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Abstract. Software is everywhere, from mission critical systems such
as industrial power stations, pacemakers and even household appliances.
This growing dependence on technology and the increasing complexity of
software has serious security implications as it means we are potentially
surrounded by software that contains exploitable vulnerabilities. These
challenges have made binary analysis an important area of research in
computer science and has emphasized the need for building automated
analysis systems that can operate at scale, speed and efficiency; all while
performing with the skill of a human expert. Though great progress has
been made in this area of research, there remains limitations and open
challenges to be addressed. Recognizing this need, DARPA sponsored the
Cyber Grand Challenge (CGC), a competition to showcase the current
state of the art in systems that perform; automated vulnerability detec-
tion, exploit generation and software patching. This paper is a survey of
the vulnerability detection and exploit generation techniques, underlying
technologies and related works of two of the winning systems Mayhem
and Mechanical Phish.
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1 Introduction

Technology touches every aspect of our lives, from the mundane to mission criti-
cal systems that facilitate our very way of life. These facts present clear economic,
safety and security concerns. These concerns are driving the need for automated,
scalable and reliable means of discovering, verifying and patching exploitable
defects. In an effort to drive research in this area, DARPA sponsored the Cyber
Grand Challenge (CGC), a competition to showcase the current state of the art in
Cyber Reasoning Systems. These systems combine various tools, techniques and
expert knowledge to create fully autonomous systems that perform automated
vulnerability detection, exploit generation and software patching in binary soft-
ware without human intervention. In this competition competing systems play
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an “attack-defend” style of Capture The Flag (CTF). CTF is“a head-to-head,
networked competition” where participants are to detect, patch and exploit soft-
ware defects [1].

1.1 Impact of DARPA’s Cyber Grand Challenge

In other areas of computer science research that involve the development of
intelligent systems, such as machine learning and artificial intelligence there is
a wealth of common datasets and corpora with corresponding benchmarks by
which researchers can evaluate the efficacy of their approaches in a platform and
technology agnostic way. An example of such a dataset is the “MNIST database
of handwritten digits”. This dataset has a rich history of benchmarks and pro-
vides a standard dataset for training neural networks and other machine learn-
ing algorithms [2,3]. However, in the field of security research, specifically the
areas of binary analysis such datasets and benchmarks do not exist. This often
means that techniques are evaluated on different datasets (software) and differ-
ent platforms, thus making it difficult to compare the effectiveness of different
techniques [4].

DARPA’s Cyber Grand Challenge addresses this need for a common platform
and datasets by which to evaluate Cyber Reasoning Systems. CGC organizers
designed binaries called challenges that differ in complexity, file size and func-
tionality. These binaries are designed to present the same challenges of real-world
software to the systems analyzing them. This collection of binaries coupled with
a Linux distribution designed for the competition called DECREE OS, offers
a standard platform and dataset for all competitors to evaluate their systems.
The qualifying round results, binaries, environment, needed libraries and docu-
mentation have all been made freely available online. This provides benchmarks
and a common platform for researchers to test the effectiveness of new analysis
techniques and systems [5].

Systems are judged based on security, availability and evaluation. Patched
binaries (challenge replacement binaries) functionality is tested by running tests
created by the CGC organizers. These tests are in the form of proof of vul-
nerability (POV). If no POVs are blocked their security score is 0. Patched
binaries are also rated on their overhead on system resources such as memory,
CPU usage and the file size. Table 1 shows a summary of the scoring criteria
for competing systems. Note, systems that submit a working POV along with
their patched binary have their security score doubled. Further note, the scoring
algorithm suggests a stronger emphasis on binary patching versus the number
of exploitable defects found by the competing systems [6].

1.2 Limitation of the Study

Although this work intends to survey the automated vulnerability detection and
exploit generation techniques of current state of the art Cyber Reasoning Sys-
tems, there are gaps in this research. These gaps exist because many of the
competing systems in DARPA’s Cyber Grand Challenge were purpose built or
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Table 1. Summary of CGC scoring rules [6]

Criteria Rule

Security Each competitor can defend the code on its server, keeping flags
safe. It can patch each challenge binary using generic defenses or
a custom patch for each vulnerability it finds

Availability Every program on a server should function normally after being
patched as it would be easy to defend software if you could just
disable all its functionality. The reference checks that defended
software is responding correctly and hasn’t been disabled or
slowed

Evaluation Every player can program a vulnerability scanner. Searching for
vulnerabilities in opponents software and proving weaknesses to
the referee. A successful proof counts as a captured the flag

at the very least were augmented versions of their original design and imple-
mentations in order to meet the criteria for the competition; thus making it
very difficult to find literature to write an exhaustive survey. To address these
limitations, future work includes collaborating with researchers who designed
and implemented these state of the art systems in order to produce a more
comprehensive survey.

