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Abstract—Modern enterprise systems can be composed of many web services (e.g., SOAP and RESTful). Users of such systems
might not have direct access to those services, and rather interact with them through a single-entry point which provides a GUI (e.g., a
web page or a mobile app). Although the interactions with such entry point might be secure, a hacker could trick such systems to send
malicious inputs to those internal web services. A typical example is XML injection targeting SOAP communications. Previous work has
shown that it is possible to automatically generate such kind of attacks using search-based techniques. In this paper, we improve upon
previous results by providing more efficient techniques to generate such attacks. In particular, we investigate four different algorithms
and two different fitness functions. A large empirical study, involving also two industrial systems, shows that our technique is effective at
automatically generating XML injection attacks.
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1 INTRODUCTION

The Service-Oriented Architecture (SOA) enables modular
design [1]. It brings a great deal of flexibility to modern
enterprise systems and allows them to orchestrate services
from different vendors. A typical SOA system consists of
front-end web applications, intermediate web services, and
back-end databases; they work in a harmonized fashion
from the front-ends receiving user inputs, the services ex-
changing and processing messages, to the back-ends storing
data. The Extensible Markup Language (XML) and its cor-
responding technologies, such as XML Schema Validation
and XPath/XQuery [2], are important in SOA, especially
when dealing with SOAP web services. Unfortunately, XML
comes with a number of known vulnerabilities, such as XML
Billion Laughs (BIL) and XML External Entities (XXE) [3],
[4], which malicious attackers can exploit, thus compro-
mising SOA systems. Although such vulnerabilities have
been known for almost two decades, they are still very
common in web applications and ranked first in the Open
Web Application Security Project (OWASP) top ten, together
with other code injection vulnerabilities1. This is due to
many developers being not properly trained on security
aspects [5] or being under intense time pressure to deliver
software within a limited amount of time. It is therefore
crucial to provide automated testing tools that support
developers in triggering malicious attacks and detecting
security vulnerabilities [5].

This paper focuses on the automated testing for XML
injections (XMLi), a prominent family of attacks that aim at
manipulating XML documents or messages to compromise
XML-based applications. Our systems under test (SUTs)

1. https://www.owasp.org/index.php/Top 10 2013-A1-Injection

are the front-end web applications of SOA systems, as
they are directly accessible from the internet and represent
the main entry-points for XMLi attacks. With “front-end”
we mean the main entry point on the server side of the
SOA systems, and not code running in the browser (e.g.,
JavaScript frameworks for client-side HTML rendering like
React and Angular). Among other functionalities, front-
end web applications receive user inputs, produce XML
messages, and send them to services for processing (e.g., as
part of communications with SOAP and RESTful web ser-
vices [6], [7]). Such user inputs must be properly validated to
prevent XMLi attacks. However, in the context of large web
applications with hundreds of distinct input forms, some
input fields are usually not properly validated [5]. Moreover,
full data validation (i.e., rejection/removal of all potentially
dangerous characters) is not possible in some cases, as meta-
characters like “<” could be valid, and ad-hoc, potentially
faulty solutions need to be implemented. For example, if
a form is used to input the message of a user, emoticons
such as “<3” representing a “heart” can be quite common.
As a consequence, front-end web applications can produce
malicious XML messages when targeted by XMLi attacks,
thus compromising back-end services that consume these
messages.

In practice, there exist approaches based on fuzz testing,
e.g., ReadyAPI [8], WSFuzzer [9], that try to send some XML
meta-characters (e.g., <) and seek for abnormal responses
from the SUTs. These approaches might be able to detect
simple XMLi vulnerabilities when the following two con-
ditions are satisfied: (i) there is no mechanism in place to
check XML well-formedness and validity, and (ii) erroneous
responses of the SUTs are observable by the testing tools.
However, they will typically fail to detect subtler vulner-

https://www.owasp.org/index.php/Top_10_2013-A1-Injection
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abilities that can be exploited only by using specific input
strings in addition to the XML meta-characters [10], such
as XML closing tags (e.g., </test>). Furthermore, some
attacks could be based on the combination of more than
one input field, where each field in isolation could pass the
validation filter unaltered.

In this paper, we propose an automated and scalable
approach to search for test cases (attacks) that are effective
at detecting XMLi vulnerabilities affecting the front-end
web applications (our SUTs). To detect such vulnerabilities,
we first identify a set of well-formed yet malicious XML
messages that the SUTs can produce and send to back-
end services. In the following, we refer to these malicious
XML messages as test objectives, or TOs for brevity. The
TOs are identified using SOLMI [10], a fully-automated tool
that creates well-formed malicious XML messages based
on known XML attacks and the XML schemas of the web
services under test. Given a set of TOs, our testing goal
is to verify whether such malicious XML messages can be
generated by the SUT or whether the inputs validation and
sanitization are able to prevent their generation. In addition,
often there is no one-to-one mapping between inputs and
outputs of the SUT since user inputs are typically processed
and transformed before generating XML messages. There-
fore, the goal is to search for user inputs that lead the front-
end web application to generate each TO.

To solve this search problem, we use meta-heuristics
to explore the input space of the SUT (e.g., text data in
HTML input forms) in an attempt to generate XML mes-
sages matching the generated TOs. Search is guided by an
objective function that measures the difference between the
actual SUT outputs (i.e., the XML messages toward the web
services) and the targeted TOs. Our approach does not re-
quire access to the source code of the SUT and can, therefore,
be applied in a black-box fashion on many different systems.

This paper is an extension of a previous conference
paper [11], where we used standard genetic algorithms
guided by the string edit distance (as fitness function) to
exploit XMLi vulnerabilities. The contributions of this paper
with respect to the conference paper are:
• We investigate four different search algorithms, namely

Standard Genetic Algorithm (SGA), Real-coded Ge-
netic Algorithm (RGA), Hill Climbing (HC) and Ran-
dom Search (RS), while in the conference paper we
compared only SGA and RS.

• We evaluate a different fitness function, namely the
Real-coded Edit Distance (Rd), to overcome the limi-
tations of the traditional String Edit Distance (Ed) in
our context.

• We provide an in-depth analysis by comparing all
possible combinations of fitness functions and search
algorithms to determine the combination that is most
effective and efficient in detecting XMLi vulnerabilities.

• We extensively analyze several co-factors that are likely
to affect the effectiveness and efficiency of the proposed
approach.

Based on the above contributions, we can then recom-
mend to practitioners the best search algorithm and fit-
ness function to uncover as many XML vulnerabilities as
possible (effectiveness) while reducing the time needed to
detect them (efficiency). Results are reported at a sufficient

level of detail to enable other researchers to replicate our
experiments and fully explain the results. We have carried
out an extensive evaluation of the proposed approach by
conducting two different case studies. In the first study, we
compared all combinations of fitness functions and search
algorithms with respect to the detection of XMLi vulnerabil-
ities in (i) one open-source third-party application designed
for secure-code training, and (ii) two web applications that
interact with an industrial bank card processing system. We
find that RGA combined with Rd is able to detect more
XMLi vulnerabilities (better effectiveness) within a signifi-
cantly lower amount of time (better efficiency) compared to
the other combinations, including the one previously used
in our conference paper [11], i.e., SGA with Ed.

To evaluate the applicability of our search-based ap-
proach in a realistic setting, we conducted a second case
study involving two industrial systems. The first one is a
web application having millions of registered users, with
hundreds of thousands of visits per day. We focused on
one of its pages with an HTML form. As our approach
would be directly applicable to any system that receives
HTTP messages, to show that this is indeed the case, our
second case study involves a web service receiving JSON
messages and generating XML messages for back-end SOAP
services. Our results show that the proposed technique,
when configured with RGA and Rd, successfully detects
XMLi vulnerabilities in the evaluated industrial systems.

The remainder of the paper is structured as follows.
Section 2 provides background information on XMLi at-
tacks, and describes the testing context of our research.
Section 3 describes our proposed approach and the tool
that we developed for its evaluation. Section 4 reports and
discusses our evaluation on two case studies including
research questions, results and discussions. Further analyses
regarding the various co-factors that may affect our results
are presented in Section 6. Section 7 discusses related work.
Threats to validity are discussed in Section 8. Finally, Sec-
tion 9 concludes the paper.

2 BACKGROUND

In this section, we briefly discuss XMLi attacks and describe
our prior work [10] aimed at testing back-end web services.

2.1 XML Injection

XML injection is an attack technique that aims at manip-
ulating the logic of XML-based applications or services.
It is carried out by injecting malicious content via XML
tags and elements into input parameters to manipulate the
XML messages that the system produces, e.g., to create
malformed XML messages to crash a target system. XML
injection is also used to carry nested attacks (malicious
content embedded in XML messages), e.g., the payloads for
SQL injection or cross-site scripting. The aim of this type of
attacks is to compromise the system itself or other systems
that process the malicious XML messages, e.g., a back-
end database that returns confidential information based on
queries in the XML messages. We refer the reader to our
previous work [10] for a more comprehensive categorization
of XMLi attacks.
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Fig. 1. The user registration web form having three input fields: User
Name, Password, and Email.

Consider a simplified example in which users can reg-
ister themselves through a web portal to a central service2.
Once registered, a user can access different functionalities
offered by the service. User registration data are stored in
a database, accessed through a SOAP web service. Each
user entry has a field called userid, that is inserted by the
application to assign privileges and which users are not
allowed to modify.

The web portal has a web form (shown in Figure 1)
with three user input fields: username, password, and email.
Each time a user submits a registration request, the appli-
cation invokes the following piece of Java code to create
an XML SOAP message and sends it to the central service,
which is a SOAP web service in this case. Notice that the
getNewUserId() method is invoked to create a new user
identifier and no user modification of userid is expected.

1 soapMessage = "<soap:Envelope><soap:Body>"
2 + "<user>"
3 + "<username>"+r.getParameter("username")+"

</username>"
4 + "<password>"+r.getParameter("password")+"

</password>"
5 + "<userid>"+getNewUserId()+"</userid>"
6 + "<mail>"+r.getParameter("mail")+"</mail>"
7 + "</user>"
8 + "</soap:Body></soap:Envelope>";
9

10 validate(soapMessage);

Even though there is a validation procedure at Line
10, that piece of code remains vulnerable to XML injection
attacks because user inputs are concatenated directly into
the variable soapMessage without validation. Let us consider
the following malicious inputs:

Username=Tom
Password=Un6Rkb!e</password><!--
E-mail=--><userid>0</userid><mail>admin@uni.lu

These inputs result into the XML message in Figure 2. The
userid element is replaced with a new element having
the value “0”, which we assume is reserved to the
Administrator. In this way, the malicious user Tom can
gain administration privilege to access all functionalities of
the central service. This message is well-formed and valid
according to the associated XML schema (i.e., the XSD) and,
therefore, the validation procedure does not help mitigating
this vulnerability.

2. This example is inspired by the example given by the Open Web
Application Security Project (OWASP) https://www.owasp.org/index.
php/Testing for XML Injection (OTG-INPVAL-008)

Fig. 2. An example of an injected SOAP message.

Similarly, by manipulating XML to exploit XMLi vulner-
abilities, attackers can inject malicious content that can carry
other types of attacks. For instance, they can replace the
value “0” above with “0 OR 1=1” to launch an SQLi attack. If
the application directly concatenates the received parameter
values into an SQL Select query, the resulting query is
malicious and can result in the disclosure of confidential
information when executed:

Select * from Users where userid = 0 OR 1=1

2.2 Testing Web Applications for XMLi attacks
An SOA system typically consists of a front-end web ap-
plication and a set of back-end web services. Messages are
transmitted using the HTTP protocol while data are repre-
sented using the XML format [12]. The front-end application
generates XML messages (e.g., toward SOAP and RESTful
web services) upon incoming user inputs (as depicted in
Figure 3). These XML messages are consumed by back-
end systems or services, e.g., an SQL back-end, that are not
directly accessible from the net.

