2018 IEEE International Conference on Software Quality, Reliability and Security Companion

Automatic Exploit Generation for Buffer Overflow
Vulnerabilities

Luhang Xu
National University of Defense Technology
NUDT
Changsha, China
me@xuluhang.cn

Wei Dong

National University of Defense Technology
NUDT
Changsha, China
wdong@nudt.edu.cn

Abstract—Buffer overflow vulnerabilities are widely found in
software. Finding these vulnerabilities and identifying whether
these vulnerabilities can be exploit is very important. However, it
is not easy to find all of the buffer overflow vulnerabilities in
software programs, and it is more difficult to find and exploit
these vulnerabilities in binary programs. This paper proposes a
method and a corresponding tool that automatically finds buffer
overflow vulnerabilities in binary programs, and then
automatically generate exploit for the vulnerability. The tool uses
symbolic execution to search the target software and find
potential buffer overflow vulnerabilities, then try to bypass
system protection by choosing different exploiting method
according to the different level of protections. Finally, the exploit
of software vulnerability is generated using constraint solver. The
method and tool can automatically find vulnerabilities and
generate exploits for three kinds of protection: without system
protection, with address space layout randomization protection,
and with stack non-executable protection.

Keywords—binary program; symbolic execution; automatic
exploit generation

[. INTRODUCTION

The security and reliability of the software is very
important, and the buffer overflow vulnerability is an important

kind of vulnerabilities that destroys the security of the software.

Most software systems have lurked buffer overflow problems,
the hackers and security researchers have great interest in that,
especially in the case of no source code situation. They can
mine and exploit vulnerabilities directly on the binary program
with buffer overflow.

To exploit the buffer overflow vulnerabilities of binary
programs, first, we need to reverse the binary codes to get basic
program information such as control flow, data dependence
and so on. According to the program logic, people find the
location of the buffer overflow that may exist in the program.
Next, by tracing the program execution, they infer an input to
arrive bug location and trigger a potential buffer overflow
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vulnerability. Finally, they design a special program input, to
achieve an unbelievable effect through the buffer overflow
vulnerability that found.

The above process is very complicated. In the absence of
source code, it is very easy to make mistakes in manual way,
and it is also time consuming to discover and verify an
available buffer overflow vulnerability. Our work is dedicated
to automate the process, which searches and exploits the
vulnerabilities automatically.

The buffer overflow vulnerability is one of the most widely
existing and serious harm to the modern software, so the
security strategy of modern operating system had many
prevention measures for buffer overflow, alleviating the harm
of buffer overflow vulnerability to software and system. The
hackers didn't stop there. They constantly studied the
technologies that can bypass these protective means, so that
they could continue to exploit the buffer overflow vulnerability
under the protection of modern system.

Based on the modern operating system's protective
measures, we studied how to automatically exploit the buffer
overflow vulnerabilities and achieve the ability of vulnerability
mining as deeply as possible, to ensure the security and
reliability of the software and system.

The tool in this paper is implemented based on symbolic
execution technology and uses the test case generation ability
of constraint solving to implement the automatic exploit
generation of vulnerability. The main contributions of the
paper include:

e We propose an automatic exploit generation method
based on symbolic execution for buffer overflow

vulnerabilities.

We propose an exploit method of automatically
bypassing a series of security protections of modern
operating system.
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e  We implement the above two methods as an available

software tool.

Setion II presents an overview of our approach. Section III
describes the method of mining buffer overflow vulnerabilities
in detail. Section IV describes the bypassing strategies
according to different system protection levels and studies the
automatic exploit generation method in detail. Section V
describes the implementation of the method and the experiment
result. Section VI summaries the related work in automatic
exploit generation and compares the differences between our
tool and AEG [2]. Section VII concludes the contributions and
future work of our method.

II. APPROACH FRAMEWORK

The approach proposed in this paper is mainly divided into
two parts: automatic vulnerability mining and automatic
exploit generation. In addition, the approach also includes pre-
processing before main process and exploit verification after
main process. Fig.1 describes the overall framework of the
approach.

Firstly, the pre-processing will obtain the basic properties
of the operating system and analyzed program. It then provides
the information to the following steps for using. Pre-processing
operations mainly include: disassembling binary code to get the
IR (Intermediate representation) and CFG (Control Flow Graph)
of the program, checking whether there is stack non-executable
protection or stack protection for the program, and checking
whether there is ASLR (Address Space Layout Randomization)
protection in the operating system. In addition to these
necessary attribute checking, pre-processing is also used to
check program information that will be used in the exploit
process, such as whether there is assembly code ‘JMP ESP’
and string ‘SH’ in the binary code.