1.3 Roadmap

The remainder of this paper is organized as follows. Section 2 provides an
overview of binary analysis techniques and design considerations for systems
employing these techniques. In Section III, commonly exploited vulnerabilities
are briefly discussed. Sections 4 and 5, are detailed discussions of the architec-
ture, techniques and technologies used to implement Mayhem and Mechanical
Phish respectively. Section 6 compares and contrasts Mayhem’s and Mechani-
cal Phish’s approach to mitigating path explosion, a common problem that is
encountered when using dynamic symbolic execution for path exploration. The
last sections contains proposed future research and conclusions.

2 Background

Despite our best efforts software defects will always exist and given the growing
dependence on technology to manage our daily lives, ensuring the safety, security
and reliability of software and hardware has become the primary focus of a
number of security researchers. Specifically, an emphasis as been placed on binary
software analysis, for the simple fact that in many instances only the binaries
are available for analysis. This is particularly true when examining embedded
firmware, custom operating systems and malware.



1086 T. N. Brooks

Binary analysis can be difficult because we are missing abstractions pro-
vided by programming languages such as data types and data structures. These
abstractions make it easier to reason about how data and inputs drive the paths
of execution. Despite these challenges there are inherent advantages to perform-
ing binary analysis. Binaries contain platform specific details which are only
available at execution time. Information such as “memory layout, register usage
and execution order” [7] is important for detecting many common types of vul-
nerabilities such as memory corruption and buffer overflows. For these reasons
and more, binary analysis a specific type of program analysis is the focus of
security researchers in recent years and the volume of software to be examined
has lead to a strong interest in building automated binary analysis systems that
can examine binary software at scale.

Static, dynamic and concolic analysis (also known as dynamic symbolic anal-
ysis) are three common approaches to binary analysis. Each approach has its
strengths and limitations and each comes with their own set of design consider-
ations that must be addressed in order to meet the challenge of analyzing real-
world software. The following sections examine each of these approaches; their
limitations, strengths and the design considerations that must be addressed in
order to implement systems that perform automated vulnerability detection and
exploit generation effectively.

2.1 Design Considerations

One design consideration that must be addressed when implementing automated
vulnerability detection and exploit generation systems, is ensuring the ability of
the system to replay or reproduce the program state (i.e. user input or data)
that triggered a vulnerability. The other consideration is the system must under-
stand semantically what part of a given input caused the observed behavior.
These design considerations directly impact the scalability and validity of the
results these systems yield (i.e. vulnerabilities discovered). For example, analy-
sis techniques such as symbolic execution aims to have high reproducibility and
high semantic understanding but will suffer from issues with scalability while
approaches that favor “re-playability” usually suffer from low code coverage [4].

2.2 Static Binary Analysis

Static binary analysis is the analysis of a binary without running it. The process
of static binary analysis typically starts with loading and processing the binary
to be analyzed. The processing step includes parsing the binary, generating an
intermediate language representation of the binary’s assembly instructions and
building a control flow graph (CFG). Control flow graphs represent paths that
can be taken when a program executes. For example, Fig. 1 illustrates a simple
CFG where program flow is controlled by conditional statements. The nodes
of these graphs represent basic blocks of machine instructions and the edges
represent possible points of control flow changes between these nodes. Control
flow graphs are a key component for automated vulnerability detection systems
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that employ static binary analysis as it gives the system a means of exploring
all execution paths in an application.

(1) Limitations of Static Binary Analysis: Though this technique offers a sys-
tem the ability to examine all possible program paths, it comes at the cost of
scalability and performance. Static binary analysis can be slow, and it has lim-
itations when dealing with indirect jump statements. Indirect jump statements
are harder than direct jump statements to resolve when building a CFG because
the application is passing control to a target whose value for example, could be
arbitrarily calculated or dependent on the context of application. To deal with
these limitations static binary analysis tools make approximations about the
control flow of an application and hence run the risk of not resolving indirect
jump statements at all. Under approximations can lead to false positives for sys-
tems that detect vulnerabilities or worse it could miss detecting vulnerabilities
due to incomplete control flow graphs.

Fig. 1. Example of simple control flow graph (adapted) [8].

One static analysis technique that mitigates some of these limitations is value-
set analysis (VSA). The key to this algorithm is its over approximation of values
in memory, a property that makes it useful in making assumptions about targets
of indirect jump statements or read and writes in memory. These properties
enable VSA to be used to augment CFGs with information about indirect jump
statements [7].
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2.3 Dynamic Binary Analysis

Unlike static binary analysis, dynamic binary analysis techniques examines a
program’s behavior while it is running in a given environment. Dynamic binary
analysis allows you to explore individual paths which makes it very precise but at
the expense of less code coverage. Code coverage is an important characteristic
of vulnerability detection systems, as the more code you can examine the more
likely you are to find existing vulnerabilities.

