE131_memmove_31 arg. 400

CWE805_wchar_t_memcpy_01 arg. 40
unsafe_unlink [15] file 400

Goahead [14] stdio 2000
shellman (unlink) stdio 400

shellman (House_of_force) stdio 400
shellman (House_of_lore) stdio 400

House_of_force [15] file 380
House_of_lore [15] file 420

Calc stdio 100

We collect 10 programs that contain heap overflow errors for our experiment. All these programs

are written by using the C language. Protection mechanisms that defend against exploit have two kinds:

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

10

one mechanism is the protection of the Linux system, such as N/X and PIE; another mechanism is the
checking mechanisms in glibc, such as double free checking and double linked list conflict detection.
All these mechanisms will be turned off during our analysis. The input information and experiment
results are displayed in Table 7.

Most of the crash analysis tools detect the corruption state of the program by monitoring the
symbolic state of the IP register. CRAX is a typical crash analysis tool. We use the CRAX to analyze
the programs to judge whether they can generate test cases to compare the effectiveness and difference
between HADE and existing tools. The comparison results are summarized in Table 8. In this table, t1
is the average time for systems to analyze the target programs, and t2 is the average time for systems
to generate the test cases of target programs.

Table 8. Comparison of the test case generation results between CRAX and HADE.

Program Name
CRAX HADE

t1/s t2/s t1/s t2/s
CWE131_memmove_31 1.0 - 1.9 -

CWE805_wchar_t_memcpy_01 1.0 - 1.8 -
unsafe_unlink 0.9 - 4.2 4.8

Goahead 3.4 - 5.7 -
shellman (unlink) - - - 3.8

shellman (House_of_force) - - - 3.7
shellman (House_of_lore) - - - 3.8

House_of_force 1.0 - 4.1 3.9
House_of_lore 0.9 - 4.1 3.9

Calc 2.3 - 5.2 5.1

The results in Table 8 indicate that CRAX uses less average time than HADE to analyze target
programs. By contrast, no test cases are generated by the CRAX for all these programs, but the HADE
generates test cases for seven of these programs. We can conclude that the HADE can analyze the
exploitability efficiently by increasing the execution time.

However, the HADE does not generate test cases for another three programs. We perform
additional analysis in accordance with the experimental records to analyze the reason. Table 9 presents
the records of paths to the heap overflow error point and concreted symbolic blocks based on different
crashes provided by the fuzzing module.

Table 9. Constraint construction results by the HADE.

Program Name Paths to the Heap Overflow Point Concreted Symbolic Blocks
CWE131_memmove_31 1 1

CWE805_wchar_t_memcpy_01 1 1
unsafe_unlink 1 1

Goahead 0 1
shellman (unlink) >1 1

shellman (House_of_force) >1 2
shellman (House_of_lore) >1 2

House_of_force 1 2
House_of_lore 1 2

Calc >1 2

In Table 9, the HADE constructs a path constraint to the heap overflow point for nine of the
programs but not for Goahead.c. We find that the reason for the heap overflowing of Goahead.c is
written to the chunk through a nonlinear change in the tainted data by analyzing the source code of

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

11

Goahead.c. We use KLEE and S2E as the basic symbolic execution engines for the HADE. Most of
the symbolic execution tools, including KLEE and S2E, have limitations in analyzing the nonlinear
program path; thus, the tainted data may lose their symbolic attribution. Hence, the HADE cannot
construct the path constraint to the heap overflow point for Goahead.

Alternatively, shellman and Calc run along the path based on different inputs, which enable them to
have more than one path to the heap overflow point. Therefore, the HADE builds different path
constraints with various crashes.

Before the experiments, we modify a part of the source code of unsafe_unlink, House_of_force,
and House_of_lore in shellphish/how2heap for all these programs to read the input through files. The
path to the heap overflow point is 1 because the three programs have a single path. In the dynamic
analysis, the HADE finds that the concreted symbolic blocks are 1, 2, and 2 given their different
exploit models.

CWE131_memmove_31 and CWE805_wchar_t _memcpy_01 are single-path programs. The
number of their concreted symbolic blocks is 1.

Table 10 displays the analysis results of the program feature detected by the HADE. Heap overflow
errors exist in CWE131_memmove_31 and CWE805_ wchar_t_memcpy_01, but these errors do not
match any exploit mode that we have set in the HADE. Moreover, the two programs satisfy the
conditions of the heap overflow and overflow chunk’s exploitability but do not satisfy the condition of
key’s exploitability.

Table 10. Program feature detection results by the HADE

Program Name Exploit Mode
Heap

Overflow
Overflow Chunk’s

Exploitability
Key’s

Exploitability
CWE131_memmove_31 - ✓ ✓ ×

CWE805_wchar_t_memcpy_01 - ✓ ✓ ×
unsafe_unlink unlink ✓ ✓ ×

Goahead unlink × × ×
Goahead (modified) unlink ✓ ✓ ✓

shellman (unlink) unlink ✓ ✓ ✓
shellman (House_of_force) House_of_force ✓ ✓ ✓
shellman (House_of_lore) House_of_lore ✓ ✓ ✓

House_of_force House_of_force ✓ ✓ ✓
House_of_lore House_of_lore ✓ ✓ ✓

Calc House_of_force ✓ ✓ ✓

Unsafe_unlink, House_of_force, House_of_lore, and Calc satisfy all the conditions that heap
overflow exploit requires. Moreover, these programs can match at least one of our exploit modes.

