
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

ARG: Automatic ROP chains Generation
YUAN WEI1, SENLIN LUO1, JIANWEI ZHUGE2,3, JING GAO1, ENNAN ZHENG1, BO LI1, LIMIN
PAN1
1Information System and Security & Countermeasures Experimental Center, Beijing Institute of Technology, Beijing, 100081, China
2Institute of Network Science and Cyberspace, Tsinghua University, Beijing, 100084, China
3Beijing National Research Center for Information Science and Technology (BNRist), Beijing, 100084, China

Corresponding author: Limin Pan (e-mail: panlimin2016@gmail.com).

This work is supported by the Beijing National Research Center for Information Science and Technology (BNRist) Network and Software
Security Research Program under Grant No. BNR2019TD01004.

ABSTRACT Return Oriented Programming (ROP) chains attack has been widely used to bypass Data
Execution Prevention (DEP) and Address Space Layout Randomization (ASLR) protection. However, the
generation technology for ROP chains is still in a state of manual coding. While, current techniques for
automatically generating ROP chains are still insufficiently researched and have few successful applications.
On the other hand, the existing methods are based on using Intermediate Language (IL) which is in order to
translate the semantics of original instructions for symbolic execution, and then fill in a predefined gadget
arrangement to automatically construct a gadget list. This kind of methods may bring following problems:
(1) when converting semantics of original to IL, there is a large amount of overhead time, critical instructions
may be discarded; (2) the process of populating a predetermined gadget arrangement is inflexible and may
fail to construct ROP chains due to address mismatching. In this paper, we propose the Automatic ROP
chains Generation (ARG) which is the first fully automatic ROP chains generation tool without using IL.
Tested with data from 6 open-source international Capture The Flag (CTF) competitions and 3 Common
Vulnerabilities & Exposures (CVE)s, this technology successfully generated ROP chains for all of them.
According to the obtained results, our technique can automatically create ROP payloads and reduce up to
80% of ROP exploit payloads. It takes only 3-5 seconds to exploit successfully, compared to manual analysis
for at least 60 minutes, as well as it can effectively bypass both Write XOR Execute (W⊕X) and ASLR.

INDEX TERMS AMOCO, Automatic Exploit Generation, Return Oriented Programming, Satisfiability
Modulo Theories, Z3 solver.

I. INTRODUCTION

EXPLOIT is one of the most common ways to attack the
computer system. How to find and analyze the vulner-

abilities quickly is the key problem of exploit. Traditional
exploit is mainly generated manually, which requires not
only comprehensive system underlying knowledge, including
knowledge about file system, assembly language, operating
system, processor architecture, etc., but also in-depth, careful
studies and analysis of the attacking principles of exploit.
Only in this way can we achieve the purpose of the attack.

With the emergence of defense technologies such as W⊕X
[1] and ASLR [2] which make control-flow hijacks diffi-
cult to exploit, attackers turn to execute elaborately chosen
machine instruction sequences that are already existing in
the machine’s memory. This approach allows an attacker
to perform arbitrary operations on a machine which de-
ployed defenses. Thus, in 2007, Shacham [3] proposed a new

code reuse technology named Return-Oriented Programming
(ROP).

Currently, ROP is the most basic and popular attack
technology. However, this attack still uses manual analysis
and construction, which is low efficient and high costly. In
the trend that software functions are increasingly complex,
and vulnerabilities are increasingly diverse, traditional ap-
proaches have been difficult to cope with these challenges.
Therefore, we need to find new ways.

It is an inevitable trend to introduce automation technology
into the exploit, which is called Automatic Exploit Gener-
ation (AEG) [4] [5]. AEG is rarely considered in terms of
bypassing defenses, but it is still widely used due to its high
efficiency and low cost in finding vulnerabilities and generat-
ing exploits. After decades of development, AEG has become
a mature subject and produces a lot of practical solutions.
Currently, AEG includes the following three aspects:

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

Patch-Based Exploit Generation. Brumley et al. [6]
proposed an automatic exploit generation method based
on the comparison between the original program and the
patched program. Automatic Patch-Based Exploit Genera-
tion (APEG) is the first attempt to generate exploit automat-
ically. Although the idea is relatively simple, it has strong
operability, which can cause the collapse of the original
program while the control-flow hijacking does not succeed.

Data-Oriented Exploit Generation. Hu et al. [7] pro-
posed FlowStitch, an automatic generation method for data-
flow exploit. Although the generated samples cannot directly
execute any malicious code, it is still of great practical value
because it can leak sensitive data on the target host. Later, Hu
et al. [8] proposed a Data-Oriented Programming (DOP). At
the same time, they presented a method based on data-flow
attacks code blocks and instruction scheduling allocation
code blocks for the actual application. The results indicated
that DOP is Turing-complete, can execute the arbitrary func-
tion, and also can be used to bypass both W⊕X and ASLR.

Control-flow Oriented Exploit Generation. Most of
the exploits are control-flow hijacking attacks which have
become the most widespread and popular attacks today.
Presently, the work has been able to automatically generate
exploits under certain constraints, but there are still many
limitations. ROP is one of the most popular ways of control-
flow hijacking attacks [9] [10]. Schwartz et al. [11] showed a
highly reliable automatically generating ROP chains method
named Q. Q is by far the most classical technique and
accepted widely. The key idea is to collect the gadgets in the
target program and then automatically generate ROP chains
[12]. The steps to Q’s approach are as follows:

1. Q finds special gadgets from unrandomized binary or
library file;

2. The gadgets are translated into the semantics of instruc-
tion sequences through Q’s IL — QooL;

3. The above gadgets are assigned in the gadget arrange-
ments that Q generated. Finally, Q builds ROP payloads.

Q hardened 9 real-world Linux and Windows exploits,
enabling attackers to automatically bypass defenses deployed
by the industry for those programs. Q proved that defenses as
currently deployed can be bypassed with new techniques for
automatically creating ROP payloads from small amounts of
unrandomized code.

The AEG method represented by the Q scheme, that has
high ability to solve the problem of ROP chains generation
and is widely used, but the problem of the IL has con-
sequences [13] [14]. For example, meaningful instructions
may be discarded in the process of being converted into
IL, which leads to a small number of available instructions.
Moreover, it reduces the performance of generating ROP
chains, which directly causes control-flow hijacking failure
because no critical instructions can be found. This problem
exists in AEG. In addition, Q has been basically mature and
used for commercial purposes but is not open source. Q also
has some limitions. Firstly, Q still use the ROP payload that
ends with the ret instruction. Secondly, Q focuses on prac-

tical exploitation instead of Turing-completeness. Thirdly,
although Q can automatically generate ROP chains, it uses
the method of gadget arrangement rather than the method of
constraint solving, which is not smart enough.