Secondly, the automatic vulnerability mining module uses
symbolic execution to search the paths of the program and
excavate vulnerabilities based on the control flow graph of
binary code. In our work, we use Breadth-First Search (BFS)
strategy to traverse the control flow graph of programs. It will
add a program state constraint and check whether the program's
current state is defective if passing any basic block of program.
When we find potential vulnerabilities in program, we will
record the path from the program entry point to the current
defect location and submit to next step. Due to the problem of
path space explosion in symbolic execution, we will limit the
search depth.

Next, the exploit generation of vulnerabilities is divided
into two parts: bypassing system protection and automatic
exploit code generation. The step of bypassing system
protection determines the protection level of the system by
checking the system attribute and program attribute
information acquired in the pre-processing stage. After
selecting the system protection bypass strategy according to the
type of system protection, the step of automatic exploit
generation will aggregate all the constraints and solve them by
SMT solver to get the final exploit input of vulnerability. At
present, there are two kinds of system protection strategies that
can be bypassed: stack non-executable protection and address
space layout randomization protection. We use the way of
returning to system library to bypass the stack non-executable
protection. We use jump to special assembly instruction to
bypass the address space layout randomization protection.
Finally, we use constraint solver to calculate the input that is
consistent with the above bypass method. The input is what we
want, an exploit of vulnerability.

Finally, the validation step is carried out to verify the
generated exploit input by executing binary code with this
exploit. Through the verification part, we can reduce the false
positive of the tool to zero.
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Fig. 1. Framework of proposed apporach

III. MINING BUFFER OVERFLOW VULNERABILITY

The process of automatic vulnerability mining is based on
symbolic execution. Symbolic execution is one of the most
important technologies for software analysis. It can be used to
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traverse program paths accurately, generate corresponding test
input for every path passed, and provide support for stain
analysis and fuzzy testing. Because symbolic execution records
a lot of program state information and stores branch nodes for
every different path, there will be the problem of path space
explosion. Here we will use the Breadth-First Search and depth
restriction strategy to prevent the mining and search process of
software inexhaustibly.
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Fig. 2. Exploit without Protection

As shown in Fig.2, buffer overflow vulnerability is caused
by data overlaying on the stack or heap, which is larger than
the buffer size. Because the buffer overflow on the heap is very
complex, we only consider the buffer overflow on the stack in
this paper. The most common way of exploiting stack buffer
overflow vulnerabilities is executing arbitrary instructions by
control-flow hijacking. We achieve the purpose of controlling
the flow hijacking, and finally achieve the effect of arbitrary
instruction execution by hijacking the EBP pointer and the key
stack area near it. So, we firstly search software vulnerabilities
that can be covered to the EBP pointer and the stack area near
it. The program is loaded into virtual memory before it is
executed, and not all memory areas can be used by programs.
Once a buffer overflow occurs, we can use the input hijacked
instruction pointer (IP) to jump to any location, which conflict
with the nature of the program. If the instruction pointer is in
an unconstrained state which can point to any program position,
we believe it is a typical buffer overflow vulnerability, and it
can be exploited to achieve the effect of control-flow hijacking.

As shown in Fig.3, we obtain the intermediate
representation of programs by reverse engineering technology.
Then we convert the intermediate representation into control
flow graph. In the program pre-processing, we obtain the
reachable memory space interval when the program executes
normally. We use the symbolic execution to traverse the
program, and check whether the location of IP pointer is in
normal interval. If the instruction pointer is over the maximum
value of the reachable memory address or below the minimum
reachable memory address, we regard the program state point
as a typical buffer overflow vulnerability point that can be
exploited. After the discovery of a buffer overflow
vulnerability, the current program execution path and current
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program state constraints will be recorded. This information
will be submitted to the next step which will generate exploit of
vulnerability.
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Fig. 3. Framework of mining buffer overflow vulnerability

Since the tool is based on binary program level, there are a
large amount of binary codes between the entry point of the
program and the entry point of the main function. These codes
are automatically generated by the compiler, so they have no
possibilities containing buffer overflow vulnerability, and we
do not need to check the state of these code. It is necessary to
skip these codes.

Symbolic execution is limited while dealing with system
library functions. The symbol execution tool used in this paper,
ANGR [1], rewrites many system library functions, making the
symbol execution process more capable of handling the system
library functions.

IV. EXPLOIT GENERATION

Through the above searching process, the vulnerability
location will be found in a program containing a specific stack
buffer overflow vulnerability. Then we will generate the
exploit of the vulnerabilities and implement corresponding
bypassing methods for special system protection strategies.
This process contains two components: system protection
bypassing and automatic exploit generation.