Testing web applications for code injection attacks im-
plies to thoroughly test both back-end services and front-
end applications. Back-end services are typically protected
by XML-gateways/firewalls, which are responsible for
blocking incoming malicious requests. To provide an addi-
tional level of protection, front-end web applications contain
code-level defenses [13], such as input validation and sanitiza-
tion routines. In such a scenario, security analysts have to
test the protection mechanisms both at back-end side (i.e.,
XML-gateways and firewalls) and front-end side (i.e., input
sanitization and validation routines).

2.2.1 Testing the Back-end Web Services
In our previous work [10], we have developed a testing
framework, namely SOLMI (SOLver and Mutation-based
test generation for XML Injection), to automatically generate
XMLi attacks able to bypass the XML gateways and target
the back-end web services. SOLMI uses a set of mutation op-
erators that can manipulate a non-malicious XML message
to generate four types of XMLi attacks: Type 1: Deforming,
Type 2: Random closing tags, Type 3: Replicating and Type 4: Re-
placing. The intent and impact of each of these XMLi attack
types are different. Type 1 attacks aim to create malformed
XML messages to crash the system that processes them. Type

https://www.owasp.org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-008)
https://www.owasp.org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-008)
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2 attacks aim to create malicious XML messages with an
extra closing tag to reveal the hidden information about the
structure of XML documents or database. Finally, Type 3 and
Type 4 aim at changing the XML message content to embed
nested attacks, e.g., SQL injection or Privilege Escalation.

To generate these types of attacks, SOLMI [10] relies
on a constraint solver and attack grammars (e.g., an SQL
grammar for nested SQL injection attacks). The constraint
solver ensures that the malicious content, generated using
the attack grammar, satisfies the associated constraints (e.g.,
Firewall rules) of the system. Therefore, the resulting XML
messages are valid but malicious and are more effective in
circumventing the protection mechanisms of the associated
(back-end) web services.

In our prior work [10], we conducted an empirical study
to assess the performance of SOLMI by testing 44 web
services of a financial organization that are protected by an
XML gateway (firewall). Our results showed that around
80% of the tests (i.e., XML messages with malicious content)
generated by SOLMI were able to successfully bypass the
gateway. Moreover, SOLMI outperformed a state-of-the-
art tool based on fuzz testing, which did not manage to
generate any malicious, bypassing XMLi attack [10].

2.2.2 Our Testing Context
The security of the front-end plays a vital role in the over-
all system’s security as it directly interacts with the user.
Consider, for instance, a point of sale (POS) as the front-
end that creates and forwards XML messages to the bank
card processors (back-end). If the POS system is vulnerable
to XMLi attacks, it may produce and deliver manipulated
XML messages to web services of the bank card processors.
Depending on how the service components process the
received XML messages, their security can be compromised,
leading to data breaches or services being unavailable.

Therefore, in this paper we focus on the front-end web
application, which is our software under test (SUT). In
particular, we aim to test whether the SUT is vulnerable to
XMLi attacks. We consider the web application as a black-
box. This makes our approach independent from the source
code and the language in which it is written (e.g., Java, .Net,
Node.js and PHP). Furthermore, this also helps broaden the
applicability of our approach to systems in which source
code is not available to the testers (e.g., external penetration
testing teams). However, we assume to be able to observe
the output XML messages produced by the SUT upon user
inputs. To satisfy this assumption, it is enough to set up a
proxy to capture network traffic leaving from the SUT, and
this is relatively easy in practice.

3 TESTING THE FRONT-END WEB APPLICATIONS
FOR XMLi : A SEARCH-BASED APPROACH

If there exist inputs (e.g., data sent via forms from HTML
pages) that can lead the SUT to generate malicious XML
outputs, then the SUT is considered to be vulnerable. Thus,
the malicious XML outputs generated by the SUT are our
test objectives (TOs) and our goal is to search for user inputs
generating them (see Figure 3). Consider the example of user
registration given in Section 2.1: Figure 2 shows a possible
TO where the userid element is manipulated, i.e., the original

Front-end
System

XML

I1
I2

In

Generated XML 
Messages

Back-end 
Systems

System 1

System 2

System n

Search Focus

Fig. 3. Testing Context

element userid has a value 500, which has been commented
out and replaced with the new userid element having a value
of 0.

A TO is said to be covered if we can provide inputs
which result into the SUT producing the TO. Since the TO
is malicious by design, the SUT is not expected to do so
unless it is vulnerable. In other words, we search for user
inputs that can lead the SUT to generate malicious messages
and send them to the web services behind the corporate
firewall/gateway, which are not directly accessible to an
attacker. Sending such TOs to the backend systems/services
could severely impact them depending on the malicious
content that these TOs carry.

More generally, the problem of testing the front-end web
application for XMLi attacks can be defined as follows:

Problem 3.1: Let TO = {TO1, . . . ,TOk} be the set of test
objectives for a given SUT. Our problem is to find a set of test
inputs T = {T1, . . . , Tk} such that SUT(Ti)=TOi, for each
TOi ∈ TO.

In the definition above, SUT(Ti) denotes the XML mes-
sage produced by the SUT when executed with Ti.

Although the TOs are known a priori, in practice we do
not know whether they can be actually generated by the
SUT, i.e., whether they are feasible or not. Since we consider
the SUT as a black-box, we also do not know a priori how
inputs are related to output XML messages. It is also worth
noticing that there is likely no one-to-one mapping between
user inputs and XML outputs, as inputs are processed and
transformed by input sanitization and validation routines of
the front-end web applications.

3.1 Test Objectives Generation

In our approach, TOs are XML messages satisfying the
following conditions: (i) they are syntactically valid; (ii) they
are conforming to their given schema (e.g., in XSD format);
(iii) they contain malicious content. The first two properties
are necessary, otherwise wrongly-formatted XML messages
would be trivially discarded by the XML-gateway/firewall
protecting the web services. Furthermore, the set of TOs
should be diverse such as to cover the four types of XMLi
attacks described in Section 2.2.1.

For these reasons, in this paper we use the tool
SOLMI [10] to produce the TOs. In addition to satisfying all
the aforementioned properties, we would like that, if they
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are generated by the SUT, they also have high chances of
bypassing the XML gateway/firewall. SOLMI also ensures
diversity in the generated TO set, which is important for
the success of our technique. Having a diverse set of TOs
increases our chances of finding TOs that can be produced
by the SUT. Therefore, when generating TOs, we make sure
that each XML element and attribute of the messages is
modified at least once with all the types of XMLi attacks,
when possible, as described in Section 2.2.1.

3.2 Search-Based Testing
In our context, applying search-based techniques requires
us to address three issues [14]: (i) choose an encoding
schema to represent candidate solutions (i.e., test inputs); (ii)
design a fitness function to guide the search for malicious
test inputs; and (iii) choose and apply an effective search
algorithm to generate inputs closer to the target TO. Our
choices for the aforementioned tasks are detailed in the next
sub-sections.

3.2.1 Solution Encoding
A given SUT requires N input parameters to be submitted
for producing XML messages that will be sent through
HTTP to the web services. Therefore, the search space is
represented by all possible tuples of N strings that can
be submitted via the web form, with one string for each
single parameter. In this context, a string is a sequence of
alphanumeric and special characters (e.g., %, || or &) that
can be inserted by an attacker in the web form.

Therefore, we use the following encoding schema: a
candidate test case for the SUT with N input parameters
is a tuple of strings T = 〈S1, S2, . . . , SN 〉 where a Si

denotes the string for the i-th input parameter of the SUT.
A generic string in T is an array of k characters, i.e.,
Si = 〈c1, c2, . . . , ck〉. The length k of the array is fixed based
on the expected maximum length of the corresponding in-
put parameter. To allow input strings with different length,
we use a special symbol to denote the “empty” character,
i.e., absence of character. In this way, the lengths of input
strings can vary during the search even if the length of
the array (i.e., k) in the encoding schema is fixed. In other
words, the array Si = 〈c1, c2, . . . , ck〉 can be filled with the
“empty” character to represent shorter strings.

Theoretically, characters in the input string can come
from the extended ASCII code as well as from UNICODE.
However, in this paper we consider only printable ASCII
characters with code between 32 and 127 since, as noticed
by Alshraideh et al. [15], the majority of software programs
do not use characters outside this range (i.e., non-printable
characters).

3.2.2 Fitness Function
The effectiveness of the search strongly depends on the
guidance of the fitness function, which evaluates each can-
didate solution T according to its closeness to the target
TO. In particular, when a candidate solution T is executed
against the SUT, it should lead to the generation of an XML
message that matches the TO. Hence, the fitness function is
the distance d (TO, SUT(T)) between the target TO and the
XML message that the SUT produces upon the execution

of T , i.e., SUT(T). The function d(·) can be any distance
measure such that d (TO, SUT(T)) = 0 if and only if SUT(T)
and the TO are identical, otherwise d (TO, SUT(T)) > 0. In
this paper, we investigate two different measures for the
fitness function: the string edit distance and the real-coded edit
distance.

String Edit Distance. The first fitness function is the
Levenshtein distance, which is the most common distance
measure for string matching. Its main advantage compared
to other traditional distances for strings (e.g., Hamming
distance) is that it can be applied to compare strings with
different lengths [16]. In our context, the length of the XML
messages generated by the SUT varies depending on the
input strings (i.e., the candidate solution T ) and the data
validation mechanisms in place to prevent possible attacks.
Therefore, the edit distance is well suited for our search
problem. In addition, it has been shown in the literature [15]
that this distance outperforms other distance measures (e.g.,
Hamming distance) in the context of test case generation for
programs with string input parameters, despite its higher
computational cost3.

In short, the Levenshtein distance is defined as the
minimum number of editing operations (inserting, deleting,
or substituting a character) required to transform one string
into another. More formally, let An and Bm be two strings to
compare, whose lengths are n and m, respectively; the edit
distance is defined by the following recurrence relations:

dE(An, Bm) = min


dE(An−1, Bm) + 1
dE(An, Bm−1) + 1
dE(An−1, Bm−1) + f(an, bm)

(1)

where an is the n-th character inAn, bm is them-th character
in Bm, and f(an, bm) is zero if an = bm and one if an 6= bm.
In other words, the overall distance is incremented by one
for each character that has to be added, removed or changed
in An to match the string Bm. The edit distance takes values
in [0; max{n,m}], with minimum value dE = 0 when An =
Bm and maximum value of dE = max{n,m} when An and
Bm have no character in common.

To clarify, let us consider the following example of a
TO and a SUT with one single input parameter. Let us
assume that the target TO is the string <test>data OR
1=1</test>; and let us suppose that upon the execution
of the test T = 〈OR %〉, the SUT generates the following
XML message SUT(T) = <test>data OR %</test>. In
this example, the edit distance dE (TO, SUT(T)) is equal to
three, as we need to modify the “%” character into “1”, and
then add the two characters “=1” for an exact match with
the TO.

One well-known problem of the edit distance is that it
may provide little guidance to search algorithms because the
fitness landscape around the target string is largely flat [15].
For example, let us consider the target TO = <t> and let
us assume we want to evaluate the three candidate tests
T1, T2 and T3 that lead to the following XML messages:
SUT(T1) = At>, SUT(T2) = ˆt>, SUT(T3) = <t. The mes-
sages SUT(T1) and SUT(T2) share two characters with the

3. The computational cost of the edit distance is O(n ×m), where n
and m are the lengths of the two strings being compared.
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Fig. 4. Fitness landscapes for the edit distance and the real-coded edit
distance for the target string TO = <t>

target TO (i.e., t and >) and have a correct length, i.e.,
three characters. Instead, the message SUT(T3) shares two
characters with the target TO but it is one character shorter.
Therefore, we may consider T1 and T2 to be closer to the
target TO than T3 since they have the correct number of
characters, two of which match the TO. However, using the
edit distance, all the three tests will have the same distance
to the TO since they require to change only one character,
i.e., dE(<t>,At>) = dE(<t>,ˆt>) = dE(<t>,<t) = 1. In
this example, the edit distance is not able to distinguish
between messages having the correct length (e.g., T1) and
messages that are shorter or longer than the TO (e.g., T3).