In this paper, we propose a new technology — ARG,
which efficiently combines the generation capability of AEG
with the ability of ROP chains to bypass defenses, and uses
AEG to increase the running speed and reduce the cost of pro-
gram analysis. In other words, we introduce ROP into AEG to
bypass both W⊕X and ASLR. ARG mainly aims at the long
time-consuming and a large number of available instructions
discarded in the existing process of automatically generating
ROP chains. Moreover, its strong compatibility and usabil-
ity, can effectively reduce ROP chains coding and provide
Python interfaces that analysts can directly call. In addition,
ARG breaks the limitation of ROP exploits payloads ending
with ret instructions, which is Turing-complete. Through
9 real-life vulnerabilities on multi-processor architectures,
such as i386, AMD64, ARM, MIPS, we show that we can
automatically bypass existing defenses. In particular, ARG
only takes 3-5 seconds to successfully exploit, compared
to manual analysis for at least 60 minutes, where Q did
not achieve our effeciency. In this way, it solves the very
complex and difficult problem that is for professionals to
exploit a vulnerability. The demo and source code have been
released [15] [16]. The main contributions of this paper are
summarized below:

ARG is based on the characteristics of the Directed
Acyclic Graph (DAG), and uses symbolic execution tech-
nique for automatically generating ROP chains. It can suc-
cessfully bypass DEP and ASLR protection. ARG sym-
bolizes instructions solves the preconditions of constraint
solving without using IL. Moreover, this method can trans-
form the instructions into an algebraic model, which greatly
improves the available number of gadgets. In addition, ARG
first attempts to automate the link gadget by using DAG, and
uses the topological sorting method to avoid overwritten of
register value, which is the phenomenon of side effects in Q
when the register is reused. In order to improve the efficiency
of automatically generating ROP chains, ARG uses the Z3
solver to solve the ROP chain algebra model.

II. RELATED WORK AND BACKGROUND KNOWLEDGE
This section provides background and state-of-art about ARG
and ROP.

A. ROP
ROP is a system security exploit technology, where through
it, an attacker can control the execution stack to complete
control-flow hijacking, and then executes small computer
instruction sequences which already exist in the computer
memory, called gadgets [17]. By combining these gadgets, an
attacker can execute arbitrary malicious code on a computer
that uses defenses. Each gadget usually ends with a return
instruction. Fig. 1 shows the model of ROP payload, where
the value indicates the data to be controlled, and the ret

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

indicates the jump to the next instruction. This technology
was first proposed by Solar Designer [18] in 1997, and was
later extended to unlimited chaining of function calls. Our
work is to make the ROP chains automatically generated
through the computer.

FIGURE 1. The memory layout of the ROP attack.

B. W⊕X AND ASLR
W⊕X is a memory protection policy in operating systems,
which means that each page in the memory address space
may be either writable or executable, but not both. Without
W⊕X protection, the program can write data in the memory
area and then run the data. ASLR is also a system security
technology involved in protection of preventing buffer over-
flow attacks. As a security patch for Linux systems, ASLR
was first presented in 2001 but was not widely used until
2007 [19]. It randomly arranges the address space positions
of key data areas of a process, including the positions of
the stack, heap, libraries and the base of the executable, in
order to prevent an attacker from reliably jumping to, such
as a particular exploited function in memory. In addition,
ASLR does not randomize all address spaces, because it
causes unnecessary system performance overhead and makes
it harder to predict target addresses. In this paper, ASLR
refers to randomizing the start address of dynamically linked
library, which usually means randomization of default set-
tings. Currently, modern operating systems use W⊕X and
ASLR together to prevent control-flow hijacking [20]. This
is also two system protections that are mainly bypassed in
this paper.

C. AMOCO
AMOCO [21] [22] is a Python package dedicated to the static
analysis of binary files. At the same time, it is a common
framework for decoding instructions, and is designed to
reduce the time required to implement new architectures
support. Moreover, AMOCO can calculate the functional rep-
resentation of instruction blocks and describe the semantics
of each instruction. It also can provide an abstract memory
model to transparently handle concrete or symbolic values, as

well as other system-dependent functions. In addition, vari-
ous classes in AMOCO are used to implement techniques,
such as recursive traversal, linear sweep, path-predicate, etc.,
which relies on Satisfiability (SAT) / Satisfiability Modulo
Theories (SMT) solvers to discover the control flow diagram.
In this paper, AMOCO plays a key role because it replaces
the IL for symbolization, which is the first time to introduce
the automated construction ROP chains. Compared with IL,
symbolizing instructions by AMOCO has no side effects
and increases the efficiency of automation greatly. We will
describe in detail in the section of analyzing gadgets auto-
matically.

D. DAG AND TOPOLOGICAL SORTING
DAG is a finite directed graph without directed cycles. It con-
sists of a finite number of vertices and edges, with each edge
directed from one vertex to another. Topological sorting is a
topological ordering of a directed graph, and a linear ordering
of its vertices. For each directed edge UV from vertex U to
vertex V, U is ahead of V in the sorting. DAG is used to con-
struct the delivery relationship between gadgets, and multiple
gadget’s connections are key part of the rop chain. However,
topological sorting can guarantee the correct sequence of
gadgets. In order to address the automated combination of
gadgets, this paper is also the first time introducing these two
techniques for the automated generation of ROP chains, and
it will be explained in the next section.

E. SMT AND Z3
SMT [23] is a decision problem of logical formulas, which
is a combinations of background theory expressed in clas-
sical first-order logic and equation. Moreover, SMT can be
considered as a form of constraint satisfaction problem, and
therefore as a certain formal method of constraint program-
ming. Z3 [24] is a new and efficient SMT solver provides free
of charge by Microsoft Research. It is used to solve problems
in various software verification and analysis applications, so
it integrates support for various theories. We choose Z3 to
complete the automated solution, and the specific approach
will be introduced in the next section.

F. CONTROL-FLOW ORIENTED EXPLOIT GENERATION
The main idea of Control-flow Oriented Exploit Generation
is analysis programs based on binary analysis techniques,
such as program verification, dynamic taint analysis [25],
and concolic execution [26]. It constructs an execution path
that hijacks program control flow by inputs, thereby allowing
an attacker to run arbitrary code. This technique is mainly
used to detect the exploitability of vulnerabilities and gener-
ating exploits. Currently, in this aspect, the related work has
already been able to automatically generate exploits under
certain constraints. In 2016, the program called Mayhem [27]
automatically defended against cyber attacks. It is a fully
autonomous system that combines online and offline execu-
tion to find and fix system security vulnerabilities. Moreover,
Mayhem introduces an index-based memory model as a prac-

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

tical method to handle symbolic memory loads. In addition,
Wang et al. [28] proposed a PolyAEG, a complete system that
automatically generates multiple exploits for control-flow
hijacking vulnerabilities. It can diversify the combination of
different trampoline instructions and shellcode to generate
polymorphic exploits, and it is able to identify all possible
hijacking points. Although the performance of Mayhem has
improved, most of Mayhem’s work is focused on exploitable
bug finding. Also, Mayhem makes no effort to bypass OS
defenses such as DEP and ASLR, which will likely pro-
tect systems against exploits Mayhem generate. PolyAEG is
based on Qemu [29], which has an interruption in tracking
and passing values. The effect of PolyAEG is not ideal and
some exploits may fail. It can produce exploits only under
specified conditions, and makes limited effort to bypass DEP
and ASLR. ARG is good at bypassing system defenses and
there are no interruptions when using the simulator.