A. Bypass System Protection

Because modern operating systems contain many kinds of
system level protection strategies, this section discusses the
bypassing strategy for these system protections. Our tool can
bypass two system protections: stack non-executable protection,
address space layout randomization protection. The
corresponding bypassing ways are: returning to system library
and jumping to the specific assembly instruction.

a) Without System Protection. As shown in Fig.2, when
system doesn’t exist any protections, the exploit of buffer
overflow vulnerabilities is to inject shellcode at the start of the
buffer zone and overlay the location which saved EIP on the
stack with the buffer header address. Because there are no
system protection measure, the buffer header address and EIP
location offset from the starting position of the buffer can be
obtained in advance. In this case, it is easy to construct exploit
of buffer overflow vulnerabilities.

b) Stack Non-Executable Protection. Stack non-
executable protection is a system level protection, which is set
by the compiler parameter options. The main idea is to set the
permissions of the program stack area only for reading and
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writing without executing permissions. Under this setting, even
if the control flow is hijacked to the stack position, it will be
failure to exploit without the executing permissions, thus it
ensures the security of the software.
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Fig. 4. Exploit under Stack Non-Executable Protection

Bypassing Stack Non-Executable Protection. For stack
non-executable protection, we use the way of returning to
system library to bypass. As shown in Fig.4, the main idea of
returning to system library is that when the stack structure is
overlaid, the contents of instructions stored on the stack are not
directly executed, but the execution position of the program is
set to the function of the system library, and the parameters of
the function are constructed at another proper position on the
stack, thus the exploit of the software vulnerability is achieved.

c) Address Space Layout Randomization Protection.
Besides the stack non-executable protection, our tool can also
bypass the address space layout randomization protection. In
the previous case, the various address areas of the program are
fixed. However, the idea of the address space layout
randomization protection is to dynamically modify the various
addresses of each execution process, so we can’t get a fixed
function address and stack address ahead of time.

Bypassing Address Space Layout Randomization
Protection. We use the strategy that returns to specific
assembly instruction to bypass the address space layout
randomization protection. As shown in Fig.5, it will no longer
statically jump to a certain fixed address but jump to the ESP
stack register to achieve a vulnerability exploit process.
However, the premise of using this way is that there is "JMP
ESP" assembler instruction in the program. Many experiments
show that there is a great possibility of existing "JMP ESP"
assembly instruction in the program.
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Fig. 5. Exploit under ASLR Protection

To sum up, we implement a vulnerability exploit bypass
method of three kinds of system protection strategy: system
without protection, the stack non-executable protection, and the
address space layout randomization protection. To express the
different system protection situations more accurately, we
define the following BNF paradigm expression in TABLE L
All the paradigm are expressions like:
"<VAL>==<CONTENT>". Among them, the form of
"<VAL>" is expressions like: "value(EBP+<NUKBER>)",
which represents the value of base stack pointer EBP offset
NUMBER constant position. The "<CONTENT>" part
represents five other situations, namely: "<NUMBER>"
represents integer that can be divided by 4, "<FUNCTION>"
represents a function name, "<STRING>" represents a string,
"<CONSTANT>" represents a constant without byte code
"x00', "<COMMAND>" represents an assembly instruction,
"<SHELLCODE>" represents a shellcode byte string.

TABLE 1. BNF PARADIGM EXPRESSION
<Specification> = <VAL>"=="<CONTENT>
<VAL> := value(EBP+<NUKBER>)
<CONTENT> := address(<FUNCTION>)
| address("<COMMAND>")
| address(“<STRING>")
| <CONSTANT>
| “<SHELLCODE>"
<NUMBER> :=  </* Integer that can be divided by 4 */>
<FUNCTION> = </* Function Name */>
<STRING> :=  </* String */>
<CONSTANT> :=  </* Constant without “\x00” */>
<COMMAND> :=  </* Assembly Instruction */>
<SHELLCODE> :=  </* Shellcode Byte String */>

TABLE II shows the bypassing protocol according to
different system protection levels and program attributes. In
TABLE II, "-" means there is no need to be discussed, because
in the case of stack non-executable protection, the existence of
"JMP ESP" assembly instruction in program does not affect the
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exploit generation process of vulnerability; "X" indicates that
in this case, the software vulnerability can’t be exploited. This
is the situation without "JMP ESP" assembler instructions in
address space layout randomized protection.

TABLE II. STATUTE IN DIFFERENT CIRCUMSTANCES
Protection Attribute of )
. paradigm
level binary code
with ‘JTMP value(ebp+0)==CONSTANT
ESP’ in value(ebp+4)==address( COMMAND")
) binary value(ebp+8)==“"SHELLCODE”
Without
. . value(ebp+4)==address(FUNCTION)
protection without ‘JMP
ESP’ i value(ebp+12)==address(“STRING”)
in
bi value(ebp+0)== CONSTANT
ina
Y value(ebp+8)—— CONSTANT
with ‘JMP value(ebp+0)==CONSTANT
Address ESP’ in value(ebp+4)==address( COMMAND")
space layout binary value(ebp+8)==“SHELLCODE”
randomization | without ‘JMP
protection ESP’ in X
binary
value(ebp+4)==address(FUNCTION)
Stack non-
value(ebp+12)==address(“STRING”)
executable -
. value(ebp+0)== CONSTANT
protection
value(ebp+8)== CONSTANT

B. Automatic Exploit Generation

The automatic exploit generation is a process that combines
the path and the state of the vulnerability mining module with
the bypass method determined by the system protection
bypassing module and uses the constraint solver to
automatically generate exploit of software vulnerability.