In general, the fitness landscape around the target TO
will be flat as depicted in Figure 4-(a): all strings that require
changing (e.g., At>), add (e.g., <t) or remove (e.g., <tt>)
one character will have a distance dE equal to 1 while the
distance will be 0 for only one single point. Thus, a search
algorithm would have to explore this whole, very large
neighborhood, without any particular guidance.

Real-Coded Edit Distance. It is a variant of the Lev-
enshtein distance that we introduce to overcome the limita-
tions of the original distance, as described in the previous
paragraphs. Given a target TO, the set of strings at a given
distance D is extremely large. For example, let us consider
a TO with n characters selected from an alphabet Ω; there
are 2 × n × |Ω| strings having a Levenshtein distance D=1:
(i) n strings that differ for one single missing character; (ii)
n × |Ω| strings containing one additional (spare) character;
(iii) n × (|Ω| − 1)) strings that require to replace one single
character to perfectly match the TO. Although we restrict

the alphabet to the printable ASCII characters with code
between 32 and 127, the number of strings with a Leven-
shtein distance D=1 for a target TO with 100 characters
is 100 × 2 × (127 − 32 + 1)) = 19200. In such a large
neighborhood, the Levenshtein distance does not provide
effective guidance to the search algorithms.

Therefore, we modify the Levenshtein distance to focus
the search on sub-regions of the large neighborhood of the
target TO. In particular, we consider the relative distance
between characters in the ASCII code, which helps replacing
the plateaus with a gradient. This is done by changing the
recurrence relations as follows:

dR(An, Bm) = min


dR(An−1, Bm) + 1
dR(An, Bm−1) + 1

dR(An−1, Bm−1) + |an−bm|
1+|an−bm|

(2)

In Equation 2, the first two recurrence rules are identical
to the traditional edit distance covering the case where
An will match Bm by removing or adding one character,
respectively. The change is applied on the third recurrence
rule, which covers the case when the character an should be
replaced by the character bm. In the traditional edit distance,
if an is not equal to bm then the overall distance is always
incremented by one. Instead, in Equation 2, if an is not equal
to bm, then the overall distance is incremented by the factor
| an − bm |, which is the absolute value of the difference
between the ASCII codes for the two characters an and
bm. Such an increment factor is normalized using the well-
known normalization function φ(x) = x/(x + 1) to obtain
distance values within the interval [0; 1].

To describe the benefits of this new distance, let us
consider the example used previously to describe the fitness
landscape of the edit distance: the target TO is the string
<t>, and the tests to evaluate lead to the XML messages
SUT(T1) = At>, SUT(T2) = ˆt>, SUT(T3) = <t. Using the
real-coded edit distance, we obtain:

dR(<t>,At>) =
| 60− 65 |
| 60− 65 | +1

≈ 0.8333

dR(<t>,ˆt>) =
| 60− 94 |
| 60− 94 | +1

≈ 0.9714

dR(<t>,<t) = 1

Thus, with dR the three tests are not equally distant to
the TO anymore: the test T3 is the furthest one among
the three tests. Therefore, differently from the edit distance,
the new distance is able to distinguish between messages
with correct length (e.g., T1) and messages that are longer
or shorter than the TO (e.g., T3). We can also observe
that the new distance returns two different values for T1
and T2 although both the two tests need to replace only
one character to perfectly match the TO. This difference
is given by the relative distance between the character to
match in the TO (i.e., “<”) and the two characters to replace
(i.e., “A” for T1 and “ˆ” for T2) according to their ASCII
codes. Therefore, dR introduces a distance among characters
such that small differences among strings can still lead to
differences in fitness values.

Figure 4-(b) plots the fitness landscape around the target
TO=<t> as well as the three candidate tests T1, T2, and
T3 in the previous example. In particular, the x axis orders
the candidate XML messages according to their ASCII codes
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while the y axis reports the corresponding fitness function
values produced by the real-coded edit distance. As we
can observe, the plateaus are replaced by a fitness function
providing more guidance by considering the ordering of the
characters according to their ASCII codes. Though such a
distance may seem arbitrary, it helps the search focus on
sub-regions of the neighborhood of the target TO, e.g., by
preferring T1 over T2 in the example.

In theory, the usage of the ASCII code is not mandatory
and we could use any arbitrary mapping f : c→ N between
characters (c) and integers (N). Given a mapping f , the
relative distance between two characters an and bn can
be always computed using the formula φ(|f(an) − f(bn)|).
Using any other mapping f would lead to the same fitness
landscape transformation: the plateaus of the Levenshtein
distance are replaced by a gradient, thus providing a “di-
rection” to follow to match the target TO. Among all pos-
sible mappings, in this paper we opted for the ASCII code
because it is a well-known standard encoding. Moreover,
we did not observe any difference in our empirical results
when replacing the ASCII code with some other character
mappings.

As for any heuristic, the new distance might have some
side effects (e.g., create new local optima). Therefore, such a
distance needs to be empirically evaluated to check if indeed
it provides the benefits we expect from the theory.

3.2.3 Solvers
Once the encoding schema and the fitness function are de-
fined, search algorithms can be applied to find the optimal
solutions, as for example malicious input strings in our case.
Various search algorithms have been proposed in the liter-
ature to solve different software engineering problems [14].
However, there does not exist a search algorithm that out-
performs all other algorithms for all possible optimization
problems [17]. According to the no free lunch theorem [17],
if an algorithm A outperforms another algorithm B for a
problem P1, there exists another problem P2 for which B
outperforms A. Therefore, we need to investigate different
search algorithms to better understand which one works
better for our problem, namely generating XMLi attacks.

In this paper, we investigate four different search algo-
rithms, which are (i) random search (RS), (ii) hill climbing
(HC), (iii) the standard genetic algorithm (SGA), and (iv) the
real-coded genetic algorithm (RGA). These algorithms are
designed to solve different types of search problems, such
as functions with plateaus, unimodal functions (i.e., with
only one optimum), multimodal functions (i.e., with mul-
tiple local optima), and problems whose solution encoding
contains numbers (real-coded). In the following paragraphs,
we describe each search algorithm as well as the type of
problems for which it outperforms the other algorithms.

Random Search (RS) is the simplest search algorithm,
which uniformly samples the search space by evaluating
random points. It starts with a randomly generated test T
representing the initial candidate solution to the problem.
Such a solution is evaluated through the fitness function and
it is stored until a new, better solution is found in the next
iterations of the algorithm, or if a stop condition is reached.
At each iteration, a new test T ∗ is randomly generated and

compared with T using the fitness function. If T ∗ has a
better fitness value than T , then it is kept as current solution
for the next iterations, i.e., T = T ∗. The search ends after a
fixed number of iterations. The final test T will be the best
solution among all those observed across all the iterations.

In our context, a randomly generated solution T =
〈S1, S2, . . . , SN 〉 is composed of N arrays of characters with
a fixed length k. Each array Si contains characters ran-
domly taken from the set of available characters (alphabet),
including the “empty” character. Therefore, a solution T
is composed of arrays representing strings with variable
lengths ≤ k. Notice that the solutions generated by RS
are inputs for web forms and not complete XML messages
(TOs). Indeed, the XML messages are generated by the SUT,
which fills predefined XML message templates with the
input strings processed by the sanitization and validation
routines. Therefore, although the inputs are randomly gen-
erated, the corresponding XML messages are syntactically
correct as they are generated by the SUT, which creates well-
formed XML structure.

Since RS does not refine previously generated solutions,
it has usually a low probability to reach the global optimum.
However, it is often used in the software engineering liter-
ature as baseline for comparison with more advanced algo-
rithms. Moreover, RS is very effective to optimize problems
whose fitness landscape contains plateaus (e.g., in the case
of the edit distance) and provides poor guidance [18]. For
example, it has been shown to outperform other search
algorithms (e.g., evolutionary algorithms) when solving
specific problems, such as automated software repair [19],
and hyper-parameter optimization [20].

The Simple Hill Climbing (HC) is a local search
algorithm, which iteratively exploits the neighborhood of the
current solution to find better nearby solutions (neighbors).
Similar to random search, hill climbing starts with a single
randomly generated test T , which represents the current
solution to the problem. At each iteration, a new solution T ∗

is taken from the neighborhood of T and evaluated against
the fitness function. If T ∗ improves the fitness function, then
it becomes the current solution for the next iteration, i.e.,
T = T ∗. The search ends after a fixed number of iterations
or if a zero-fitness value is reached, which indicates that the
target TO is matched.

The key ingredient for the HC algorithm is the definition
of the neighborhood, which corresponds to the set of tests
(neighbors) that can be obtained from the current solution
T by applying “small mutations”. Let T = 〈S1, S2, . . . , SN 〉
be the current test composed of N arrays of characters. A
neighbor is obtained from T by mutating its constituent
arrays using one of the following operators: adding, replacing
or deleting characters. Each operator is performed with prob-
ability p = 1/3, i.e., the three operators are mutually exclu-
sive (only one operator is applied at a time) and equiprob-
able. Given an array of characters Si = 〈c1, c2, . . . , ck〉 of
length k, the three operators are implemented as follows:
• deleting: a character cj in Si is deleted with probability
pd = 1/k. The deletion is performed by replacing the
character cj ∈ Si with the “empty” character, which
is then shifted to the end of the array. As explained
in Section 3.2.1, the “empty” character represents the
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absence of character and is used to allow input strings
with different length during the search.

• replacing: a character cj in Si is replaced with a new
character c∗j with probability pr = 1/k, where c∗j
is randomly selected from the set of printable ASCII
characters.

• adding: a new character c∗ is inserted in Si at a random
position j ∈ [1, . . . , k], the subsequent characters at
that position are shifted to the right, and the “empty”
character at the last position in the array is deleted to
accommodate the newly inserted character. The new
character is added if and only if there exists at least
one “empty” character in the array. This restriction
ensures that inserting a new character does not delete
an existing “non-empty” character as it is the case with
the “replacing” operator.

Therefore, on average only one character is removed, re-
placed or added in the arrays Si contained in the test T .

Despite its simplicity, HC is very effective when the
fitness forms an unimodal function in the search space,
i.e., functions with only one single optimal point [21]. If
the fitness function provides good guidance, HC converges
faster to the optimal point compared to global search algo-
rithms (e.g., evolutionary algorithms) and RS. However, it
can return sub-optimal solutions for multimodal functions
since it converges to the first local optimum encountered
during the search, even if it is not the global one [21].

In this paper, we consider the simple HC algorithm over
the other variants that have been proposed in the litera-
ture [21]. One of its most efficient variants is the steepest
descent hill climbing [21]. Given a trial solution T , this variant
examines all possible neighbors of T and selects as new
solution the deepest descend, i.e., the neighbor with largest
fitness function improvement. In our context, we could not
use this variant since it requires to analyze the entire neigh-
borhood of T , whose size is significantly large. Indeed, the
number of strings that can be obtained by adding, replacing
or deleting one single character from T is 2×n×|Ω|, where
n is the length of T and |Ω| is the size of the alphabet
(see Section 3.2.2). For this reason, we opted for the simple
variant of the HC, which is easier to implement, yet efficient
as it fast converges toward optimal solutions [21].

Standard Genetic Algorithm (SGA) is a metaheuristic
solver inspired by the mechanisms of natural selection and
adaptation. In a nutshell, it starts with a pool of solutions,
called population, where each solution (or chromosome) is
a randomly generated test. Then, the population is itera-
tively evolved by applying well-known genetic operators,
namely crossover, mutation and selection. At each iteration
(generation), pairs of solutions (parents) are selected and re-
combined using the crossover operator, which creates new
solutions (offspring) to form the population for the next
generation. Other than inheriting parts (genes) from their
parents, offspring are further modified, with a given small
probability, using the mutation operator. Solutions are se-
lected according to a selection operator, which typically gives
higher selection probability to solutions in the current pop-
ulation with higher fitness values (fittest individuals). This
process is repeated until a zero-fitness value is achieved (i.e.,
the TO is matched) or after a fixed number of generations.