(1) Concrete and Symbolic Execution: There are two flavors of dynamic binary
analysis, concrete and symbolic execution. Concrete execution refers to the rep-
resentation and execution of “concrete” or real values against a program, where
as symbolic execution refers to the representation and execution of symbolic
representations of a given value (i.e. a range of values). In dynamic analysis
systems, binaries and source code are augmented with instrumentation [9], this
instrumentation provides metadata to enable the system to make better choices
about things like choosing paths in an application to explore.

(2) Fuzzing: The main objective of a system that detects vulnerabilities is to
find inputs that make it perform an unsafe operation (i.e. crash an application).
Fuzzing is an example of concrete execution and it is an important technique used
in systems where augmented input is used to attempt to crash an application for
example. Though fuzzing is an important technique in vulnerability detection
it suffers from limitations. Fuzzing tools usually require manually created test
cases to seed the fuzzer. It then mutates its future inputs based on these test
cases. Standard fuzzing techniques usually fail to randomly generated values for
branches of logic that requires very specific user input or context dependent
data.

2.4 Dynamic Symbolic Execution

A more powerful dynamic analysis technique that is implemented in many auto-
mated vulnerability detection systems, is dynamic symbolic execution. In clas-
sical symbolic execution, variables and application input (i.e. files, command
line options, etc.) are modeled using symbolic values instead of using concrete
values. During execution, both memory and register state are tracked and are
also modeled symbolically. Symbolic execution is typically used to dynamically
generate test cases which are used to drive path exploration, unlike traditional
fuzzing techniques where test cases must be manually generated to seed the sys-
tem. Systems like Mayhem [10] and S2E [11] were some of the first to apply this
technique to binary code.

In dynamic symbolic execution input and variables are represented as sym-
bolic values instead of concrete values. These values are used to generated path
constraints. Path constraints are logical formulas that represent “program state
and transformations between program state” [12]. Typically these formulas rep-
resent previously unexplored paths of execution in a program and are used as
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input to a satisfiability modulo theory solver (SMT solver). The SMT solver
uses these formulas to derive new application inputs (test cases) that drive the
exploration of new paths in the application [12,13]. Because most programming
constructs can be modeled by theories supported by SMT solvers, they are often
used in tools that verify and test programs.

(1) Limitations of Dynamic Symbolic Execution: Dynamic symbolic execution
is so powerful because it can trigger specific application states using learned
path constraints, making it an ideal technique for discovering vulnerabilities
in binary code [4]. This characteristic makes it a commonly used technique in
well known binary analysis tools such as CUTE [14], Klee [15] and FuzzBALL
[16]. However, dynamic symbolic execution suffers from a problem known as
path explosion, whereby new paths are created at every new branch. This
can lead to an exponential number of paths to be explored and which makes
dynamic symbolic analysis computationally expensive, hence limiting the scala-
bility of analysis systems that use this technique as its only mechanism of path
exploration.

A modern approach to combat these limitations is to combine both concrete
and symbolic execution, a technique known concolic execution [17]. Another
approach combines the use of dynamic symbolic execution and fuzzing to create
a “guided” fuzzer [18] or assisted fuzzer. This technique uses dynamic symbolic
execution to drive path exploration by giving it the task of augmenting input
and feeding it back to the fuzzer. The aim of this technique is to minimize
the use of an expensive operation such a dynamic symbolic execution, and use
cheaper operations such as fuzzing to get better code coverage when exploring
applications for vulnerabilities. This technique is used by Driller [18], where by
it selectively uses dynamic symbolic execution to perform path exploration in
order to detect vulnerabilities. Driller is key component in the Mechanical Phish
Cyber Reasoning System [1,18].

3 Commonly Exploited Vulnerabilities

Programming languages, such as C/C++ gives developers low level control of
memory allocation, which allows for finer grain control over application perfor-
mance and efficiency. This level of control can lead to security critical vulnera-
bilities that can be exploited by attackers. Although there are efforts to make
software more secure and robust with the implementation of techniques such
as buffer overflow detection and randomization of address space, vulnerabilities
such as buffer overflows are still in the top three vulnerabilities reported in 2015
and 2016 [18,19]. Tables 2 and 3 shows the number of reported vulnerabilities
for the top three types of vulnerabilities of 2015 and 2016.

Some of the most commonly found exploitable vulnerabilities are buffer
overflows, format string attacks and general memory corruption vulnerabilities.
These are defects that often put an application in an unsafe state, where an
attacker can gain access to sensitive data or hijack the control flow of an appli-
cation, in order to execute code of their choice. It is for these reasons why
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most automated vulnerability detection systems seek to detect these types of
vulnerabilities.