Currently, AEG has gained great achievement in the field
of automatically finding vulnerabilities and generating ex-
ploits, but it is much less concerned with bypassing defenses.
We combine efficient generation capability of AEG with the
ability of ROP chains to bypass defenses in order to help
security personnel to improve the efficiency of the analysis.

III. ARCHITECTURE DESIGN AND IMPLEMENTATION
A. ARCHITECTURE OVERVIEW
This paper proposes a new technology that bypasses DEP and
W⊕X protection to automatically generate ROP chains —
ARG. Fig. 2 shows the end-to-end workflow of ARG. Firstly,
ARG finds available gadgets as input variables. Secondly, it
uses AMOCO to analyze the semantics of the input (available
gadget set). Thirdly, in order to construct DAG to extract
the transitive relation between registers, it traverses the DAG
tree to find all reachable paths, and then uses Z3 to back-
calculate these paths. Finally, ROP chains are automatically
generated. In the following, we will introduce each step of
ARG in detail.

B. DISCOVERING GADGETS AUTOMATICALLY
The first step is to discover gadgets automatically. Instead
of using ROPgadget tool [30] to extract the gadget directly,
we take the search algorithm in ROPgadget and redevelop it
to meet our needs. The principle of extracting the gadget is
shown in Algorithm 1. We define the discovery rules for gad-
gets, filter them according to these rules, and then store them
in Zope Object Database (ZODB) [31] after preprocessing.
The number of gadgets here is huge. It is related to the size
of the program, where the larger the program is, the more
gadgets it contains.

When extracting gadgets automatically, we compared the
performance of three different tools in searching for gadgets.
Table 1 shows the performance of the three tools. It can
be seen that the overall performance of the ROPgadget is
better than others. ROPgadget can find almost as many gad-
gets as Binary Analysis and Reverse engineering Framework
(BARF) [32], but the time cost is much lower than BARF. Al-

Algorithm 1 Extract Gadget
Input: Binary File
Output: Gadgets

1: MAX_SIZE = 200
2: if (data_len >= MAX_SIZE ∗ 1000) then
3: NeedFilter = True
4: end if
5: for Segment to BinaryExecutableSegments(Binary) do
6: gadgets←FindAllGadgetsMultiProcess(Segment,Binary)
7: end for
8: if NeedFilter then
9: gadgets← Simplify(gadgets)

10: end if
11: gadgets← DelDuplicate(gadgets)

though the overall performance of ROPgadget is superior, the
analysts cannot stand such a long-time searches for gadgets in
large-sized programs. Therefore, we must solve the following
problems. (1) It takes a long time to extract gadgets, and
searching for gadgets in large-sized programs makes the time
longer. Even a byte-by-byte fast search algorithm cannot
completely solve the problem of costing a long time. In
response to this problem, we proposed a method for multi-
process searching gadgets and only searching for segments
with executable permissions. This approach significantly re-
duces the search time by introducing a process pool and
iteration parameter. The number of generated processes is
related to the number of executable segments in the libc and
source programs. (2) Table 1 shows that 24,812 available
gadgets are found in the 873k libc. These gadgets have a huge
performance overhead when generating DAG. We remove
duplicate gadgets and simplify the storage format of gadgets
in order to improve performance. In addition, we set a limit
that when the size of stored gadgets is greater than 200k,
ARG will immediately set need_filter to reduce performance
loss.

TABLE 1. Comparison of ROP-tool, ROPgadget, and BARFgadget.

Techniques ROP-tool ROPgadget BARFgadget

Time 21.78s 91.13s 703.816s

Amount 1,229 21,282 24,812

C. ANALYZING GADGETS AUTOMATICALLY
Automated analysis of gadgets is an important part in the
process. In order to implement the automated analysis of
the semantics of gadgets, we need to classify and symbolize
these gadgets.

Table 2 shows the types of gadgets. We define five types
of gadgets: move register, arithmetic, load memory, store
memory, do nothing, and undefined. Through the mutual
combination of gadgets, which can implement basic data
transmission, arithmetic operation, logical operation, branch
statement, system call, and function call. Different types

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

FIGURE 2. ARG design.

of gadgets are available in library functions and programs.
These types of gadgets are combined with each other in
accordance with the Turing-completeness that proposed by
Shacham. We store these instructions by category for the next
step.

TABLE 2. Gadgets category.

Type Gadget

Move Register mov eax, edx ; ret

Arithmetic add ebx, esi ; ret

Load Memory pop rbp ; ret

Store Memory mov dword ptr [rdx], rax ; ret

Do nothing nop

Undefined other types

Symbolizing gadgets is a necessary precondition for auto-
mated analysis of the semantics of gadgets which is in order
to describe the gadgets as a formal language. When these
instructions are symbolized, exploits are turned into a formal
verification problem, and the result is a set of constraints.
Then the instructions use a constraint solver to obtain an
answer that satisfies these conditions. This answer is usu-
ally called payload. We propose a method for symbolizing
gadgets that directly converts semantics. It does not use the
popular IL to analyze the semantics of instructions.

AMOCO provides a method to represent abstract and
concrete symbol values in the virtual memory space of the
process. After importing AMOCO, we respectively obtain

different states of CPU during the execution of the gadget,
and then build the mathematical model. Our method for
symbolizing gadgets can accurately show the semantics of
the instruction fragments and transform the instruction or
function into a symbol algebraic model. However, using
IL to convert gadget discards the side-effect instructions,
which means that a large number of available instructions are
excluded. Before using the Z3 solver, it is necessary to sym-
bolize the instructions to satisfy the input constraints of the
SMT. There are two ways to symbolize instructions: direct
translation and IL. The direct translation is very complicated
and difficult, but there is no side-effect due to converting into
another language. Our work can achieve this effect. ARG
does not use IL, so there are no side effects due to conversion.
Our goal is to get the expressions of registers or memory
locations along a chosen path so that we can better study a
known Control Flow Graph (CFG) of the function path.

ARG uses static analysis technique to analyze the seman-
tics of gadgets, and symbolizes gadgets through AMOCO’s
static analysis technique. The principle of ARG direct trans-
lation is shown in Algorithm 2.