The most “popular” (i.e., widely used in the literature,
because for example they give good results on average
and/or are easier to implement) genetic operators in SGA
are the binary tournament selection, the multi-point crossover
and the uniform mutation [21]. They are defined as follows:
• the binary tournament selection is the most common se-

lection mechanism for GAs because of its simplicity and
efficiency [22], [23]. With this operator, two individuals
are randomly taken from the current population and
compared against each other using the fitness function.
The solution with the best fitness value wins the tour-
nament and is selected for reproduction.

• the multi-point crossover generates two offspring O1

and O2 from two parent solutions P1 and P2 by re-
combining their corresponding arrays of characters.
More precisely, let P1 = 〈S1, S2, . . . , SN 〉 and P2 =
〈R1, R2, . . . , RN 〉 be the two selected parents, the two
offspring O1 and O2 are generated as follows:

O1 = 〈⊗(S1, R1, p1), . . . ,⊗(SN , RN , pN )〉 (3)
O2 = 〈⊗(R1, S1, p1), . . . ,⊗(RN , SN , pN )〉 (4)

where the generic element ⊗(Si, Ri, pi) denotes the ar-
ray obtained by cutting the two arrays Si and Ri at the
same random cut point pi and then concatenating the
head part from Si with the tail part from Ri. Similarly,
⊗(Ri, Si, pi) indicates the array obtained by applying
the same random cut point pi but concatenating the
head part from Ri with the tail part from Si. Therefore,
the i-th array from one parent is recombined with the
corresponding array at the same position i in the other
parent.

• the uniform mutation is finally used to mutate, with a
small probability, newly generated solutions in order to
preserve diversity [21]. It corresponds to the mutation
operator used for the hill climbing algorithm when
generating neighbors: tests are mutated by deleting,
replacing or adding characters in the corresponding
array of characters.

GAs are global search algorithms and are thus more
effective than local search solvers for multimodal problems.
This is because they use multiple solutions to sample the
search space instead of a single solution (e.g., for the hill
climbing) which could bias the search process [21]. On the
other hand, GAs can suffer from a slower convergence to the
local optimum when compared to hill climbing. Therefore,
they are usually less effective and efficient for unimodal
problems [21].

Real-Coded Genetic Algorithm (RGA) is a variant of
GAs designed to solve numerical problems with real or
integer numbers as decision variables (genes) [24]. The main
difference between SGA and RGA is captured by the genetic
operators that are used to form new solutions. In SGAs, the
crossover creates offspring by exchanging characters from
the parents and, as a result, the new solutions will only
contain characters that appear in the parent chromosome.
Further, in SGA, diversity is maintained by the mutation
operator, which is responsible for replacing characters in-
herited from the parents with any other character in the
alphabet. Instead, in RGA, the parents are recombined by
applying numerical functions (e.g., the arithmetic mean) to
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create offsprings that will contain new numbers (i.e., genes)
not appearing in the parent chromosomes. Mutation, on the
other hand, alters solutions according to some numerical
distribution, such as a Gaussian distribution.

In this paper, we investigate the usage of RGAs since
they have been shown to be more effective than SGAs when
solving numerical and high dimensional problems [24], [25].
In particular, our problem is numerical if we consider char-
acters as numbers in ASCII code (as in the real-coded edit
distance) and it is high dimensional (the number of dimen-
sions corresponds to the length of the chromosomes). In-
deed, maintaining the same encoding schema used for SGA,
each array of characters Si = 〈c1, c2, . . . , ck〉 of a test T can
be converted in an array of integers Ui = 〈u1, u2, . . . , uk〉
such that each ui ∈ U is the ASCII code of the character
ci ∈ S when applying real-coded crossover or mutation.

Popular genetic operators for RGA are the binary tourna-
ment selection, the single arithmetic crossover [26], and Gaussian
mutation [27]. Therefore, the selection mechanism is the
same as in SGA, whereas crossover and mutation operators
are different. Before applying these two numerical opera-
tors, we convert the input strings forming a test T in arrays
of integers by replacing each character with the correspond-
ing ASCII code. Once new solutions are generated using the
single arithmetic crossover and gaussian mutation, the integer
values are reconverted into characters.

The single arithmetic crossover is generally defined for
numerical arrays with a fixed length. For example, let
A = 〈a1, a2, . . . , ak〉 and B = 〈b1, b2, . . . , bk〉 be two arrays
of integers to recombine; it creates two new arraysA′ andB′

as copies of the two parents and modify only one element
at a given random position i using the arithmetic mean. In
other words, A′ and B′ are created as follows [26]:

A′ = 〈a1, a2, . . . , a′i, . . . ak〉 (5)
B′ = 〈b1, b2, . . . , b′i, . . . bk〉 (6)

where the integers a′i and b′i are the results of the weighted
arithmetic mean between ai ∈ A and bi ∈ B; and i ≤ k is
a randomly generated point. The weighted arithmetic mean
is computed using the following formulae [26]:

a′i = ai · ρ+ bi · (1− ρ) (7)
b′i = bi · ρ+ ai · (1− ρ) (8)

where ρ is a random number ∈ [0; 1]. Finally, the two
resulting real numbers a′i and b′i are rounded to their nearest
integers.

In our case, parent chromosomes are tuples of strings
and not simple arrays of integers. Therefore, we apply the
single arithmetic crossover for each pair of arrays compos-
ing the two parents, after the conversion of the characters to
their ASCII codes. More formally, let P1 = 〈S1, S2, . . . , SN 〉
and P2 = 〈R1, R2, . . . , RN 〉 be the two selected parents; the
two offsprings O1 and O2 are generated as follows:

O1 = 〈µ(S1, R1, p1), . . . , µ(SN , RN , pN )〉 (9)
O2 = 〈µ(R1, S1, p1), . . . , µ(RN , SN , pN )〉 (10)

where Si is the array of ASCII codes in position i from the
parent P1; Ri is the array of ASCII codes in position i from
the parent P2; the elements µ(Si, Ri, pi) and µ(Ri, Si, pi)

are the two arrays created by the single arithmetic crossover
on Si and Ri with random point pi ∈ [0; 1].

The gaussian mutation is similar to the uniform mutation
for SGA. Indeed, each test T in the new population is
mutated by deleting, replacing or adding characters in the
corresponding array of characters. The main difference is
represented by the routine used to replace each character
with another one. With the uniform mutation, a charac-
ter is replaced with any other character in the alphabet.
Instead, the gaussian mutation is defined for numerical
values, which are replaced with other numerical values but
according to a Gaussian distribution [27]. In our case, let
Si = 〈c1, c2, . . . , ck〉 be the array of ASCII codes to mutate;
each ASCII code cj in Si is replaced with a new ASCII code
c∗j with probability pr = 1/k. The integer c∗j is randomly
generated using the formula:

c∗j = cj + cj · δ(µ, σ) (11)

where δ(µ, σ) is a normally distributed random number
with mean µ = 0 and variance σ [27]. In other words,
the new ASCII code is generated by adding a normally dis-
tributed delta to the original ASCII code cj . The remaining
issues to solve include (1) this mutation scheme generates
real numbers and not integers and (2) the generated num-
bers can fall outside the range of printable ASCII code (i.e.,
outside the interval [32; 127]). Therefore, we first round c∗j to
the nearest integer number. Finally, the mutation is cancelled
if the new character c∗j is lower than 32 or greater than 127.

4 EMPIRICAL STUDIES

This section describes our empirical evaluation whose ob-
jective is to assess the proposed search-based approach and
compare its variants in terms of different fitness functions
and search algorithms, as discussed in Section 3.

4.1 Study Context
The evaluation is carried out on several front-end web
applications grouped into two case studies. The first study
is performed on small/medium web applications, whereas
the second one involves subsets (e.g., processing a specific
HTML page) of industrial systems. These two studies are
described in detail below.

Study 1. The first case study involves three subjects
with various web-applications. The first two subjects are
SBANK and SecureSBANK (SSBANK), which contain web
applications interacting with a real-world bank card pro-
cessing system. They are simplified versions of the actual
front-end web applications from one of our industrial col-
laborators (a credit card processing company4). The SBANK
and SSBANK versions used in our study contain the HTML
forms and input processing routines from the original web
applications as they represent the actual code under test.
However, we disabled other routines, such as logging, en-
cryption and other routines responsible for the interactions
with the back-end web services. Finally, the back-end ser-
vices were replaced by mock-up services to not compromise
them during our testing process.

4. The name of the company cannot be revealed due to a non-
disclosure agreement
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Fig. 5. An example of output XML message created by SBank .

Both SBANK and SSBANK have three applications that
differ regarding their number of user inputs, ranging from
one to three user inputs. Note that all TOs in our empirical
study involve up to three user inputs. Hence, the additional
TOs that SOLMI could generate for forms with more than
three inputs would just be similar malicious strings as for
forms with three inputs but applied to different subsets
of inputs. In the following, we will refer to SBANK1 (or
SSBANK1), SBANK2 (or SSBANK2), and SBANK3 (or SS-
BANK3) for the applications with one, two, and three user
inputs, respectively. These different versions of the same
applications are used to analyze to what extent the number
of input parameters affects the ability of solvers and fitness
functions to detect XMLi vulnerabilities (see Section 6 for
further details).

Each SBANK/SSBANK application receives user inputs,
produces XML messages and sends them to the web ser-
vices of the card processing system. An example of XML
message produced by an SBANK/SSBANK application is
depicted in Figure 5. Such a message contains four XML
elements, which are UserName, IssuerBankCode, CardNumber,
and RequestID. The first three elements are formed using
the submitted user inputs while the RequestID element is
generated by the application automatically. In other words,
the application logic does not allow users to tamper with
the value of this element unless they do so maliciously.

Applications in SBANK are vulnerable to XML injections
as there is no validation or sanitization of the user inputs.
The SSBANK applications are similar to SBANK except that
one of the input parameters is validated, i.e., the application
checks the input data for malicious content. Before pro-
ducing the XML message, the latter applications validate
the user input parameter IssuerBankCode and generate an
error message if any malicious content is found. These two
applications allow us to assess, in a controlled fashion,
the impact of input validation procedures on the ability of
solvers and fitness functions to detect XMLi vulnerabilities.

The third subject of our first study is XMLMao, an open
source web application that is deliberately made vulnerable
for testing XML injection attacks [28]. It is part of the Magical
Code Injection Rainbow (MCIR) [28] framework for building a
configurable vulnerability test-bed. This application accepts
a single user input and creates XML messages. It has 1178
lines of code written in PHP. We chose to include such an
open source application in our evaluation to have, as part of
our study, a publicly accessible system that future research
can use as a benchmark for comparison.

Study 2. The second study consists of two subjects
provided by one of our industrial collaborators which, to
preserve confidentiality, are referred to by arbitrary names:
M and R. M is an industrial web application with millions
of registered users and hundreds of thousands of visits per
day. The application itself is hundreds of thousands of lines
long, communicating with several databases and more than
50 corporate web services (both SOAP and REST). Out of
hundreds of different HTML pages served by M , in this
paper we focus on one page having a form with two string
inputs.R is one of the RESTful web services interacting with
M . This web service receives requests in JSON format, and
interacts with two SOAP web services and one database. R
is significantly smaller than M , as it consists only of around
five thousand lines of code. Of the different API methods
provided by R, in this paper we focus on a POST that takes
as body a JSON object with three string fields.

As the experiments on these two systems had to be run
on a dedicated machine (e.g., they could not be run on a
research cluster of computers) due to confidentiality con-
straints, we could not use all of theirs web pages and end-
points. We chose those two examples manually, by searching
for non-trivial cases (e.g., web pages with at least two string
input parameters that are not enumerations), albeit not too
difficult to analyze, i.e., given the right inputs, it should
interact with at least one SOAP web service. Due to non-
disclosure agreements and security concerns, no additional
details can be provided on M and R.