The stack structure, the memory structure in the program is
particularly complex, and there are many registers. The
program state information and path information obtained by the
vulnerability mining process are also particularly complex. But
the constraint information required for different system
protection bypassing modes is very simple. To simplify the
process of combining program path and state information with
system protection bypassing method, we add the constraints of
the system protection bypassing method to the program state
obtained by the symbolic execution process, and then use the
constraint solver integrated in symbolic execution tool to
generate the final exploit.

As shown in Table II, when there is an address space layout
randomization protection and there is a "JMP ESP" assembly
instruction in the program, we can inject any “SHELLCODE”
into the special position to generate an exploit of vulnerability.
In this situation, our tool will accept a user input, and user
enters a system command, our tool will generate an exploit
which is able to achieve the result the same as the command
executes.

V. IMPLEMENT AND EXPERIMENT

The implementation of this approach is based on the
existing symbolic execution tool ANGR and integrates RP++
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tool with Python to achieve the final automatic generation tool
for vulnerability exploit.

To prevent the problem of path space explosion and make
full use of the ability of symbolic execution tool ANGR, the
exploration depth of symbolic execution is set to 400.

The test cases used in experiments include the artificial
program containing buffer overflow vulnerability, the test
programs of the CGC competition, and the program generated
automatically by the CSMITH tool.

The experimental system environment is ubuntul4.04 with
python2.7. The system environment has optional address space
layout randomization protection and optional stack non-
executable protection.

To demonstrate the process and effect of our tool better, we
record and upload the complete exploit process of buffer
overflow vulnerability with address space layout randomization
system protection to the online web [3]. The experimental
results of other test cases are shown in TABLE III. Our tool
can successfully exploit three different test cases in three
different level system protection situations.

TABLE IIL. EXPERIMENT RESULT
Artificial CGC Test case generated
test case test case by CSMITH tool
Without system Exploit Exploit Exploit
protection success success success
address space layout . . .
R Exploit Exploit Exploit
randomization
. success success success
system protection
stack non-executable Exploit Exploit Exploit
system protection success success success

VI. RELATED WORK

In 2011, CMU published the AEG: Automatic Exploit
Generation in the Internet Society [2]. The tool implemented
by them can generate the exploit of software vulnerabilities
automatically, but the method and the system is based on
source code level. Source code and binary code compiled by
the same source code are needed. Because of that paper,
automatic generation exploit of software vulnerabilities is
becoming popular. Later, DARPA held a CGC (Computer
Great Challenge) game, to mine software vulnerabilities in
binary code automatically. Automatic vulnerability mining and
exploit technology were focused on at the same time.

The goal of CGC game is to achieve the following two
purposes:

Task 1: Crashing at the specified invalid address AND
control a register as the specified value.

Task 2: Divulging any four bytes in the flag memory
page.

The above two studies are the most influential in the field
of automatic exploit generation. However, neither of the two
studies has considered the safety protection strategy of modern
operating system.
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TABLE 1V. COMPARED WITH THE AEG SYSTEM PROPOSED BY CMU,
OUR TOOL SYSTEM HAS STRONGER ABILITY TO EXPLOIT VULNERABILITIES,
WHICH IS SHOWN IN DETAIL IN TABLE IV.COMPARE WITH AEG

Compare content Our Tool | AEG
Binary code without source code Yes No
Rotate ASLR Yes No
Rotate NX Yes No
Generate exploit by user input Yes No
Automatic completely Yes Yes
Deal with large program No No
Deal with various vulnerability No No

VII. CONCLUSION

In this paper, we take the buffer overflow vulnerability as
the research object and propose an automatic vulnerability
mining and exploiting method based on symbolic execution,
which can generate exploit of the buffer overflow vulnerability
automatically. The method proposed in this paper can bypass
the address space layout randomization protection and stack
non-executable protection, and our tool implemented is able to
operate directly on the binary program without source code.

Although compared with to the AEG system, our method
has great improvements, our tool still has some shortcomings
and limitations. It mainly includes two aspects: the tool cannot
deal with large-scale software program, because this method is
based on symbolic execution technology that may cause path
space explosion problem; this method can deal with a single
type vulnerability, just buffer overflow. Our method and tool
need to be further enhanced and promoted in future work.
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