In natural languages, we can easily understand the mean-
ing of the assembly instruction pop rdi, which means to put
the data on the top of the stack into rdi. But how can we
make the machines understand the meaning of the assembly
instruction? We use the code analysis strategies implemented
in AMOCO to disassemble basic blocks directly. According
to the extracted semantics, the mapper chain is constructed.
From this mapper object we can reconstruct the symbolic
CPU state after the execution of gadget. The offset of the

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

Algorithm 2 Symbolic Gadget
Input: Gadget (e.g. pop rdi ; ret)

1: cpu = LoadCpu(ARCH_CPU)
2: code = (asm(Gadget))
3: p = AmocoTypeBinaryGadgets(code,cpu)
4: blocks = list(AmocoInstructionBlock(p))
5: mp = NewAmocoMapper()
6: for block in blocks do
7: if block[Instruction] ∩ ’call’ then
8: NeutralizeCall()
9: end if

10: mp�= block.map
11: end for
Output:

rip←{|[0:64]→M64(rsp+8)|}
rsp←{|[0:64]→(rsp+0x10)|}
rdi←{|[0:64]→M64(rsp)|}

CPU state change is obtained by mapper’s shifts operators.
Finally, we can evaluate a path of gadgets, we can get the
expressions of registers or memory locations along a chosen
path. For example, pop rdi, through mapper to record the
change of each register assignment, maps rdi to rsp, and
records the relative offset between this position (i.e. the
position of rip, rdi, the next rsp) and the rsp. In this way, we
can describe pop rdi as a formal language for the machines
to understand, and map the instruction fragments into a
symbol algebraic model, of which the purpose is to satisfy
the solution by symbolization.

Emulator VS Symbol Execution
Before using symbol execution, we considered using em-

ulators to analyze gadgets. We select three emulator tools:
Unicom [33], Miasm [34], and Qemu, to automatically ana-
lyze gadgets. The emulator can simulate multiple CPUs (x86,
PowerPC, ARM, Sparc) on multiple hosts (x86, PowerPC,
ARM, Sparc, Alpha, MIPS). By using them, we can easily
analyze and debug the target binaries. However, the under-
lying module design of Qemu is very complicated and the
Miasm converted instructions are inaccurate and complicated
to develop. In addition, we also try BARF, which has a
huge performance overhead and takes is too long. Although
Unicom makes it relatively easy for analysts to analyze pro-
grams, in practice, Unicom only implements the simulation
of CPU instructions, and if not being careful, the analysts
may fall into various problems, which lead to continuous
tracking and debugging. It is very disadvantageous for us to
automatically generate codes. Currently, almost all emulators
do not support system calls, thus, memory should be mapped
and data should be written into memory manually before
emulation starts at the specified address.

In addition, the emulator forwards executing process.
When writing a value into memory, the emulator can only
get the path that this value passes, or get the memory address
that this value reaches. If a data operation occurs during this

process that causes the value to be changed or the sequence
to be scrambled, it is difficult for the emulator to continue
analyzing. Compared with the emulator, symbol execution
is easier to analyze. Moreover, the emulator requires more
manual operations and is not suitable for automated analysis.

In summary, we adopted the symbol execution technique
to automatically generate ROP chains. Through extensive
research, we found that many tools use IL, for example:
Valgrind [14] and Angr [35]. LLVM is a very classic and
popular tool, while LLVMIR as its IL is also commonly used.
Almost all IL have such problem: discarding any instruction
sequence that might cause the program to crash. Moreover,
using IL can also causes a lot of performance overhead. ARG
does not use IL. It is based on AMOCO and it can directly
analyze binary programs. Compared with the way of using
IL, ARG can directly obtain the mapping of symbols and
improve the accuracy of analyzing gadgets, while reducing
the overhead of performance.

D. COMBINING GADGETS AUTOMATICALLY
The automated combination of gadgets is the core part of
this paper. There are two preconditions that must be satisfied
before using the symbol execution to automatically construct
ROP chains: (1) describe the transitive relation of the gadget.
(2) determine the order in which the gadget is executed. The
purpose of this is to create constraints for the Z3 solution.

1) DAG
As we all know, gadgets are scattered and discontinuous
fragments of instructions in the programs and libc libraries.
The relationship between these gadgets is like a complicated
fishing net. This paper proposes a method to use DAG to
represent the net of the relationship between gadgets, as
shown in Fig. 3.

FIGURE 3. Convert gadgets to DAG. S represents the top of the stack pointer
and ultimately passes the value to any register.

We define esp as the initial vertex with indegree 0, and
gadget as the vertex of DAG, and directed edge as the
representation of the transitive relation between gadgets. In
this way, we can map the transitive relation of all gadgets to
a DAG, as shown in Table 3, the value passes from esp to ebx
via eax. DAG uses adjacency list to store gadgets.

For example, pop eax ; ret means putting the value of
esp into eax, which is the line passed between registers.
The second instruction, mov ebx, eax ; ret indicates that the
value of eax is assigned to ebx. So gadget01 to gadget02 is a

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

TABLE 3. Storage form of the DAG in the array.

Gadget Addr Instruction Gadget Adjacent Gadget

Gadget01 0x1000: pop eax ; ret Gadget01 [Gadget02]

Gadget02 0x2000: mov ebx ; eax ; ret Gadget02 [Gadget04]

Gadget03 0x3000: pop ecx ; ret Gadget03

Gadget04 0x4000: mov edx ; ebx ; ret Gadget04

directed edge. In this way, all available gadgets are grouped
into a DAG as in Fig. 3. DAG can avoid loops, and can well
solve the problem of path explosion in symbol execution.

2) Topological Sorting
After building gadgets relationship net through DAG, there is
another problem. If the order of the gadgets is wrong, it will
overwrite the values previously set. This will directly lead to
the failure of the ROP chains construction, which is fatal.

Before calling the function, we need to adjust the order of
the gadgets to avoid re-overwriting the registers. As shown in
Table 4, in the wrong combination, the register will be reset.
After analysising, we find the key to the problem is that the
general gadgets assign values to the target register all at once.
But in the smaller programs, there is always a phenomenon
that the gadget cannot be found. This directly leads to the
failure of exploits due to lack of ROP chain components.
At this time, we need a transfer station, for example, the
instruction fragment mov ebx, eax, ret; is a transfer station,
and eax is a transfer register. Although this move gadget can
effectively solve the problem that key registers cannot be
found, it brings new problems. As shown in Table 4, if the
transfer eax is already set before running the instructions,
it cannot be changed. When running mov ebx, eax, ret;
instruction, we will disrupt the previous settings. This is
undoubtedly a serious problem for the construction of ROP
chains.

TABLE 4. An example of the comparison of correct and error sequence.

Assign [eax: 0x1111, ebx: 0x2222]

0x00 0x1000: pop eax ; ret 0x00 0x1000: pop eax ; ret

0x04 0x2222 0x04 0x1111

0x08 0x2000: mov ebx, eax ; ret 0x08 0x2000: pop eax ; ret

0x0C 0x1000: pop eax ; ret 0x0C 0x2222

0x10 0x1111 0x10 0x2000: mov ebx, eax ; ret

0x14 next address 0x14 next address

Correct sequence Error sequence

Finally, we come to the conclusion that when combin-
ing gadgets. We cannot allow the post-executed gadgets to
destroy the results that have already been executed. This
problem mainly exists in gadgets composed of multiple in-
struction fragments, when registers are used a second time.
Therefore, this paper introduces topological sorting to solve
this problem. Topological sorting can determine the correct

order, if there is a directed edge from U to V in the DAG,
then U must be in front of V by using topological sorting.
Moreover, this method can effectively solve the problem of
re-overwriting the values that have already been set. When
we assign a value to the register, we first get the path by
traversing the DAG, then use topological sorting to determine
the correct order of gadgets. We do the above two works to
automatically combine gadgets, the effect is excellent.