In this work, we analyze security testing from the point
of view of users sending malicious data inside HTML forms.
Sending data from the browser to the SUT is done on a
TCP connection, using the HTTP protocol. In particular, this
is done with a POST method with the data of the input
form as HTTP body payload, encoded in the x-www-form-
urlencoded format. However, an attacker does not need to use
the browser: s/he can just directly open a TCP connection to
the SUT, and craft a valid HTTP POST message. And this is
what we do with our tool, where we use search to generate
the right string data for the variables of the HTTP payloads.
Therefore, our technique can be used for any SUT that takes
HTTP messages as input. Besides web applications, web
services also fit such a description. R is a RESTful web
service, where inputs come from HTTP messages. So, we
can use our technique directly on it. We just need to handle
the JSON format instead of x-www-form-urlencoded when
creating the payload of the messages we send. The use of R
in our empirical study is mainly to show that our technique
can be used also in other contexts besides HTML forms.

The main difference between Study 1 and Study 2 is the
complexity of the code invoked by web pages rather than
the size of their forms. Even if we test single pages from a
large, industrial system, there is still going to be substantial
functionality and code executed, contributing to the time
consumed by the testing process. The systems selected in
Study 2 led to lengthy experiments, as we could not use an
HPC platform for an industrial system.

Test Objectives (TOs). For each application and for each
case study, we created the target TOs based on the four
types of XML injection attacks described in Section 3.1.
Table 1 reports on the number of generated TOs collected
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TABLE 1
Description of Test Objectives

App. Name #Input #TOs per Attack Total #TOsType 1 Type 2 Type 3 Type 4

SBANK
1 3 3 3 0 9
2 3 3 3 1 10
3 3 3 3 1 10

SSBANK
1 3 3 3 0 9
2 3 3 3 1 10
3 3 3 3 1 10

XMLMao 1 4 4 4 0 12
M 2 1 1 1 1 4
R 3 1 1 1 1 4

per study subject and type of XML injection attacks. For
SBANK/SSBANK applications with two and three input
parameters, there are ten TOs in total: three TOs (one for
each attack of types Type 1-Type 3) for each of the three XML
elements and one additional TO for the Type 4 attacks. Note
that the Type 4: Replacing attack is a more advanced form
of XML injection that requires at least two XML elements
where the value of one of them must be auto-generated by
the application. Therefore, this attack can be applied only
to the RequestID element as it is the only auto-generated
element in the application. Moreover, this attack should
not be applied to web applications with only one input
parameter, otherwise the resulting TO will be unfeasible.
As a consequence, for SBANK/SSBANK applications with
only one input parameter, we have nine TOs in total, corre-
sponding to the attacks of types Type 1-Type 3 for each of the
three XML elements.

The XMLMao application has one user input that can
be inserted in four possible locations in the generated XML
messages. Therefore, we create TOs by applying each type of
attack on the four XML elements. As depicted in Table 1, we
do not have TOs for the attack of Type 4: Replacing because
XMLMao has only one input parameter. In total, we obtain
12 TOs (3 attacks × 4 locations) for this subject. Finally, for
the industrial applications (M and R), we have four TOs,
i.e., one TO for each type of attack.

4.2 Research Questions
Our evaluation addresses the following research questions:
• RQ1: What is the best fitness function for detecting XMLi

vulnerabilities? With this first research question, we aim
at comparing the two fitness functions defined for the
XMLi vulnerability detection problem. In particular, we
compare the performance of each solver (e.g., hill climb-
ing), considered individually, when used to optimize
the real-coded edit distance proposed in this paper and
the traditional string edit distance [15], [11]. In particular,
the comparison is performed in terms of the number of
generated TOs via the SUT (effectiveness) and the time
needed to generate them (efficiency). In our context, the
generation of a TO via the SUT implies the detection
of an XMLi vulnerability. Therefore, in answering this
research question, we consider the following two sub-
questions:

RQ1.1 [Effectiveness]: What is the best fitness function
in terms of effectiveness?
RQ1.2 [Efficiency]: What is the best fitness function in
terms of efficiency?

• RQ2: What is the best solver for detecting XMLi vulnera-
bilities? In this second research question, we compare
to what extent different search algorithms are able to
detect XMLi vulnerabilities when optimizing the same
fitness function (e.g., the string edit distance). Specifi-
cally, we compare the different algorithms discussed in
Section 3.2.3 when optimizing the same fitness function
with respect to their ability to detect as many XMLi
vulnerabilities as possible (effectiveness) and the time
needed to detect such vulnerabilities (efficiency). There-
fore, we consider the following two sub-questions:

RQ2.1 [Effectiveness]: What is the best solver in terms
of effectiveness?
RQ2.2 [Efficiency]: What is the best solver in terms of
efficiency?

The goal of these two research questions is to understand
which solver and fitness function combination is more effec-
tive and efficient for detecting XMLi vulnerabilities. There-
fore, to answer them, we use all web applications in Study 1
to perform an extensive analysis of all possible combinations
of solvers and fitness functions (see Section 4.3).

For the industrial applications (M and R) in Study 2, we
could not involve our industrial partners in the evaluation
of all possible configurations given the high computational
cost of this type of study. Indeed, such a detailed inves-
tigation involves (i) different solvers, (ii) different fitness
functions, (iii) different configurations, (iv) various TOs for
each application, and (v) a number of repetitions to address
the randomized nature of the solvers being compared. For
these reasons, Study 2 is used to evaluate the applicability
of the best configuration of our search-based approach, in
a realistic context, as formulated by the following research
question:
• RQ3: How does the proposed technique perform on large and

complex industrial systems? For this research question,
we focus on the two real-world applications M and R
in Study 2 to understand whether the proposed search-
based approach is able to detect XMLi vulnerabilities
(effectiveness) in larger systems with complex input
validation routines and in a reasonable amount of time
(efficiency). The goal here is to assess the scalability of
our approach with real-world industrial systems where
the response time is typically slow due to the interac-
tions of several components and/or the complexity of
operations. Since running all combinations of solvers
and fitness functions is not possible on our industrial
applications due to higher execution times, we focus
on assessing the best combination of solver and fitness
function identified when answering RQ1 and RQ2.

4.3 Variable Selection
To answer our RQs, we studied the effect of the following
independent variables:
• Fitness function: in Section 3.2.2 we described two dif-

ferent fitness functions, i.e., real-coded edit distance (Rd)
and string edit distance (Ed), that can be used to guide
search algorithms toward the detection of XMLi vul-
nerabilities. The former has been widely applied in
the software testing literature [15] while the latter has
been introduced in this paper. To answer RQ1, we
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compare the results achieved by each solver considered
individually when optimizing the two fitness functions
for each application and TO in our empirical study.

• Solver: given a fitness function, different optimization
algorithms can be used to find optimal solutions to our
problem. Therefore, this independent variable accounts
for the four solvers described in Section 3.2.3 that could
be used interchangeably for the XMLi vulnerabilities
detection problem, which are Random Search (RS), Hill
Climbing (HC), Standard Genetic Algorithms (SGA)
and Real-coded Genetic Algorithms (RGA). To answer
RQ2, we compare the four solvers when optimizing the
same fitness function. In other words, the comparison
is performed by considering each fitness function sepa-
rately.

For brevity, in the following we refer to combinations of
these two independent variables (Fitness function × Solver)
as treatments affecting the dependent variables.

In our study, the dependent variables are the perfor-
mance metrics used to compare the effectiveness and the
efficiency across treatments. For effectiveness, we use the
Success Rate, which is the ratio of the number of times a
given TO is covered by a treatment Ω to the total number of
times the treatment Ω is executed (i.e., runs). More formally,
the success rate is defined as follows:

SR(TO,Ω) =
# successful runs

# runs
× 100 (12)

where # successful runs denotes the number of times Ω cov-
ers the TO, and # runs indicates the total number of runs.

For efficiency, we use the Execution Time, which measures
the average time (in minutes) taken by a treatment Ω to
reach the termination criterion (i.e., either the TO is covered
or the search timeout is reached) over the total number of
runs for a given TO.

In addition to the dependent and independent variables
described above, we also investigate the following co-factors
that may affect the effectiveness and the efficiency across the
treatments:
• Number of input parameters: each web application in

our studies is a web-form with different input boxes
where attackers can introduce malicious input strings.
A higher number of input strings may increase the
search time required by a given treatment to cover
each TO. Therefore, we investigate the effect of this
co-factor by applying each treatment on subjects with
different number of input parameters. The purpose of
this analysis is to measure the effect of increasing the
number of input parameters on each treatment.

• Alphabet size: the alphabet of characters to use for gener-
ating input strings is represented by the set of printable
ASCII characters. Instead of using the complete alpha-
bet of all possible characters, we can reduce the size
of the alphabet for the input parameters by omitting
the characters, we know, are unused in the TOs. For
example, if we observe that the target TO does not
contain the character “A”, we can assume that such a
character is not useful to create malicious input strings.
Therefore, we can reduce the size of the search space by
removing the character “A” from the set of characters
(alphabet) to use for generating malicious input. On

the other hand, it may be difficult to determine what
the restricted alphabet is when data validation and
transformation routines are used. Therefore, we assess
to what extent the usage of a restricted alphabet (pos-
itively/negatively) impacts the performance of search
algorithms and fitness functions.

• Initial population: all solvers start with an initial set
of randomly generated solutions, which are tuples of
randomly generated strings. Since the length of the
input string that matches the target TO (upon the gener-
ation of the corresponding XML message) is unknown a
priori, the length of the input strings in the initial pop-
ulation may affect the performance of our treatments.
Indeed, if the randomly generated input strings are
too long or too short (compared to the final solution)
we would expect that each treatment will require more
time (more edit operations) to find the malicious input
string. To analyze the impact of the initial population
on the performance of our treatments, we consider two
different settings: (i) we generate random strings with
a fixed (F) maximum lengths of characters each, or (ii)
we generate strings of variable length (V) by using the
“empty” character (see Section 3.2.1).

To perform a detailed evaluation of the effect of these
three co-factors on our main treatments, we conducted a
number of experiments with different settings, as summa-
rized in Table 2. Each row in the table represents one experi-
ment. The first column contains the name of the applications
used in our case studies. The second column (ExpId) assigns
a unique id to each experiment based on the application and
its configuration. The third column #TOs lists the number
of TOs in the experiment. The fourth column (#Inp) lists
the number of input parameters. The fifth column (PopLen.)
reports whether the length of the input strings in the initial
population is fixed (Fix) or not (Var). The last column (Res.
Alph.) indicates whether the search use a full alphabet set (Y)
or restricted alphabet set (N). These configuration details are
encoded in the ExpId values reported in the second column
of Table 2. For example, the ExpId “S.2.F.Y” encodes the
following settings for the SBANK (“S”) web application:
it has two input parameters (“2”), input strings in the
initial population have a fixed length (“F”), and a restricted
alphabet set (“Y”) is used.

Therefore, we have (3 input parameters × 2 alphabets
× 2 input string’s lengths = ) 12 different configurations for
both SBANK and SSBANK. Instead, for XMLMao, we have
only four possible configurations since this application has
only one input parameter. For the industrial applications
(M and R) in Study 2, we could not involve our industrial
partners in the evaluation of all possible configurations
given the high computational cost of this type of study (see
Section 4.2). For these reasons, the M and R applications
are evaluated with only one configuration, M.2.V.Y and
R.3.V.Y respectively. It is worth noticing that the number of
input parameters for M and R is fixed since no alternative
versions with a different number of input parameters are
available. For the remaining setting, we opted for the con-
figurations we empirically found to be statistically superior
in Study 1. Therefore, for Study 2 we used the restricted
alphabet (“Y”) and the initial population composed by input
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TABLE 2
Experiment Settings: Experiment ID (Exp. ID) is named based on the

corresponding application (App.), the number of inputs (#Inp.), length of
input strings in the initial population (PopLen), and whether the

alphabet is restricted (Res. Alph.).

App. Exp. ID #TOs #Inp. PopLen. Res. Alph.