Table 2. Top 3 reported vulnerabilities by type (2016) [19]

Type Count

Denial of service 1847

Execute code 1355

Overflow 1221

Table 3. Top 3 reported vulnerabilities by type (2015) [19]

Type Count

Denial of service 1784

Execute code 1808

Overflow 1072

3.1 Buffer Overflows

Buffer overflows occurs when an application writes more data to a fixed size
buffer than it is allocated to handle. Typically these kind of vulnerabilities can
lead to data corruption, crashing applications, the unintended access of sensitive
data stored in memory or allowing an attacker to replace code in the call stack
with their own or a library call of their choice.

3.2 Format String Attacks

Format string attacks are used by attackers to execute code or read data from the
stack. This exploit occurs when a formatted string given as an input is executed
as a command. These kind of attacks often use the ANSI C printf, fprintf and
other string format functions as attack vectors.

3.3 General Memory Corruption

Buffer overflows are an example of a type of memory corruption vulnerability.
Generally memory corruption occurs when data in a previously allocated mem-
ory location is modified accidentally or intentionally. The use of this corrupted
data can lead to application crashes. Other examples of memory corruption are
array index out of bounds errors, using an address before memory is allocated
or attempting to use a pointer that has been freed already.
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4 Mayhem

Mayhem is an automated system for discovering exploitable vulnerabilities in
binary code. It also ensures that each vulnerability is exploitable and verifiable
by generating a “shell spawning exploit” for each vulnerability it finds. By design
Mayhem seeks to addresses the challenges of real-world binary analysis by ensur-
ing that it can not only find exploitable bugs but do so efficiently. It does so by
employing a technique called hybrid symbolic execution. Mayhem introduces the
use of hybrid symbolic execution. Hybrid symbolic execution combines the use
of both offline and online symbolic execution [10].

Hybrid symbolic execution leverages the strengths of online and offline sym-
bolic execution while minimizing the effects of their limitations. While offline
symbolic execution, also know as concolic execution allows a system to examine
one execution path at time while enabling it to select new paths to explore via
an iterative process, it has one major limitation. The major limitation of offline
symbolic execution is that in order to find new paths, the executor must run a
single path of execution twice, once concretely and once symbolically. This re-
execution of previously explored paths makes this technique inefficient as it adds
additional execution overhead to a system. On the other hand online symbolic
execution seeks to execute all paths in a single run and it does so by forking exe-
cution at each branch. Although this approach ensures that the system would
never explore a path more than once, the constant forking could lead to memory
pressure as all application state is stored in memory.

The following sections discusses Mayhem’s design, some key implementation
notes, contributions made by the researchers as well as related work. Note, all
information was taken from the literature.

4.1 System Overview

The more of an application a vulnerability discovery tool can explore the more
likely it is to find exploitable bugs. This presents a major challenge for pre-
forming binary analysis on real-world applications, this can be especially true
for common off-the-shelf applications as they can be complex applications with
a very large state space to explore. This challenge is one the key motivations
behind Mayhem’s design.

Mayhem’s designers see exploring binary software as a potentially long run-
ning process, this is a especially true for running analysis on complex binaries.
This means that the system must be able to run for long periods of time while
taking care not to exhaust system resources in particular memory. System effi-
ciency is also a motivation behind Mayhem’s design. It addresses this by ensuring
that no work is ever repeated and that no work is thrown away, all results from a
previous analysis should be reusable on other runs [10]. Lastly, the key principal
behind Mayhem’s ability to detect vulnerabilities and generate corresponding
exploits is that the system must be able to identify where in symbolic memory
a load or store address depends on user input [10].
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4.2 Architecture

Mayhem’s architecture is comprised of two major components, a “Concrete
Executor Client (CEC)” and a“Symbolic Executor Server (SES)” [10]. The SES
is the brains of the operation as it determines the next path the CEC should
explore and the CEC is the worker, it performs path exploration. The CEC runs
natively on the target system and the SES runs independently on the platform’s
system.

(1) Concrete Executor Client (CEC): The CEC takes symbolic input sources,
the binary to be analysed and checkout point data (optional) as input. Because
symbolic execution is slower than native (concrete) execution Mayhem seeks
to perform as much native execution as possible. The CEC performs the task
of loading and natively executing the binary to be analysed. As the binary is
executed the CEC adds instrumentation to the code, this instrumentation adds
information about execution state such as memory and register values. The CEC
also contains a taint tracker which performs taint based analysis [20]. If the taint
tracker in the CEC detects a condition or jump statement it halts execution and
passes this information to the SES [10]. Note, the CEC will run until all execution
paths have been explored or a threshold is reached.