In addition, the number of edges in the DAG is less
than the number of vertices. Because using adjacency list
representation saves space compared to using the adjacency
matrix, the adjacency matrix is suitable for the dense graph,
while the adjacency list is more suitable for the sparse graph.
So we consider another storage structure (adjacency list), as
shown in Fig. 4. We use adjacency list to store the results of
topological sorting, as shown in Table 3. After completing
the gadget’s combination, the gadgets are stored in an array,
making it easy to read/write gadgets while programming, and
also more natural and performant to use.

FIGURE 4. It is easy to get the mapping relationship of gadgets through the
adjacency list.

E. CONSTRAINT SOLVING
Through the automated combination of gadgets, we get the
transfer paths between all the registers, such as pop rdi ; ret,
that is, we pass the data in the stack to rdi. Our approach
is to use the constraint solver to get the results. We define
a function f(x) as the value of the register, where x means
the position. ARG can transform the program into a logical
mathematical model, that is an SMT model, from which we
can obtain SMT satisfiability. Under the usual background
theory, if there is an assignment that makes the formula true,
the formula is satisfiable. Otherwise, the formula is unsatis-
fiable, and this assignment is called the model. We create an
SMT model with the logical form of A ∧ B, which is shown
in (1), and it is represented by the mathematical symbol:∏

position, which is the position we want to calculate, that
is the memory address where the data is to be written; B
is represented by the mathematical symbol:

∏
value, which

means the value we want to write at this position. In this
formula, the true return value indicates the input is satisfiable,
and the false return value indicates the input is unsatisfiable.
The symbol ∧ is interpreted as satisfying both

∏
position and∏

value. At the same time, we need to find a set of solutions
that satisfy the correspondence between position and data.
The result is represented by

∏
result symbol, which is a set

of the solution set, and the model of the solution set is shown
in (2). In other words, the model of the solution set has a one-

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

to-one mapping relation between position set and data set.∏
position

∧
∏

value
⇒

∏
result

(1)

In this section, we focus on the specific calculation process
of the formula. The details of the above formula are shown
as follows:{
f(n) = rsp+ offset+ n

SMT (V al ==∗ Concat(f(n1), f(n2), f(n3), . . . , f(nn)))
(2)

Here, the
∏

value is interpreted as Val, which is a
given value. The

∏
position is interpreted as a mathematical

formula: Concat(f(n1), f(n2), f(n3), . . . , f(nn)), where
f(ni) represents the specific position within the stack and
its unit is a byte. f(n) consists of three parts: rsp, offset,
and n. The rsp represents the top-of-stack pointer, which
is commonly referred to the rsp register. We use rsp as a
base address, and all addresses that need to be calculated
are related to rsp in the automated solution process. The
offset represents the size of the address space occupied by
the gadget, which is related to the addressing capability
of the operating system. For example, a 64-bit instruction
occupies 64 bits, but a 32-bit instruction occupies 32 bits.
The n indicates the address number used to distinguish the
position of the byte, which means it can automatically write
the corresponding position by byte-by-byte. Concat() is a
connection function that concatenates all the bits together
in order to get a full byte. The rsp and offset have been
obtained in pre-work of constraint solving. We add two
formulas to the Z3 solver, as shown in (2). If the formula is
satisfiable, check() returns sat; while if not, check() returns
unsat; when check() cannot determine, it returns unknown.
Through model(), the solution set of the equation can be
obtained. The solution set is shown as follows:

n1 → V al1

n2 → V al2

n3 → V al3
...

nn → V aln

(3)

The above solution set represents the relationship between
the position and its value.

F. PROGRAM OPTIMIZATION
After completing the development of the program, we need
to improve the performance of the program. We optimize
the program in the following ways. Table 5 shows the time
performance of the optimized ARG before solving Z3.

1) DAG build optimization
Because DAG generation consumes performance, it is nec-
essary to optimize the generation of DAG paths, and we
adopt the fastest and shortest generation method to optimize
performance. Firstly, we find the smallest gadget. Secondly,
if we cannot find the smallest gadget, we add a register in the

TABLE 5. Total time of the optimized ARG search, analysis and combination
in libc and Xmms2. The First Run Time indicates the time of the first ARG run.
The Second Run Time indicates the time of the second ARG run. The sizes of
libc and Xmms2 are quite different, but their run time differs by less than a
second because we set the threshold. When the search is beyond 200k, ARG
stops discovering gadgets.

Size First Run Time Second Run Time

Libc.so.6 873k 6.74s 2.95s

Xmms2 117k 5.81s 2.33s

intermediate pass register. For performance consideration,
we set a threshold to limit the number of return paths to no
more than 10. In this way, we can avoid a lot of waste of stor-
age space and time caused by repeatedly generating paths,
thus can improve the efficiency of ROP chain generation.

2) Gadget search algorithm optimization
Searching for a large number of gadgets in binary files
and libc wastes a lot of time, and we take two approaches
for performance optimization: (1) Use multiprocess to find
gadgets; (2) Delete duplicate, complex instructions, and save
only the simplified instructions. The purpose is to complete
the search process of gadgets in the shortest time.

3) Function templating
Since the calling function is more complicated, we simplify
the use of the function and directly add the function through
the form of func_call. For example, rop.read(0, elf.bss(0x80))
is actually equivalent to rop.call(‘read’, (0, elf.bss(0x80))).
The benefits of this approach are that reducing the lines of the
script, providing a portable user interface, and simplifying
the usage for analysts.

IV. IMPLEMENTATION
ARG consists of 4 major components: gadget discovery,
gadget analysis, gadget combination, and constraint solving.
ARG is written in Python and includes 3,231 lines of code,
the amount of code is better than Q. We use cProfile[x]
to measure the time of CPU and record the overhead of
major functions. Taking welpwn as an example, ARG calls
3,159,428 functions, which takes only 4.841 seconds. Table
6 shows 10 functions with the most performance overhead.
The ncalls indicates the number of function calls. While
the tottime represents the total running time of the function,
excluding the running time of the subfunction. The cumtime
indicates the running time of the function and all its subfunc-
tions, which is the time between the function call and return.

We introduce the search idea of the ROPgadget tool, rede-
velop it, and use the multi-process method to search for the
gadgets. In addition, we choose the AMOCO to symbolize
the gadgets and use the Z3 solver to solve the constraint.
ARG supports i386, AMD64, ARM, and MIPS. Moreover,
ARG has strong portability, where it can simplify functions
and provide multiple easy-to-use interfaces.