SBank

S.1.F.N 9 1 Fix N
S.2.F.N 10 2 Fix N
S.3.F.N 10 3 Fix N
S.1.F.Y 9 1 Fix Y
S.2.F.Y 10 2 Fix Y
S.3.F.Y 10 3 Fix Y
S.1.V.N 9 1 Var N
S.2.V.N 10 2 Var N
S.3.V.N 10 3 Var N
S.1.V.Y 9 1 Var Y
S.2.V.Y 10 2 Var Y
S.3.V.Y 10 3 Var Y

SSBank

SS.1.F.N 9 1 Fix N
SS.2.F.N 10 2 Fix N
SS.3.F.N 10 3 Fix N
SS.1.F.Y 9 1 Fix Y
SS.2.F.Y 10 2 Fix Y
SS.3.F.Y 10 3 Fix Y
SS.1.V.N 9 1 Var N
SS.2.V.N 10 2 Var N
SS.3.V.N 10 3 Var N
SS.1.V.Y 9 1 Var Y
SS.2.V.Y 10 2 Var Y
SS.3.V.Y 10 3 Var Y

XMLMao

X.1.F.N 12 1 Fix N
X.1.F.Y 12 1 Fix Y
X.1.V.N 12 1 Var N
X.1.V.Y 12 1 Var Y

M M.2.V.Y 4 2 Var Y

R R.3.V.Y 4 3 Var Y

strings with variable length (“V”).

4.4 Experimental protocol

For each TO and each configuration, we executed each
treatment Ω and recorded whether the TO is covered
or not as well as the execution time. Each execution (i.e.,
run) is repeated 10 times (but only three times for the
industrial systems) to account for the randomized nature
of the optimization algorithms. The coverage data is binary
since a given TO is either covered or not by a specific run
of the treatment, whereas the execution time is recorded in
minutes. This data is further used to calculate the selected
performance metrics, i.e., Success Rate and average Execution
Time for each TO.

For answering RQ1.1, we analyzed whether the success
rates achieved by the solvers statistically differ when using
two different fitness functions, i.e., real-coded edit distance
(Rd) and the string edit distance (Ed). To this aim, we
use the Fisher’s exact test [29] with a level of significance
α = 0.05. The Fisher exact test is a parametric test for
statistical significance and is well-suited to test differences
between ratios, such as the percentage of times a TO is
covered. When the p-value is equal or lower than α, the
null hypothesis can be rejected in favor of the alternative
one, i.e., a solver (e.g., HC) with one fitness function (e.g.,
Rd) covers the TO more frequently than the same solver

but with another fitness function (e.g., Ed). We also use
the Odds Ratio (OR) [30] as measure of the effect size, i.e.,
the magnitude of the difference between the success rates
achieved by Rd and Ed. The higher the OR, the higher
is the magnitude of the differences. When the Odds Ratio
is equal to 1, the two treatments being compared have the
same success rate. Alternatively, OR >1 indicates that the
first treatment achieves a higher success rate than the second
one and OR <1 the opposite case.

For answering RQ1.2, we analyzed whether the execu-
tion time achieved by the solvers statistically differs when
using Rd or Ed. To compare execution times, we use the
non-parametric Wilcoxon test [31] with a level of signifi-
cance α = 0.05. When obtaining p-values ≤ α, we can reject
the null hypothesis, i.e., a given treatment takes less time to
cover the TO under analysis than another treatment. We also
use the Vargha-Delaney (Â12) statistic [32] to measure the
magnitude of the difference in the execution time. A value
of 0.5 for the Â12 statistics indicates that the first treatment
is equivalent, in terms of execution time to the second one.
When the first treatment is better (lower execution time)
than the second one, Â12 < 0.5. Naturally, Â12 > 0.5
otherwise.

For RQ2.1 and RQ2.2, we use the Friedman’s test [33] to
verify whether multiple treatments are statistically different
or not. It is a non-parametric equivalent to the ANOVA
test [34] and thus does not make any assumption about
the data distributions to be compared. More specifically, for
RQ2.1, we compare the average success rates achieved by
the different treatments in 10 independent runs across all
web applications and configurations. Instead, for RQ2.2 the
comparison is performed considering the average execution
time achieved in the 10 runs across all web applications
and configurations. For both RQ2.1 and RQ2.2, we use a
level of significance α = 0.05. When the p-values obtained
from the Friedman’s test are significant (i.e., <= 0.05), we
apply the post-hoc Conover’s procedure [35] for pairwise
multiple comparison. The p-values produced by the post-
hoc Conover’s procedure are further adjusted using the
Holm-Bonferroni procedure [36] to correct the significance
level in case of multiple comparisons. Note that the purpose
of RQ2.1 and RQ2.2 is to compare different solvers in terms
of both effectiveness and efficiency; thus, we separately
compare the four solvers described in Section 3.2.3 for the
two fitness functions (e.g., Rd and Ed).

4.5 Parameter settings

Running randomized algorithms, and GAs in particular,
requires to set various parameters to achieve acceptable re-
sults. In this study, we set the parameter values by following
the recommendations in the related literature, as detailed
below:
• Mutation rate. De Jong’s [37] recommended value of
pm=0.001 for mutation rate has been used by many im-
plementations of Genetic Algorithms. Another popular
mutation rate has been defined by Grefenstette’s [38]
as pm=0.01. Further studies [39], [40], [41], [42] have
demonstrated that pm values based on the popula-
tion size and chromosome’s length achieves better per-
formance. Hence, for RGA and SGA we use pm =
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(1.75)/(λ
√
l) as mutation rate, where l is the length of

the chromosome and λ is the population size. We also
conducted some preliminary experiments with these
different recommended mutation rates and we found
that better results are indeed achieved when pm is
based on the population size and chromosome’s length.
For HC, we set the mutation rate to 1/l (where l is the
length of the chromosome) since there is no population
for this solver. This parameter is not applicable for RS.

• Crossover rate. The crossover rate is another important
factor for the performance of GAs. The recommended
range for the crossover rate is 0.45 ≤ pc ≤ 0.95
[39], [43]. In our experiments, we chose pc = 0.70
for RGA/SGA, which falls within the range of the
recommended values. Notice that this parameter is not
applicable to HC and RS.

• Population size. Selecting a suitable population size
for GAs is also a challenging task since it can affect
their performance. The recommended values used in
the literature are within the range 30-80 [43]. From our
preliminary experiments, we observed that the popula-
tion size of 50 works best for RGA/SGA in our context.
Such a value is also consistent with the parameters
settings used in recent studies in search-based software
testing [44], [45], [46]. This parameter is applicable only
to population-based algorithms, i.e., RGA and SGA in
our case.

• Termination Criteria. The search terminates when one
of the following two stopping criteria is satisfied: a
zero-fitness value is obtained (i.e., the target TO is
covered) or the maximum number of fitness evalua-
tions is reached. For SBANK, XMLMao and the two
industrial systems, we set the maximum number of
fitness evaluations to 300K. Instead, for SSBANK, we
used a larger search budget of 500K fitness evaluations
because it uses input validation routines, which make
the TOs more difficult to cover. We also empirically
found that a larger search budget is indeed needed for
SSBANK compared to SBANK and XMLMao.

4.6 Implementation

We have implemented all solvers and all fitness functions in
a prototype tool implemented on top of JMetal [47], which is
an optimization framework written in Java. The tool takes as
inputs the SUT, the TOs containing malicious XMLi content,
the solver to apply, and the fitness function to optimize. The
tool generates test cases according to the given combination
of solver/fitness function, i.e., inputs for the SUT (e.g., input
values in HTML forms) that lead to XMLi attacks. Each
candidate test is evaluated by executing the SUT with the
corresponding inputs and comparing the generated XML
message with the target TO. The comparison is based on the
selected fitness function while tests are evolved according
to the selected solver.

The tool is composed of two main components: (i) the
test case generator, and (ii) the test executor. The test case
generator is the core component of the tool and it is imple-
mented on top of jMetal [47]. This component implements
the search algorithms (i.e., RS, HC, SGA, and RGA) and
the fitness functions (i.e., the String Edit Distance and the

Real-Coded Edit Distance) described in Section 3. The test
executor provides an interface between the SUT and the test
case generator. It takes the input strings generated by the test
case generator and submits them to the SUT (e.g, through
a HTTP POST). The XML messages produced by the SUT
for the web services are intercepted and forwarded to the
test case generator, which calculates the corresponding fitness
function scores. In other words, the test executor is an HTTP
proxy between the SUT and the web services.

Each SUT requires its own test executor to correctly
interact with the user interface (e.g., HTML web forms and
input parameter names) and to intercept the generated XML
files (e.g., SOAP messages or data bodies in HTTP POST
messages toward RESTful web services). However, we use
the same test executor for all solvers and fitness functions
when testing the same SUT.

It is worth noticing that all solvers and fitness functions
are implemented in the same tool, using the same pro-
gramming language (i.e., Java) and relying on the search
operators (e.g., mutation) available in JMetal. This setting
avoids potential confounding factors due to the usage of
different tools with different implementation details when
measuring the execution time of the different solvers.

5 RESULTS

This section discusses the results of our case studies, ad-
dressing in turn each of the research questions formulated
in Section 4. Reporting the individual results along with
the statistical tests for each TO, for each configuration, and
for each treatment is not feasible due to the large number
of resulting combinations, i.e., 2,016 in total. Therefore, we
report the mean and standard deviation of the success rate
and of the execution time obtained for all TOs of the same
web application and with the same configuration (i.e., for
each experiment/row in Table 2). For the statistical tests, we
report the number of times the differences between pairs
of treatments are statistically significant together with the
average effect size measures.

5.1 RQ1: What is the best fitness function for detecting
XMLi vulnerabilities?

Table 3 summarizes the results of all treatments on the
first subject SBANK in Study 1, listing the average success
rate (SR) along with the standard deviation (SD) for each
configuration. Each row in the table represents one configu-
ration (experiment) identified by the unique id listed in the
first column ExpId. The last row in the table lists the mean
values for SR and SD across all configurations. As depicted
in that table, for all solvers the real-coded edit distance (Rd)
achieved higher success rates compared to the string edit
distance (Ed). RGA achieved an SR of 95.83% with Rd,
which is much higher than that of Ed with 16.07%.

These observations are confirmed by the Fisher’s exact
test, as reported in Table 4. For each solver, this table lists
the average Odds Ratios (OR) of the success rates for
each configuration, as well as the number of times where
Rd achieved significantly higher (#Rd > Ed) or lower
(#Rd < Ed) success rates compared to Ed, according to
the Fisher’s exact test. The last row in the table lists (i)
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TABLE 3
Average Success Rates (SR) and Standard Deviation (SD) out of 10 runs per TO for SBANK

ExpId
RGA SGA HC RS

Rd Ed Rd Ed Rd Ed Ed
SR SD SR SD SR SD SR SD SR SD SR SD SR SD

S.1.F.N 100.00 0.00 22.22 23.86 71.11 38.87 67.78 29.49 92.22 13.02 90.00 7.07 0.00 0.00
S.2.F.N 96.00 6.99 8.00 11.35 50.00 43.97 39.00 29.61 88.00 22.01 79.00 23.31 0.00 0.00
S.3.F.N 93.00 10.59 3.00 6.75 40.00 34.96 28.00 27.81 60.00 51.64 45.00 41.16 0.00 0.00
S.1.F.Y 100.00 0.00 35.56 33.21 85.56 10.14 73.33 17.32 98.89 3.33 90.00 11.18 0.00 0.00
S.2.F.Y 92.00 7.89 21.00 20.25 45.00 28.38 44.00 36.88 89.00 14.49 90.00 10.54 0.00 0.00
S.3.F.Y 87.00 19.47 7.00 9.49 41.00 33.48 26.00 21.71 60.00 51.64 47.00 42.96 0.00 0.00
S.1.V.Y 100.00 0.00 40.00 36.40 100.00 0.00 78.89 13.64 97.78 4.41 86.67 14.14 0.00 0.00
S.2.V.Y 99.00 3.16 26.00 27.16 75.00 35.36 56.00 25.03 71.00 41.75 58.00 26.58 0.00 0.00
S.3.V.Y 93.00 13.37 6.00 8.43 69.00 41.75 46.00 26.75 70.00 48.30 37.00 34.66 0.00 0.00
S.1.V.N 100.00 0.00 21.11 27.13 77.78 33.46 67.78 27.74 96.67 7.07 86.67 11.18 0.00 0.00
S.2.V.N 100.00 0.00 3.00 6.75 61.00 50.43 41.00 35.10 76.00 35.02 63.00 32.34 0.00 0.00
S.3.V.N 90.00 15.63 0.00 0.00 55.00 47.90 24.00 23.19 60.00 51.64 29.00 29.98 0.00 0.00
Average 95.83 6.43 16.07 17.57 64.20 33.23 49.31 26.19 79.96 28.69 66.78 23.76 0.00 0.00

TABLE 4
Average Odds Ratios (OR) of the Success Rate for SBANK application. For each solver, we also report the number of times the Success Rate

obtained by the real-coded distance is statistically better (# Rd > Ed) or worse (# Rd < Ed) than the edit distance.