(2) Symbolic Executor Server (SES): The SES takes the concrete, “tainted
instructions” from the CEC. These instructions can be a tainted branch or
tainted jump instructions. These instructions are converted from x86 assembly to
an intermediate language called BAP IL, by BAP. BAP is a binary analysis tool
that converts x86 assembly into an intermediate language [21]. The SES takes
these interpreted instructions and executes them symbolically. These instruc-
tions are used to build two types of formulas, path formulas which represents
the constraints on“each line of code” and exploitable formulas, which are used
to determine if an attacker can execute a payload or gain control of a pointer
[10]. These formals are executed by an SMT solver [13], which determines if the
formula is satisfiable.

To manage system resources Mayhem makes use of configurable resource
caps and system generated checkpoints. If a resource cap is not reached and the
SES receives a tainted branch instruction, the SES queries the SMT solver to
determine if should fork execution. If it forks, a path selector prioritizes the new
forks and the SES alerts the CEC about the state change. However, if a system
resource cap has been reached then a checkpoint manager generates a new check-
point for the active executor instead of forking new executors. Note, checkpionts
store symbolic execution state of the executor that has been suspended as well as
corresponding path constraints. Checkpoint restoration basically uses the stored
symbolic execution state to restore the concrete execution state up to the point
where the corresponding executor was suspended. Checkpoint restoration essen-
tially puts system back into “online” mode. Throughout the execution process
the SES switches between existing forked executors and checkpoints [10].
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4.3 Minimizing Search Space and Path Selection

One major challenge of cyber reasoning systems is the vast size of the execution
path search space. To address this, Mayhem also uses as technique called pre-
conditioned symbolic execution [22], which allows the user to provide “partial
specification of the input” (i.e. input length, prefix, etc.) [10] in order to minimize
the search space. If no specifications are supplied, all paths will be explored.

Mayhem uses heuristics to determine which path to explore next. It favors
paths that are more likely to have an exploitable bug. Paths where symbolic
memory accesses occur or symbolic instruction pointers are identified, have
higher priority than paths that are simply exploring new paths [10]. These prior-
ity ranking rules directly corresponds to the types of vulnerabilities that Mayhem
(as of the time the initial literature was published) can identify.

4.4 Handling Symbolic Memory

Being able to identify where in symbolic memory a load or store address is
that depends on user input is a necessity when generating exploits. In order to
identify these addresses in symbolic memory, a binary analysis system must be
able to model and reason about symbolic memory [10]. Modeling symbolic mem-
ory is difficult because the index used in the memory look up is an expression
instead of a number, this makes dealing with symbolic indices difficult because
the index could point to any spot in memory. To tackle this problem Mayhem
implements “index-based memory modeling”. In this approach memory is mod-
eled as a map, and 32 bit indices are mapped to expressions and only symbolic
reads are modeled symbolically.

Mayhem uses immutable “memory objects,” to model symbolic reads. These
objects are created every time a symbolic read is executed, and contain all pos-
sible values that the given symbolic index can access. In order to create these
objects Mayhem must find all possible values for a symbolic index. In order to
make this process more scalable it finds a range of possible index values instead
of trying to find an exact index value [10]. It uses an SMT solver to resolve this
range of values. Querying the SMT solver for a range of symbolic index values is
an expensive operation, so as an optimization step Mayhem first uses value-set
analysis [7] to come up with an approximate interval of possible index values,
which is then given to a SMT solve to refine or“tighten” the lower and upper
bounds [10].

4.5 Generating Exploits

Mayhem (as of the time the initial literature was published) can identify and gen-
erate exploits for any “instruction-pointer overwrite” and format string attacks.
It generates an exploitable formula whenever its exploitable properties are vio-
lated. These properties are a symbolic tainted instruction pointer, which corre-
sponds to a buffer overflow and a symbolic format string which corresponds with
a format string attack [10].
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4.6 Related Work

Mayhem’s approach to exploitable bug discover and exploit generation is largely
based on prior work by the researchers on AEG [10,22]. Unlike Mayhem, AEG
used source code analysis to find exploitable bugs while using binary runtime
information to generate corresponding exploits. AEG was the first system to pro-
vide an end to end solution that not only detects exploitable bugs but generates
a verifiable exploit to confirm that it is a security risk. Its approach to automat-
ically generating exploits addressed the issue that source code alone can not tell
you if a bug is exploitable. Source code though it provides useful abstractions
does not provide the same low level details that are a necessity in determining if
a bug can be exploited. AEG also introduced the use of preconditioned symbolic
execution to minimize search space as well path prioritize heuristics [22].