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

TABLE 6. ARG calls 3,159,428 functions in total, of which 3,015,093 is the
original call.

ncalls tottime cumtime function

38 0.657 0.657 Z3_solver_check_assumptions

79,737/1,656 0.399 1.233 _parseNoCache

15,689/10,794 0.335 0.968 core.py:634(_parse)

38 0.158 0.159 Z3_solver_assert

67,982/67,980 0.154 0.174 __init__

105,502 0.123 0.195 _read_stream

90,823 0.112 0.304 core.py:349(_parse)

206,662 0.098 0.098 container.py:40(__setitem__)

248,413/248,412 0.097 0.107 isinstance

11,255/1,656 0.091 1.217 parseImpl

3,159,428 function calls (3,015,093 primitive calls) in 4.841 seconds

V. EVALUATION
In this section, we present experimental work on our proto-
type. Firstly, we evaluate the degree of automation. Secondly,
we show the performance by 6 open-source international
CTF projects and 3 Q’s experimental data (CVE). Thirdly,
we evaluate the hardening of automatically generating ROP
chains whether it can effectively bypass both W⊕X and
ASLR.

A. EXPERIMENTAL SETUP
We evaluated our system on 2 virtual machines running on
a desktop with a 2.30GHz Intel(R) Core i5-6200 CPU and
12GB of RAM. Each VM had 4GB RAM and was running
Ubuntu 16.04 Linux VM and Windows XP SP3 respectively.

B. THE DEGREE OF AUTOMATION
For generating the exploit, the degree of automation is an
important evaluation in the aspects of efficiency, quality, and
stability. The advantage of the prototype is that it is enough
automated and intelligent. If the degree of automation is
not as effective as the manual coding, then the work we
have done is meaningless. Our evaluation of the degree of
automation is mainly reflected in the following five aspects:
• Preliminary test: the prototype can support the most

common types of gadget, which are the shortest and simplest
types such as pop rdi ; ret, etc.
• Intermediate test: the prototype can support multiple

register types, implement assignment, and passing between
registers such as pop eax ; ret ; mov ebx, eax ; ret. This
method is also the focus of this paper, and it is also the most
basic purpose of this paper.
• Advanced test: it is not enough to only support gadget

ending with ret instructions, we can also support other types
of gadgets such as jmp, call.
• The same origin test: the values of both registers are

derived from the same location on the stack such as mov eax,
[esp] ; pop ebx ; ret.

• Stack migration test: when we construct the exploit, we
frequently find that the size of the ROP chains or shellcode
is too large, resulting in insufficient space on the stack. So,
we need to migrate the stack to place with sufficient memory
space such as pop ebp ; ret ; leave ; ret.

In order to demonstrate our experiment better, we select all
the types of gadgets mentioned above as input and automati-
cally generate ROP chains. Each type of gadget corresponds
to a register, so that we can accurately determine whether
each gadget is supported. Table 7 shows that all of the above
types of gadgets can be applied, and each type of gadget
can be a part of the ROP chains. Also, each register can
be assigned successfully. The automated ROP chains are
able to apply a variety type of gadgets and have a high
ability to exploit multiple gadgets, as well as breaking the
limitation of ending with ret instructions. This technique can
bypass the flow detection for the hijacking control attacks
ending with ret instructions well, and greatly improve the
utilization of the automated ROP chains. Compared with Q,
our prototype uses more types and quantities of gadgets in the
automatic construction of ROP chains, with a strong degree
of automation and the ability to find vulnerabilities.

C. PERFORMANCE EVALUATION
For better analysis and research, our experimental data is
from 6 open-source international CTF projects and 3 CVEs
in Q. CTF data is a vulnerability that extracted from real-
world programs. Since Q is used for commercialization and
no open-source code, we can only compare experimental
results with Q, instead of using Q’s code for performance
comparison. Moreover, some experimental data in Q cannot
be found or compiled, so we select 3 typical data in Q for
performance comparison.

ARG is able to reduce all manual coding when generating
ROP chains, and takes far less time than manual analysis
in time performance. For example, 2015 international RCTF
welpwn, which is a vulnerability program, the official code
for manually writing Proof of Concept (POC) has 182 lines.
However, the ARG automatically generated ROP chains have
only 3 lines of code, and the overall amount of code for ex-
ploit has only 40 lines of code. In general, professionals take
at least 60 minutes to manually analyze and generate ROP
chains, while ARG only needs 3-5 seconds. The semantic
analysis in Q takes at least tens of seconds and at most more
than 300 seconds. However, ARG is much lower than Q,
where mainly because our method for symbolizing gadgets
does not use IL, which directly reduces a large amount of
time lost in the process of converting to IL. In addition, Q
uses Pin tracing [36], which symbolically executes the trace
[37], obtaining the constraints. Although this can get more
accurate constraints, the time will increase exponentially. In
a complex real environment, if the program with a large
amount of code or the exploit with complex multipath, the
method represented by Q may cause the failure of automatic
generation, or cause the program crash due to the infinite
running time. However, the total running time of ARG is

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

TABLE 7. We tested the types of gadgets separately and recorded the types supported by ARG. These types successfully assigned values to registers.

Ret Jmp,Call Mov Add Xchg type Migrate type Same origin type

Q Y N N - - N N

ARG Y Y Y Y Y Y Y

Successful assignment Y Y Y Y Y Y Y

only a few seconds, as shown in Table 8, because ARG has
no complicated Pin tracing process. We use a mathematical
model to represent the whole process of the exploit. In other
words, this is also an algebraic operation, so we just need to
solve the mathematical formula to get our results. Moreover,
we use DAG, that can solve the path explosion problem
very well [38]. When we generate a ROP subchain, the
nodes associated with it are removed, thus directly avoiding
the loop. Therefore, the performance of ARG is obviously
superior to Q.

D. ROBUSTNESS OF EXPLOIT
We evaluate the robustness of automated generated exploit in
two ways: (1) whether it can effectively bypass both W⊕X
and ASLR; (2) how to handle exceptions that cannot find
critical registers. From Table 8, we find that the exploit
generated by ARG can bypass both W⊕X and ASLR and
has the expected robustness.

The problem is that we may not find critical registers to
satisfy the transitive relation. In the automated assignment
of gadget, if there is no corresponding register transitive
relation, the robust exploit cannot be generated by ARG. To
solve this problem, we design and implement an exception
handling mechanism to prompt the users that a certain type
of register is not found.

In addition, we frequently encounter the problem that the
official POC has a lot of fixed addresses, so POC may not be
executed in a different environment. However, in this paper,
the problem mentioned above does not occur, because the
generated ROP chain is automatically solved by byte-by-
byte, and it is written into memory once. Therefore, it is more
robust against bypass defenses.