The symbolic execution with optimized path-selecting algorithm makes the shellman run along
different paths in accordance with the crashes that input to the program. We find that shellman can
satisfy all the three exploit modes by running along different paths. Meanwhile, shellman also satisfies
the conditions of heap overflow, overflow chunk’s exploitability, and key’s exploitability.

Owing to the limitation of the symbolic execution, the HADE cannot build path constraints to the
heap overflow point of Goahead. We re-symbolize the data that will result in the heap overflow to test
the effectiveness of our exploit models. The experimental results show that the modified Goahead
satisfies all the features of the heap overflow exploit.

5. Conclusion
This study analyzes the features of heap overflow exploit, builds analysis models and algorithms, and
implements the analysis method HADE for the exploitability of heap overflow in Linux on the basis of

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

12

symbolic execution and taint analysis. The HADE judges whether a program with heap overflow error
can be exploited by analyzing the heap overflow feature, overflow chunk’s exploitability, key data’s
exploitability, and matching exploit mode. The abovementioned works can provide a reference for the
protection from heap overflow exploit.

We select the automatic exploit generation tool CRAX which is also implemented on the basis of
S2E for our comparison experiments. 11 sets of programs with heap overflow errors are tested to
check the running time of HADE and CRAX. Experimental results show that CRAX pays less time on
the symbolic execution for tested programs, but it is not able to analyze the necessary conditions for
heap overflow exploit in Linux as HADE.

What’s more, ten programs with heap overflow errors are chosen for the experiments to verify the
effectiveness of exploit mode matching of HADE. The results show that HADE can distinguish all
three kinds of exploit in most tested programs.

However, our method still has limitations in the following aspects: (1) the program detected by the
HADE must run in a system without several protection mechanisms, including N/X, PIE, and certain
other glibc checking mechanisms; and (2) the weakness of the symbolic execution for nonlinear data
limit the analysis ability of tainted data that may lead to heap overflow exploit.

References
[1] C. Miller, J. Caballero, U. Berkeley, et al. “Crash analysis with BitBlaze”. Revista Mexicana De

Sociología, Vol.44, pp.81-117.
[2] X. Jia, C. Zhang, et al. “Towards Efficient Heap Overflow Discovery”. 26th USENIX Security

Symposium 2017, pp.989-1006.
[3] L. He, P. Su. “Research Progress on automatic Exploit of Software Vulnerabilities”. China

Education Network 2016 (z1), pp.46-48.
[4] D Brumley, P Poosankam, D Song, et al. “Automatic Patch-Based Exploit Generation is

Possible: Techniques and Implications”. 2008 IEEE Symposium on Security and Privacy,
pp.143-157.

[5] T. Avgerinos, K. C. Sang, B. Hao, et al. “AEG: Automatic Exploit Generation”. Network and
Distributed System Security Symposium, NDSS 2011 (Vol.57).

[6] S. K. Huang, M. H. Huang, P. Y. Huang, et al. “CRAX: Software Crash Analysis for Automatic
Exploit Generation by Modeling Attacks as Symbolic Continuations”. IEEE Sixth
International Conference on Software Security and Reliability 2012, Vol.2, pp.78-87.

[7] T. Avgerinos, A. Rebert, D. Brumley, et al. “Unleashing Mayhem on Binary Code”. 2012 IEEE
Symposium on Security and Privacy, Vol.19, pp.380-394.

[8] M. Wang, P. Su, Q. Li, et al. “Automatic Polymorphic Exploit Generation for Software
Vulnerabilities”. Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, Vol.127, pp.216-233.

[9] V. Chipounov, V. Kuznetsov, G. Candea. “S2E: a platform for in-vivo multi-path analysis of
software systems”. ACM SIGPLAN Notices - ASPLOS '11, Vol.46, pp.265-278.

[10] V. Chipounov, V. Kuznetsov, G. Candea. “The S2E Platform: Design, Implementation, and
Applications”. ACM Transactions on Computer Systems (TOCS) - Special Issue APLOS
2011, Vol.30, pp.1-49.

[11] H. Huang, Y. Lu, L. Liu, et al. “A research on Control-flow taint information directed symbolic
execution”. Journal of University of Science and Technology of China, Vol.46, no.1, pp.21-
27.

[12] Q. Xiao, Y. Chen , L. Qi, et al. “Detection and analysis of size controlled heap allocation”.
Journal of Tsinghua University, Vol.55, no.5, pp.572-578.

[13] F. Bellard. “QEMU, a fast and portable dynamic translator”. 2005 USENIX Annual Technical
Conference, pp.41-46.

[14] CVE-2014-9707. http: //cve.mitre.org/cgi-bin/cvename.cg-i?name=CVE-2014-9707.
[15] Shellphish/how2heap. https://github.com/shellphish/how2- heap.

ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 042100

IOP Publishing

doi:10.1088/1755-1315/252/4/042100

13

[16] L. T. Hao, D. Brumley. “Automatic Heap Exploit Generation”. Communications of the ACM,
Vol.57, pp.74-84.

[17] S. K. Huang, M. H. Huang, P. Y. Huang, et al. “Software Crash Analysis for Automatic Exploit
Generation on Binary Programs”. IEEE Transactions on Reliability, Vol.63, no.1, pp.270-
289.