5 Mechanical Phish

Mechanical Phish is an open source Cyber Reasoning System written for the
DARPA Cyber Grand Challenge [1]. It leverages open source tools and is com-
prised of several components that directly contribute to its approach to vulner-
ability discovery and exploit generation. Mechanical Phish’s goal is to discovery
vulnerabilities deeper in binary code efficiently. It does so by employing the use
of a “guided” fuzzer which combines the efficiency of fuzzing and concolic exe-
cution with the power of dynamic symbolic execution. The following sections
discuss Driller’s and angr’s design, some key implementation notes, contribu-
tions made by the researchers as well as related work. Note, all information was
taken from the literature.

5.1 System Overview

Two important components that implement Mechanical Phish’s vulnerability
discovery functionality are angr [4] and Driller [18]. Driller is a “guided white-
box fuzzer” tool that leverages the speed of fuzzing and the input reasoning
capabilities of concolic execution in order to effectively and efficiently discover
deeper bugs. angr is an open source binary analysis framework that Driller uses
to implement its concolic execution engine.

5.2 Driller

Driller’s primary objective is to find bugs in the deeper logic of any application.
This objective is the motivation for its approach of leveraging the strengths of
fuzzing and concolic execution while mitigating their weaknesses. Systems that
implement fuzzing or concolic execution alone, are often limited in the depth
and the amount of code they cover because of the inherent limitations of fuzzing
and concolic execution [18]. Traditional fuzzing techniques are fast but fail to
find bugs where specific input is required, while concolic execution is a great tool
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to generate this kind of input it often suffers from the path explosion problem.
By combining these techniques Driller can improve the scalability of concolic
execution while also improving the effectiveness of fuzzing. Unlike some systems
that only support discovery of specific types of vulnerabilities, Driller can detect
any vulnerability that can lead to an application crash.

The core motivation behind Driller’s design is that it views the types of bugs
that fuzzing and conconlic execution can find in terms of how an application pro-
cesses input. It splits the input processed by an application into two categories,
general and specific. General input can represent a wide range of valid values
while specific input only can only have a small number of valid values. This
intuitively splits the application into “compartments”, where the specific input
checks separates one compartment from another. Because fuzzing is an effective
technique for generating values for general inputs it can be used to explore appli-
cation paths within a compartment, while concolic execution would be best used
to resolve inputs to drive code execution between application compartments [18].

Driller is comprised of two major components, the fuzzer and concolic execu-
tion engine. The bulk of the path exploration work is offloaded onto the fuzzer
as in most cases it can explore a large number of execution paths on its own.
This leaves the concolic execution engine to solve for the more complex inputs
required by specific checks in an application.

(1) The fuzzer: The fuzzer component leverages a very popular fuzzer called
American Fuzzy Lop (AFL) [23]. AFL is a state of the art fuzzer that generates
input through the use of a genetic algorithm. It uses instrumentation to make
more informed choices. Though instrumentation can be introduced at compile
time, Driller uses a “QEMU-backend” [24] to avoid the need for having source
code. The bulk of the path exploration work is offloaded onto the fuzzer. In most
cases it can explore large number of execution paths, and is much faster than
concolic execution.

(2) Concolic Execution Engine: The concolic execution engine uses angr [4], an
open source binary analysis framework. This engine, translates binary code into
Valgrind’s VEX [25] intermediate representation (IR). This IR is used to evalu-
ate the effects of application input on symbolic state. All values in the symbolic
state except constants are modeled as symbolic variables and as the program is
executed “symbolic constraints” are added to the symbolic variables. These con-
straints defines the limit of possible values for a symbolic variable. Throughout
execution both concrete and symbolic values are tracked, these values can be
used by the constraint solver (SMT solver) to find values that satisfy the con-
straints on all symbolic variables in the state [18]. Like Mayhem, Driller uses the
index-based memory model to model symbolic memory where writes addresses
are stored concretely and read addresses are modeled symbolically [10].

When Driller starts it invokes the fuzzer component. The fuzzer will explore
the application until it can no longer generate inputs that drive execution down
new paths. When the fuzzer reaches this state Driller says the fuzzer is “stuck”.
More concretely the fuzzer is deemed stuck if after having gone through a certain
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number of input mutations it fails to progress to new paths. When the fuzzer is
stuck, Driller takes only the inputs the fuzzer marks as“interesting” and invokes
the concolic execution engine on them. Inputs are considering interesting if the
input triggers a state transition [18].

5.3 angr

angr [4] is an open source, platform agnostic binary analysis framework, that
implements a number of state of the art offensive binary analysis techniques.
This framework was implemented to provide researchers a unified platform by
which they can evaluate and compare the effectiveness of these techniques as
well as components to implement and evaluate new techniques.