VI. DISCUSSION AND FUTURE WORK
This paper proposes and implements a new technology of
automatically generating ROP chains — ARG to solve the
problem of lost time and cost of manual construction. This
approach can reduce up to 80% of ROP exploit payloads and
take only 3-5 seconds to successfully exploit. Moreover, it
not only improves the efficiency of analysis, but also can
efficiently generate a large number of ROP chains code,
without any manual intervention. The experimental results
show that the automated construction of ROP chains is suc-
cessful. We have successfully generated 9 ROP chains from 9
real experimental data (CVE). Also, all automated generated
exploits can successfully bypass DEP and ASLR protection.
Q is a classic paper that implements a highly reliable method
of automatically generating ROP code in exploits. In the

following, we will focus on the differences between ARG,
Q and improvements of ARG.
• Ret-less ROP
ARG breaks the limitation of ending with only ret in-

structions in automatical generation of ROP chains. While Q
requires the gadgets to end with only ret instructions. Com-
pared with Q, the technique in this paper greatly broadens
the types of available gadgets and improves the efficiency of
gadgets. In our experiment, we show a variety of gadgets that
do not end with ret instructions to construct ROP chains, and
the results meet our expectations excellently. Currently, most
security issues appear on control-flow hijacking attacks, re-
searchers may solve this problem by monitoring the jumped
gadgets to stop continuous gadgets. Therefore, researchers
can improve this aspect of future work.
• Turing-completeness
Compared with Q, ARG takes Turing-completeness into

account, which can realize basic data transmission, arith-
metic operation, logical operation, branch statement, system
call, and function calls. The classification of the gadgets in
this paper can satisfy Turing-completeness that proposed by
Shacham. Also, the iterative combination of these gadgets
can achieve more purposes and functions. This paper simply
shows the Turing-completeness of ARG, and we intend to
improve this aspect in the future work.
• Cache Technology
In our approach, we use cache technology to store the

gadgets that we need. We use the SHA256 [39] function
to get the hash of the source program, and then extract the
gadgets from it, and store these gadgets in the ZODB. ZODB
is compatible with all Python data types and automatically
stores gadgets based on the relationship between objects.
Moreover, the data stored by ZODB has a fixed data format,
and a small data storage space. When running the exploit for
the second time, we can quickly find the gadget sequence,
which reduces the time to re-find the gadget and improves
the efficiency of the exploit.
• DAG and Topological sorting
This paper firstly proposes the application of DAG on the

automated construction ROP chains, where the characteris-
tics of the DAG can well describe the mapping relationship
between gadgets. Moreover, DAG solves the problem of
loops in the path, and avoids the problem of path explosion.
At present, we only use the DAG to generate ROP chains,
but we have not used it in the field of AEG to solve the
problem of the ring, which may be studied in future work.
After the DAG construction, there remains a problem that the
data of the register is overwritten in the ROP chains. We use

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

TABLE 8. A list of ROP chains was generated by ARG. The time of each exploit is recorded. Reduction represents reduced ROP exploit payloads. Size(KB)
represents the size of the binary file. Type presents the type of vulnerability as Remote Code Execution (RCE), Arbitrary Write (AW), Stack Buffer Overflow (SBO)
and Information Leak (IL). No-eXecute (NX) can prevent malicious attacks by restricting memory pages from having both execute and write permissions, that is,
isolating data and code. ARG supports multiple instruction architectures. In addition, CVE’s data comes from Q. Although Q uses Intel(R) Core(TM) i7 cpu 920 @
2.67GHz CPU, which is faster than our Intel(R) Core(TM) i5-6200U cpu @ 2.30GHz CPU, the performance of ARG is still much better than Q.

Program Reference
Q

Time
Optimized

Time Reduction Size
(KB)

Access
Complexity Type CPU NX/

ASRLTracing Analysis Total

websrv Github_armpwn × × × 7.130s 5.996s 81% 10 High RCE Arm Y/Y

trafman Rwthctf2013 × × × 6.692s 2.176s 56% 10 Low AW Arm Y/Y

welpwn RCTF2015 × × × 4.671s 3.521s 83% 9 Medium SBO X86 Y/Y

pizza CGFinals2015 × × × 4.282s 2.939s 88% 19 High IL X64 Y/Y

pwn200 SCTF2014 × × × 2.633s 2.301s 82% 4 Medium SBO X86 Y/Y

pwnme Isg2015 × × × 2.718s 2.377s 66% 6 Low SBO X86 Y/Y

proftpd CVE-2006-6563 30s 10s 40s 5.265s 3.030s 73% 549 Low SBO X86 Y/Y

rsync CVE-2004-2093 60s 5s 65s 4.165s 3.042s 57% 975 Low SBO X86 Y/Y

opendchub CVE-2010-1147 195s 30s 225s 3.651s 2.746s 78% 655 Medium RCE X86 Y/Y

topological sorting to determine the correct order of gadgets.
It can effectively avoid the failure of generating ROP chains
due to re-overwriting.
• No IL
At present, in the field of automated analysis and exploita-

tion of vulnerabilities, mainstream methods generally use IL,
where the use of IL produces good results. Q also uses IL,
which makes it easier for analysts to interact with the system
environment being exploited. However, ARG does not use
IL to symbolize gadgets, it does not discard instructions, and
there is no failure of ROP chains generation due to discarding
critical instructions. In addition, it does not take a long time to
convert IL, thus ARG can improve the efficiency of analyzing
gadgets.
• Other
Finally, we do some work on details such as optimizing

algorithms, avoiding bad characters, templating functions,
and searching for gadgets in a multi-process manner. ARG
supports multi-processor architectures such as i386, AMD64,
ARM, and MIPS, and it improves the practicability and
confrontation in the real environment. Since MIPS is less
common, there is still some work left for further research.

VII. CONCLUSIONS
In this paper, we proposed and implemented a new technol-
ogy — ARG, which supports automatically generating ROP
chains. The proposed technique can satisfy the preconditions
of constraint solving by automatically finding the available
gadgets by using AMOCO analysis, DAG, topological sort-
ing, and the Z3 solver. Instead of IL, we translated directly
to symbolize gadgets, and then Z3 solver is adopted to solve
random addresses and write it to the stack. The experimental
results showed that ARG is able to reduce exploit payloads,
and it takes only 3-5 seconds to finish control-flow hijacking,
compared to manual analysis, which takes at least 60 min-
utes. Also, it can effectively bypass both W⊕X and ASLR.
In addition, ARG has good compatibility and practicability,

can support multi-processor architectures, provides multiple
natural, easy-to-use interfaces, and can directly call these in-
terfaces through pwntools. We believe that ARG will become
a very popular and practical tool in the near future.

ACKNOWLEDGMENTS
This work is supported by the Beijing National Research
Center for Information Science and Technology (BNRist)
Network and Software Security Research Program under
Grant No. BNR2019TD01004. The authors thank Purui Su at
the Chinese Academy of Sciences, Yue Liu, and Chao Sang
for their support of this work.

REFERENCES
[1] S. E. Friedman, D. J. Musliner, and P. K. Keller, “Methods and sys-

tems for defending against cyber-attacks,” Oct. 23 2018, uS Patent App.
10/108,798.

[2] H. Marco-Gisbert and I. Ripoll, “On the effectiveness of full-aslr on 64-bit
linux,” 2014.

[3] H. Shacham et al., “The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86).” in ACM conference on
Computer and communications security. New York„ 2007, pp. 552–561.

[4] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “Aeg: Automatic
exploit generation,” 2011.

[5] T. Avgerinos, S. K. Cha, B. Lim, T. Hao, and D. Brumley, “Automatic
exploit generation,” in Communications of the ACM. Citeseer, 2014.

[6] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications,” in 2008
IEEE Symposium on Security and Privacy (sp 2008). IEEE, 2008, pp.
143–157.