ExpId RGA SGA HC
Avg. OR #Rd> Ed #Rd<Ed Avg. OR #Rd>Ed #Rd<Ed Avg. OR #Rd>Ed #Rd<Ed

S.1.F.N 216.25 8 0 2.88 0 0 2.30 0 0
S.2.F.N 223.93 10 0 2.55 0 0 2.36 0 0
S.3.F.N 235.08 10 0 2.10 0 0 5.98 1 0
S.1.F.Y 164.75 6 0 3.14 0 0 3.57 0 0
S.2.F.Y 57.59 10 0 2.13 0 0 2.39 0 0
S.3.F.Y 118.90 9 0 2.44 0 0 5.28 1 0
S.1.V.Y 162.06 5 0 7.16 0 0 3.81 0 0
S.2.V.Y 167.45 8 0 6.84 0 0 7.12 1 0
S.3.V.Y 196.65 10 0 8.79 1 0 54.14 3 0
S.1.V.N 224.83 8 0 3.59 0 0 3.22 0 0
S.2.V.N 373.24 10 0 8.08 1 0 5.25 1 0
S.3.V.N 269.64 10 0 10.36 3 0 22.89 4 0

Avg./Total 200.87 104 0 5.00 5 0 9.86 11 0

TABLE 5
Average Success Rates (SR) and Standard Deviation (SD) out of 10 runs per TO for SSBANK

ExpId
RGA SGA HC RS

Rd Ed Rd Ed Rd Ed Ed
SR SD SR SD SR SD SR SD SR SD SR SD SR SD

S.1.F.N 66.67 50.00 17.78 24.38 63.33 47.70 52.22 41.77 62.22 47.11 56.67 43.01 0.00 0.00
S.2.F.N 3.00 4.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S.3.F.N 3.00 6.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S.1.F.Y 66.67 50.00 23.33 28.28 56.67 43.59 50.00 39.05 63.33 48.48 57.78 44.10 0.00 0.00
S.2.F.Y 6.00 5.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S.3.F.Y 7.00 6.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S.1.V.Y 66.67 50.00 32.22 39.62 64.44 48.51 54.44 42.75 64.44 48.51 47.78 37.34 0.00 0.00
S.2.V.Y 18.00 15.49 2.00 4.22 12.00 16.19 5.00 7.07 0.00 0.00 0.00 0.00 0.00 0.00
S.3.V.Y 21.00 19.12 2.00 4.22 6.00 12.65 3.00 4.83 0.00 0.00 0.00 0.00 0.00 0.00
S.1.V.N 66.67 50.00 13.33 20.62 62.22 47.64 46.67 37.42 65.56 49.27 44.44 37.45 0.00 0.00
S.2.V.N 4.00 6.99 0.00 0.00 2.00 4.22 2.00 4.22 0.00 0.00 0.00 0.00 0.00 0.00
S.3.V.N 5.00 9.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average 27.81 22.90 7.56 10.11 22.22 18.37 17.78 14.76 21.30 16.11 17.22 13.49 0.00 0.00

the average OR for all configurations (i.e., average of the
columns Avg. OR), and (ii) the total number of statisti-
cally significant cases (i.e., the sum of the #Rd > Ed /
#Rd < Ed columns). We can observe that, for all solvers
and for all configurations, the OR is always larger than one.
The largest OR values are obtained for RGA, for which we
observe that Rd is significantly better than Ed in most of the
configurations (≈ 90%), with an average OR value ranging

between 57.59 to 373.24. For the other solvers, OR is still
larger than one but its magnitude is smaller when compared
to that of RGA. In addition, according to the Fisher’s exact
test, SGA and HC performed significantly better with Rd in
only 4% and 9% of the configurations, respectively. These
results indicate that the solver that most benefits from the
usage of Rd is RGA.

For SSBANK in Study 1, success rate results are listed
in Table 5. Despite the input validations in SSBANK, the
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TABLE 6
Average Odds Ratios (OR) of the Success Rate for SSBANK application. For each solver, we also report the number of times the Success Rate

obtained by the real-coded distance is statistically better (# Rd > Ed) or worse (# Rd < Ed) than the edit distance.

ExpId RGA SGA HC
Avg. OR #Rd> Ed #Rd<Ed Avg. OR #Rd>Ed #Rd<Ed Avg. OR #Rd>Ed #Rd<Ed

S.1.F.N 114.42 5 0 3.04 0 0 2.02 0 0
S.2.F.N 1.69 0 0 1.00 0 0 1.00 0 0
S.3.F.N 1.75 0 0 1.00 0 0 1.00 0 0
S.1.F.Y 107.27 4 0 2.12 0 0 2.71 0 0
S.2.F.Y 2.39 0 0 1.00 0 0 1.00 0 0
S.3.F.Y 2.68 0 0 1.00 0 0 1.00 0 0
S.1.V.Y 102.81 3 0 4.31 1 0 5.47 1 0
S.2.V.Y 4.91 0 0 2.29 0 0 1.00 0 0
S.3.V.Y 5.78 0 0 1.34 0 0 1.00 0 0
S.1.V.N 158.04 6 0 6.57 1 0 7.55 1 0
S.2.V.N 1.98 0 0 1.16 0 0 1.00 0 0
S.3.V.N 2.34 0 0 1.00 0 0 1.00 0 0

Avg./Total 42.17 18 0 2.15 2 0 2.15 2 0

TABLE 7
Average Success Rates (SR) and Standard Deviation (SD) out of 10 runs per TO for XMLMao

ExpId
RGA SGA HC RS

Rd Ed Rd Ed Rd Ed Ed
SR SD SR SD SR SD SR SD SR SD SR SD SR SD

X.1.F.N 100.00 0.00 35.00 38.26 78.33 24.80 70.83 29.37 98.33 3.89 91.67 8.35 0.00 0.00
X.1.F.Y 100.00 0.00 44.17 44.41 70.83 19.75 70.83 23.92 96.67 6.51 91.67 12.67 0.00 0.00
X.1.V.Y 100.00 0.00 51.67 37.86 95.83 11.65 82.50 16.03 95.00 6.74 90.00 11.28 0.00 0.00
X.1.V.N 100.00 0.00 30.00 32.19 85.83 22.75 81.67 21.25 95.00 6.74 88.33 10.30 0.00 0.00
Average 100.00 0.00 40.21 38.18 82.71 19.74 76.46 22.64 96.25 5.97 90.42 10.65 0.00 0.00

TABLE 8
Average Odds Ratios (OR) of the Success Rate for XMLMao application. For each solver, we also report the number of times the Success Rate

obtained by the real-coded distance is statistically better (# Rd > Ed) or worse (# Rd < Ed) than the edit distance.

ExpId RGA SGA HC
Avg. OR #Rd> Ed #Rd<Ed Avg. OR #Rd>Ed #Rd<Ed Avg. OR #Rd>Ed #Rd<Ed

X.1.F.N 175.32 8 0 2.50 0 0 2.81 0 0
X.1.F.Y 167.90 7 0 2.06 0 0 2.89 0 0
X.1.V.Y 94.09 6 0 4.94 0 0 2.06 0 0
X.1.V.N 156.95 9 0 2.51 0 0 2.32 0 0

Avg./Total 148.56 30 0 3.00 0 0 2.52 0 0

solvers were able to obtain positive success rates in many
configurations with both Rd and Ed. This means that some
XMLi attacks can be still generated by inserting malicious
inputs. Thus, the input validation procedures in SSBANK
is sub-optimal, either because it is not adequately imple-
mented, or because it is not possible to avoid all possible
attacks using only input validation. We further observe that
Rd achieved higher average success rates compared to Ed
in all configurations. Indeed, the average improvement of
the success rate when using Rd is 20% for RGA, 4% for SGA
and 3% for HC. The corresponding results of the Fisher’s
exact test and OR values are provided in Table 6. Similar to
the results achieved for SBANK, OR is larger than one in
most of the configurations, although the larger differences
are observed for RGA. In particular, for this solver, Rd
leads to an average OR ranging between 1.69 and 107.27.
Instead, for the other two solvers, there is no statistically
significant difference according to Fisher’s exact test for
most of the cases, as confirmed by the OR values which
are often around one.

For XMLMao in Study 1, the results for average success

rates are provided in Table 7. When applying RGA with
Rd, the success rate is 100% for all configurations, which is
much higher than that of Ed with 40%. This large difference
is also confirmed by the Fisher’s exact test and very large
OR values. Indeed, RGA with Rd is significantly better than
RGA withEd in 30 cases out of 48 (62%). The corresponding
average OR values are very large, ranging between 94.09
and 175.32. In contrast, for the other two solvers, the differ-
ences are never significant when comparing the two fitness
functions.

In general, for all three subjects in Study 1, we observe
that Random Search (RS) always results in zero success
rate, i.e., it was unable to cover any TO. This confirms the
need for more advanced search algorithms to detect XMLi
vulnerabilities. Furthermore, none of the solvers reached
significantly higher success rates when using Ed instead of
Rd. Therefore, for RQ1.1, we conclude that:

The real-coded edit distance is very effective compared to the
string edit distance, especially for RGA which, as shown
next, is the best solver as well.
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TABLE 9
Average execution time (in minutes) results for SBANK

ExpId RGA SGA HC RSRd Ed Rd Ed Rd Ed
S.1.F.N 2.26 8.82 9.27 5.21 4.37 3.65 8.52
S.2.F.N 5.21 10.06 13.55 7.75 8.49 6.48 8.82
S.3.F.N 6.51 8.74 14.26 8.24 8.91 8.53 8.40
S.1.F.Y 1.52 7.19 7.13 4.73 2.20 2.33 9.11
S.2.F.Y 4.38 8.30 11.82 6.93 8.24 3.95 10.32
S.3.F.Y 5.73 8.03 12.28 7.83 9.52 7.42 9.05
S.1.V.Y 1.51 6.83 5.08 4.14 2.08 2.46 7.87
S.2.V.Y 2.95 8.14 8.92 6.14 12.10 5.65 7.90
S.3.V.Y 4.98 8.38 10.42 6.88 7.58 7.28 7.47
S.1.V.N 2.17 7.89 8.98 5.71 3.53 3.16 10.93
S.2.V.N 4.21 9.21 11.84 7.71 7.95 5.72 12.03
S.3.V.N 6.08 7.83 12.36 7.77 8.40 7.59 10.33
Average 3.96 8.28 10.49 6.59 6.95 5.35 9.23

TABLE 10
Average execution time (in minutes) results for SSBANK

ExpId RGA SGA HC RSRd Ed Rd Ed Rd Ed
S.1.F.N 5.12 15.21 11.45 8.20 7.09 8.18 12.95
S.2.F.N 10.50 6.87 10.11 8.57 11.92 13.46 5.36
S.3.F.N 5.33 3.87 6.06 4.95 6.76 5.47 1.70
S.1.F.Y 5.49 13.88 8.77 7.96 6.67 6.11 13.86
S.2.F.Y 11.62 6.99 9.73 9.23 12.81 10.72 5.77
S.3.F.Y 6.24 4.15 5.94 4.29 7.26 4.78 1.71
S.1.V.Y 5.69 14.20 8.75 9.03 6.00 8.63 11.49
S.2.V.Y 11.40 8.89 11.42 10.41 12.48 11.60 4.85
S.3.V.Y 6.41 3.98 8.32 5.61 6.29 4.84 1.68
S.1.V.N 5.57 14.49 10.65 11.62 7.14 8.87 13.08
S.2.V.N 11.52 5.80 9.44 8.81 12.07 9.92 5.49
S.3.V.N 5.49 4.24 6.20 4.14 6.16 5.35 1.66
Average 7.53 8.55 8.90 7.74 8.56 8.16 6.63

Regarding efficiency (RQ1.2), Tables 9, 10 and 11 report
the average execution time for the three subjects SBANK,
SSBANK and XMLMao in Study 1, respectively. The results
of the Wilcoxon’s test, along with the Â12 statistics, are
reported in Tables 12, 13 and 14. For each solver and each
configuration, these tables list the effect size as well as the
number of cases where the execution time for Rd is signif-
icantly lower or higher than Ed, based on the Wilcoxon’s
test and Â12 statistics.