(1) Motivation: Many binary analysis techniques are developed as research pro-
totypes and are typically not available to the public. This often means that
future researchers have to start from scratch in order to implement and evaluate
these techniques themselves [4]. angr was created to mitigate this issue, by creat-
ing an open source, binary analysis framework that implements the state of the
art offensive binary analysis techniques. The framework also offers a modular
design that allows researchers to easily combine different approaches in a effort
to leverage their strengths while minimizing their weaknesses.

angr is implemented as collection of Python libraries. The libraries provide
functionality for performing various binary analysis techniques:

• Loading a binary
• Disassembly and intermediate-representation lifting
• Program instrumentation
• Symbolic execution
• Control-flow analysis
• Data-dependency analysis
• Value-set analysis (VSA)

5.4 angr Submodules

angr’s primary design goals are to offer cross-architecture support, cross-platform
support, support for different analysis techniques, and usability. With these goals
in mind the researchers that created angr wanted to create a system that would
allow users to recreate any common binary analysis technique in about a week.
In order to accomplish these goals, the analysis engine was carefully designed
to be a modular set of software components with strict separations between
them. This design allows for the mixing and converting between types of analysis
on-the-fly [4].
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The sections below provide a brief summary of some key submodules imple-
mented in angr.

(1) CLE: CLE is angr’s binary loading module. It can support loading binaries
from POSIX-compliant systems such as Linx, FreeBSD, Windows as well as
DECREE OS which was created by DARPA for the Cyber Grand Challenge.

(2) Intermediate Representation: In order to support analyzing binaries in a
architecture agnostic way it is necessary to convert binary code into an inter-
mediate representation (IR). The module that supports IR in angr leverages
libVEX and uses a python library called PyVex to expose libVEX’s VEX IR in
python. PyVex, was originally written for Firmalice [26]. VEX allows angr to
support analysis of both “32-bit and 64-bit versions of ARM, MIPS, PPC, and
x86 (with the 64-bit version of the latter being amd64) processors” [4].

(3) SimVex: Functionality for representing and modifying program state is
implemented in the SimVex module. State (SimState) in angr is represented
by collection of “state” plugins. These state plugins provide the building blocks
for implementing different types of binary analysis. These plugins expose func-
tionality for; tracking values of registers, implementing symbolic memory mod-
eling, implementing abstract memory modeling, logging, debugging, providing
an interface for interacting with SMT solvers, and exposing architecture specific
information that is useful for analysis.

(4) Claripy: Claripy is the module responsible for provide abstractions that
represent values stored in SimState. Claripy internally represents these values
as expressions that can be translated to the data domains of various supported
Claripy back-ends. Claripy supports back-ends for concrete domains, symbolic
domains and value-set abstraction domains for value-set analysis.

(5) Program Analysis: angr implements complete analysis techniques such as
dynamic symbolic execution and control-flow graph recovery. It exposes an entry
point that allows users to easily access all things related to the analysis, such as
the binary being analyzed and exposes functionality of various submodules.

(6) Other Key System Components: This section is a brief discussion of other
key software components of angr. Note, all documentation below was obtained
from the Mechanical Phish github repository [27].

• Rex: Rex is an automated exploitation engine that was originally imple-
mented for the Cyber Grand Challenge. As of the time of writing this paper
the engine can perform crash triaging, crash exploration, and exploitation for
certain kinds of crashes. Rex is freely available on github [28].

• Meister: Meister is the task scheduler for Mechanical Phish.
• Scriba: Scriba decides what exploits and replaceable binaries (CGC patched

binaries) to submit.
• The Ambassador: The Ambassador talks to the CGC API to retrieve chal-

lenge binaries, submit proof of vulnerabilities, etc.



1098 T. N. Brooks

5.5 Minimizing Search Space and Path Selection

To avoid the problem of path explosion in the concolic execution engine, Driller
implements “pre-constrained tracing”. Pre-constrained tracing ensures that the
only path that is being analyzed is the path that represents the application’s
processing of a given input [18].

6 Compare and Contrast

This survey explored the current state of the art offensive capabilities imple-
mented in Cyber Reasoning Systems. It used two of the winning systems, May-
hem and Mechanical Phish of DARPA’s Cyber Grand Challenge as a vehicle to
explore these techniques in action. The original motivation for this survey was
to investigate the similarities and differences of these two systems in order to
identify what sets them apart and which approaches worked best, for solving the
various problems that must be addressed in order to build an automated system
that can successfully detect exploitable bugs and generating exploits for these
bugs. This section provides a brief discussion of some key differences between
Mayhem and Mechanical Phish.