[7] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic gener-
ation of data-oriented exploits,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 177–192.

[8] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang, “Data-
oriented programming: On the expressiveness of non-control data attacks,”
in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp.
969–986.

[9] M. Prandini and M. Ramilli, “Return-oriented programming,” IEEE Secu-
rity & Privacy, vol. 10, no. 6, pp. 84–87, 2012.

[10] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transactions
on Information and System Security (TISSEC), vol. 15, no. 1, p. 2, 2012.

[11] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening made
easy.” in USENIX Security Symposium, 2011, pp. 25–41.

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

[12] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good
instructions go bad: Generalizing return-oriented programming to risc,”
in Proceedings of the 15th ACM conference on Computer and communi-
cations security. ACM, 2008, pp. 27–38.

[13] F. Cassez, A. M. Sloane, M. Roberts, M. Pigram, P. Suvanpong, and
P. G. de Aledo, “Skink: Static analysis of programs in llvm intermediate
representation,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2017, pp. 380–384.

[14] H. Obuchi, K. Ootsu, T. Ohkawa, and T. Yokota, “Efficient translation
and execution method for automated parallel processing system by using
valgrind,” in 2015 Third International Symposium on Computing and
Networking (CANDAR). IEEE, 2015, pp. 607–609.

[15] “ARG demo,” https://youtu.be/S0AtN1bMb3o.
[16] “ARG source code,” https://github.com/wy666444/auto_rop.
[17] A. V. Vishnyakov, “Classification of rop gadgets,” Proceedings of the

Institute for System Programming of the RAS, vol. 28, no. 6, pp. 27–36,
2016.

[18] S. Designer, ““return-to-libc” attack,” Bugtraq, Aug, 1997.
[19] P. TEAM et al., “Address space layout randomization (aslr),” Docu-

mentation for the PaX Project. Retrieved from http://pax. grsecurity.
net/docs/aslr. txt, 2001.

[20] D. J. Day and Z.-X. Zhao, “Protecting against address space layout
randomisation (aslr) compromises and return-to-libc attacks using network
intrusion detection systems,” International Journal of Automation and
Computing, vol. 8, no. 4, pp. 472–483, 2011.

[21] A. Tillequin, “Amoco,” https://github.com/bdcht/amoco.
[22] P. Biondi, R. Rigo, S. Zennou, and X. Mehrenberger, “Bincat: purrfecting

binary static analysis,” in Symposium sur la sécurité des technologies de
l’information et des communications, 2017.

[23] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook of
Model Checking. Springer, 2018, pp. 305–343.

[24] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International
conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2008, pp. 337–340.

[25] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in NDSS, vol. 5. Citeseer, 2005, pp. 3–4.

[26] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{QSYM}: A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 745–761.

[27] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem
on binary code,” in 2012 IEEE Symposium on Security and Privacy.
IEEE, 2012, pp. 380–394.

[28] M. Wang, P. Su, Q. Li, L. Ying, Y. Yang, and D. Feng, “Automatic
polymorphic exploit generation for software vulnerabilities,” in Interna-
tional Conference on Security and Privacy in Communication Systems.
Springer, 2013, pp. 216–233.

[29] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, vol. 41, 2005, p. 46.

[30] J. Salwan, “Ropgadget–gadgets finder and auto-roper,” 2011.
[31] J. Fulton, “Introduction to the zope object database,” in Proceedings of the

8th International Python Conference, 2000.
[32] C. Heitman and I. Arce, “Barf: A multiplatform open source binary

analysis and reverse engineering framework,” in XX Congreso Argentino
de Ciencias de la Computación (Buenos Aires, 2014), 2014.

[33] H. Dang and A. Nguyen, “Unicorn: Next generation cpu emulator frame-
work,” in The BlacNHat Conference, 2015.

[34] F. Desclaux, “Miasm: Framework de reverse engineering,” Actes du
SSTIC. SSTIC, 2012.

[35] F. Wang and Y. Shoshitaishvili, “Angr-the next generation of binary
analysis,” in 2017 IEEE Cybersecurity Development (SecDev). IEEE,
2017, pp. 8–9.

[36] O. Levi, “Pin-a dynamic binary instrumentation tool,” 2018.
[37] C. Cadar and K. Sen, “Symbolic execution for software testing: three

decades later.” Commun. ACM, vol. 56, no. 2, pp. 82–90, 2013.
[38] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,

Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing
through selective symbolic execution.” in NDSS, vol. 16, no. 2016, 2016,
pp. 1–16.

[39] D. Rachmawati, J. Tarigan, and A. Ginting, “A comparative study of
message digest 5 (md5) and sha256 algorithm,” in Journal of Physics:
Conference Series, vol. 978, no. 1. IOP Publishing, 2018, p. 012116.

YUAN WEI received B.E. and M.E. degrees from
Beijing University of Posts and Telecommuni-
cations, Beijing China. He is currently pursuing
the Ph.D. degree at the Information System and
Security & Countermeasures Experimental Cen-
ter, Beijing Institute of Technology. His current
research interests include vulnerability detection,
program analysis, and information security.

SENLIN LUO received B.E. and M.E. degrees
from the College of Electrical and Electronic
Engineering, Harbin University of Science and
Technology, Harbin China, in 1992 and 1995,
respectively, and a Ph.D. degree from the School
of Information and Electronics, Beijing Institute
of Technology, Beijing China, in 1998. He is
currently a Deputy Director, Laboratory Director,
and Professor of Information System and Security
& Countermeasures Experimental Center, Beijing

Institute of Technology. His current research interests include machine
learning, medical data mining, and information security.

JIANWEI ZHUGE received a Ph.D. degree in
Computer Science from Peking University, Bei-
jing China. He is currently an Associate Research
Professor with the Network and Information Se-
curity Laboratory, Tsinghua University, Beijing
China. His current research interests include net-
work and system security.

JING GAO received B.E. degree from Beijing
Wuzi University, Beijing China and M.E. degree
from Beijing University of Posts and Telecom-
munications, Beijing China. Her current research
interests include program analysis, information se-
curity, and cloud computing.

ENNAN ZHENG received the B.M. degree in
Management of Information System from Univer-
sity of International Relations, Beijing, China in
2015. He is currently pursuing M.E. degree in
cybersecurity at UIR. He is an intern researcher
at Qianxin Technology Research Institute.

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2937585, IEEE Access

BO LI received the B.E. degree from Zhengzhou
University, Zhengzhou China, in 2013. He is cur-
rently pursuing the Ph.D. degree at the Radar
& Countermeasures Technology Institute, Beijing
Institute of Technology. His current research in-
terests include signal and information processing,
IoT and IoT system security.

LIMIN PAN received B.E. and M.E. degrees from
the College of Electrical and Electronic Engineer-
ing, Harbin University of Science and Technology,
Harbin China. She is currently working at In-
formation System and Security Countermeasures
Experimental Center, Beijing Institute of Technol-
ogy. Her current research interests include ma-
chine learning, medical data mining, and informa-
tion security.

VOLUME 4, 2016 13