6.1 Path Explosion

Mayhem and Mechanical Phish both leverage dynamic symbolic execution in
order to drive path exploration but their approaches to mitigating the problem
of path explosion are different. Dynamic symbolic execution is a popular tech-
nique for discovering vulnerabilities in binary code, and it works well finding
both complex and simple inputs to drive path exploration. However, dynamic
symbolic execution suffers from a well known problem of path explosion, where
by new paths are created at every new conditional branch. This can lead to an
exponential number of paths to be explored and hence makes dynamic symbolic
analysis computationally expensive and can limit the scalability of analysis sys-
tems that use this technique as its only mechanism of path exploration. Hence,
any system looking to employ this technique must address the problem of path
explosion.

(1) Hybrid Symbolic Execution: Mayhem uses dynamic symbolic execution as
its primary mechanism of implementing path exploration. In order to combat
the path explosion problem, it implements hybrid symbolic execution. Hybrid
symbolic execution allows the system to switch between online and offline sym-
bolic execution. Its ability to context switch between offline and online execu-
tors allows it to use to the most appropriate mechanism whenever a configurable
resource cap is reached. This allows Mayhem to technically have its cake and
eat it too, as it can leverage a powerful method of path exploration without
succumbing to its limitations.
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(2) Augmenting a Fuzzer with Symbolic Execution: Mechanical Phish uses Driller
to help with path exploration. Driller’s approach to avoiding the pitfall of sym-
bolic execution by using its fuzzer to perform the bulk of path exploration and
only leveraging symbolic execution when the fuzzer “gets stuck” or in other
words fails to generate an input that can drive path exploration forward. The
key to this approach is its use of pre-constrained tracing which ensures that the
only path that is being analyzed is the path that represents the application’s
processing a given input [18].

7 Proposed Future Research

This section will briefly discuss some proposed areas of future research:

7.1 Binary Pre-processing to Minimize Search Space for Large
and Complex Applications

In many ways binary analysis can be viewed as an uninformed search problem,
that when coupled with tools like instrumentation it evolves into an informed
search problem. The search space for large, complex applications can be vast and
systems that are seeking to effectively perform analysis on such applications at
scale, must find even more effective ways (than the current state of the art) to
minimize the search space. Minimizing the search space leads to be better code
coverage which enables analysis tools to find defects deeper in code.

With the above issue in mind, I propose exploring creating a system that can
perform binary pre-processing, with the purpose of identifying application “hot
spots”. Hot spots are areas in an application where exploitable bugs are likely
to exist. These hot spots would split an application into regions. Information
regarding these hot spot regions, path constraints and other metadata, would
act as a map or guide to that area in the code. This information would be given
along with the corresponding binary to a vulnerability detection system, and this
system would use this metadata and path constraints to make its way directly to
the hot spot region. Once the system reaches this region, it would perform binary
analysis as normal. This pre-processing step could make vulnerability detection
an even more informed search problem, and by splitting software into regions
it would give less code to reason about at one time during the vulnerability
detection phase.

7.2 Generating Exploits from Common Vulnerabilities
and Exposures Reports (CVEs)

A human security analyst or attacker has the ability to read a Common Vul-
nerabilities and Exposures report (CVE) and build exploits for the reported
vulnerability. They are leveraging not only the knowledge supplied in the CVE,
they are also leveraging their historic knowledge and past experience to gener-
ate an exploit for the reported vulnerability. I propose exploring the feasibility
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of creating a knowledge based system that leverages the analysis capabilities of
the state of the art vulnerability discovery and exploit generation tools to learn
the common characteristics of exploits and vulnerabilities. This system would
take these learned insights and attempt to generate a generic exploit for a given
common vulnerability report. This would create a system that doesn’t require
the source code or binary code to generate test cases (exploits) for a given vul-
nerability it would only need the binary or source code to verify the test cases
it generates.

7.3 Deep Reinforcement Learning for Vulnerability Discovery

Cyber Reasoning Systems are expert systems that encapsulate the actions
and knowledge of a human analyst in an automated system that can detect
exploitable bugs, generate verifiable exploits, and patch software. Binary code
shares similar characteristics as a board or world in a video game, as they
both are subject to state changes based on user defined input and interactions.
Research in the field of deep reinforcement learning has proven that an intelli-
gent software agent is capable of learning and excelling at complex tasks [29]. I
propose exploring the feasibility of combining the use of a binary analysis system
with deep reinforcement learning to create an AI agent that can learn to discover
vulnerabilities in binary code.

8 Conclusion

Cyber Reasoning Systems are expert systems that encapsulate the actions
and knowledge of a human analyst in an automated system that can detect
exploitable bugs, generate verifiable exploits, and patch software. These systems
are complex and require expert knowledge of the problem to build them. Though
there are still many open problems that need to be addressed in order for Cyber
Reasoning Systems to be able to reason about real-world complex applications,
the current state of the art systems prove that it is very possible to build auto-
mated systems that can perform automated vulnerability detection, exploit gen-
eration and software patching in binary software without human intervention.
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