Unlike the results of the success rates where Rd always
performed better, we obtained mixed results for different
solvers and applications when looking at efficiency. For
SBANK, RGA with Rd exhibited better efficiency with an
average execution time of 3.96 minutes compared to 8.28
minutes for Ed. This is also confirmed by the reported low
Â12 values (e.g., 0.14) and a significantly more efficient Rd
in 80% of the cases. For SGA and HC, Ed obtained lower
execution times and is significantly more efficient than Rd
in 50% and 39% of the cases, respectively. Efficiency results
for XMLMao are similar to SBANK except for HC, for which
the average execution time obtained with Rd is lower and
is found to be significantly better than Ed in seven cases.
Regarding SSBANK, the differences in average execution
time obtained with Rd and Ed are not very large (i.e., ≈
1 minute), although statistically significant in favor of Ed in
many cases, i.e., 25-53% for #Rd > #Ed.

Overall, in terms of efficiency, the real-coded edit dis-

TABLE 11
Average execution time (in minutes) results for XMLMao

ExpId RGA SGA HC RSRd Ed Rd Ed Rd Ed
X.1.F.N 1.04 8.02 7.18 5.98 1.86 3.21 12.19
X.1.F.Y 1.02 6.73 7.45 6.17 1.35 2.09 8.84
X.1.V.Y 0.81 6.44 4.76 5.41 1.38 2.29 12.11
X.1.V.N 0.90 8.33 6.86 5.92 2.34 3.77 8.64
Average 0.94 7.38 6.56 5.87 1.73 2.84 10.44

tance is significantly better than the string edit distance
for RGA, while the reverse is true for SGA and HC. One
possible explanation for this difference is the better ability
of the genetic operators in RGA to exploit the neighborhood
of candidate solutions when using Rd. As explained in
Section 3, Rd helps focus on sub-regions of the search
space but it is necessary that the solvers are able to ex-
ploit this information to produce some benefits. To bet-
ter explain this aspect, let us consider the TO=A (ASCII
code 65) and let assume that the current input string is
C (ASCII code 67), whose real-coded edit distance to the
TO is |65 − 67|/(|65 − 67| + 1) = 0.67. When using the
mutation operators of HC and SGA, the character C can be
replaced by any other character with ASCII code from 32
to 127 even if only few characters in this set would lead to
better Rd values, i.e., those with ASCII codes ∈ {64, 65, 66}.
Therefore, the probability of replacing the character C with
a better character is very low, i.e., p = 3/95 ≈ 0.03. Instead,
in RGA the gaussian mutation gives higher probability to
characters with ASCII codes that are closer to 67, which is
the code of C. Indeed, the probability of replacing C with
characters with ASCII codes ∈ {64, 65, 66} is much higher
in RGA when compared to HC and SGA. On the other
hand, Rd is more expensive to compute than Ed since it is
based on real-numbers and entails additional computations
(as shown in Equation 2 in Section 3). Therefore, Rd will
lead to better efficiency if and only if its additional overhead
is compensated by a large saving in the number of fitness
evaluations.

After manual investigation, we discovered that this is
the case only for RGA. Indeed, Rd remained efficient for
RGA in most of the cases due to a higher success rate than
Ed, which resulted in a lower number of fitness evaluations
during search. Instead, for SGA and HC the reduction in
the number of fitness evaluations is small and thus it does
not compensate for the additional overhead of Rd with
respect to Ed. The only exception to this general rule is
SSBANK, for which RGA with Rd is both more effective
and less efficient than Ed. These results are due to the input
validations performed in SSBANK, which produces an error
message instead of a complete XML response whenever
invalid inputs are submitted. When using Ed, computing
the distance between such a small error message and the TO
is much faster than doing so with a complete XML output
generated upon the insertion of valid inputs.

In other words, our investigation reveals that the real-
coded edit distance is more efficient, in terms of execution
time, in the specific case where it achieves a much higher
success rate than the string edit distance. Otherwise, if
the success rates of the two fitness functions do not differ
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TABLE 12
Average A12 statistics of the execution time for SBANK application. For each solver, we also report the number of times the efficiency of the

real-coded distance is statistically better (# Rd > Ed) or worse (# Rd < Ed) than the edit distance.

ExpId RGA SGA HC
Eff.Siz #Rd>Ed #Rd<Ed Eff.Siz #Rd>Ed #Rd<Ed Eff.Siz #Rd>Ed #Rd<Ed

S.1.F.N 0.05 8 0 0.81 0 5 0.62 0 3
S.2.F.N 0.11 8 0 0.79 0 4 0.77 0 5
S.3.F.N 0.38 6 4 0.88 0 6 0.60 0 1
S.1.F.Y 0.11 7 0 0.75 0 4 0.61 1 2
S.2.F.Y 0.12 10 0 0.82 0 6 0.62 0 3
S.3.F.Y 0.27 6 0 0.76 0 4 0.70 1 5
S.1.V.Y 0.06 8 0 0.68 1 4 0.61 0 0
S.2.V.Y 0.03 10 0 0.73 0 4 0.60 1 3
S.3.V.Y 0.20 6 0 0.72 0 5 0.65 0 3
S.1.V.N 0.01 9 0 0.81 0 5 0.65 0 3
S.2.V.N 0.04 9 0 0.80 0 5 0.79 0 7
S.3.V.N 0.34 6 2 0.83 0 7 0.59 1 4

Avg./Total 0.14 93 6 0.78 1 59 0.65 4 39

TABLE 13
Average A12 statistics of the execution time for SSBANK application. For each solver, we also report the number of times the efficiency of the

real-coded distance is statistically better (# Rd > Ed) or worse (# Rd < Ed) than the edit distance.

ExpId RGA SGA HC
Eff.Siz #Rd>Ed #Rd<Ed Eff.Siz #Rd>Ed #Rd<Ed Eff.Siz #Rd>Ed #Rd<Ed

S.1.F.N 0.12 6 0 0.81 0 6 0.47 1 0
S.2.F.N 0.80 0 8 0.70 0 2 0.49 1 1
S.3.F.N 0.77 0 5 0.72 0 3 0.53 0 2
S.1.F.Y 0.33 6 2 0.59 0 1 0.69 0 2
S.2.F.Y 0.87 0 9 0.55 0 0 0.65 0 3
S.3.F.Y 0.83 0 9 0.80 0 6 0.68 1 6
S.1.V.Y 0.21 6 1 0.54 1 1 0.48 1 1
S.2.V.Y 0.65 0 5 0.53 0 1 0.65 1 2
S.3.V.Y 0.68 0 3 0.69 0 5 0.75 0 4
S.1.V.N 0.28 6 1 0.49 3 2 0.56 0 0
S.2.V.N 0.91 0 9 0.52 0 0 0.67 0 4
S.3.V.N 0.93 0 10 0.75 0 7 0.63 1 5

Avg./Total 0.62 24 62 0.64 4 34 0.60 6 30

TABLE 14
Average A12 statistics of the execution time for XMLMao application. For each solver, we also report the number of times the efficiency of the

real-coded distance is statistically better (# Rd > Ed) or worse (# Rd < Ed) than the edit distance.

ExpId RGA SGA HC
Eff.Siz #Rd>Ed #Rd<Ed Eff.Siz #Rd>Ed #Rd<Ed Eff.Siz #Rd>Ed #Rd<Ed

X.1.F.N 0.23 8 1 0.66 0 3 0.41 4 0
X.1.F.Y 0.26 8 1 0.61 0 1 0.45 2 0
X.1.V.Y 0.26 8 2 0.54 0 2 0.48 0 1
X.1.V.N 0.16 8 0 0.64 0 2 0.46 1 0

Avg./Total 0.23 32 4 0.61 0 8 0.45 7 1

significantly, the string edit distance is more efficient.
Regarding RQ1.2, we conclude that,

Unless a significantly higher success rate is achieved by the
real-coded edit distance, the string edit distance leads to a
more efficient search.

To answer RQ1, we consider both the results of RQ1.1
and RQ1.2. Rd fares better in terms of effectiveness whereas
it is worse regarding efficiency. However, even when Rd
leads to higher execution times, the difference with Ed
ranges between 0.69 to 3.9 minutes on average, which is of
limited practical consequences. Further, this relatively small
difference is largely compensated with a much higher ability
to detect XMLi vulnerabilities, up to an improvement of 80%
in detection rate.

5.1.1 Convergence Analysis of Rd and Ed

In Section 3.2.2, we discussed the theoretical advantages of
Rd over the traditional Ed. Our results also provide empir-
ical evidence that Rd is more effective than Ed, especially if
used in combination with RGA. To better understand why
the real-coded distance is so effective, in this subsection we
analyze the convergence of the two fitness functions over
time. To this end, we recorded the fitness values of the best
individual over the different iterations/generations of the
genetic algorithms. Due to space limits, we focus on RGA
and compare the value of Rd and Ed throughout its gen-
erations for one representative case, i.e., SSBANK with the
configuration S.1.F.N . In particular, we investigate six TOs
including four feasible TOs (i.e., they can be generated from
the SUT) and two infeasible ones (i.e., input sanitization and
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Fig. 6. Convergence rate for RGA with Rd and Ed for SSBANK with
S.1.F.N configuration.

validation are able to prevent their generation).

As depicted in Figure 6, RGA with Rd required less than
30K fitness evaluations to reach a zero-fitness value for TO1
and TO2, and therefore cover them. Instead, Ed required a
larger number of fitness evaluations, i.e., 90K for TO1 and
150K for TO2. RGA withRd also covered the other two TOs,
i.e., TO3 and TO4 in less than 100K fitness evaluations while
Ed could not cover them even after 500K fitness evalua-
tions. The last two TOs (TO5 and TO6) are infeasible since
the front-end web application in SSBANK contains strong
validation routines that always return an error message
when the generated XML message becomes too close to
TO5 and TO6. For this reason, the fitness function remains
flat for both Rd and Ed as depicted in Figure 6, meaning
that the search cannot converge towards zero-fitness. For
applications with input validation (like SSBANK), it should
be expected that some TOs are simply infeasible to cover.
However, our results show that it is still possible to detect
XMLi vulnerabilities which are not adequately addressed by
input validation routines. For these feasible TOs, Rd leads
to a faster convergence to a zero-fitness value, thus resulting
in better effectiveness (RQ1.1) and efficiency (RQ1.2).

TABLE 15
Ranking produced by the Friedman’s (smaller values of Rank indicate
more effectiveness) when using Rd. For each solver, we also report

whether it is significantly better than the other solvers according to the
post-hoc procedure.

ID Solver Rank Significantly better than

1 RGA 1.02 (2), (3), (4)
2 HC 2.50 (3), (4)
3 SGA 2.70 (4)
4 RS 3.77 -

TABLE 16
Ranking produced by the Friedman’s (smaller values of Rank indicate
more effectiveness) when using Ed. For each solver, we also report

whether it is significantly better than the other solvers according to the
post-hoc procedure.

ID Solver Rank Significantly better than

1 HC 1.62 (3), (4)
2 SGA 1.87 (3), (4)
3 RGA 2.86 (4)
4 RS 3.64 -

5.2 RQ2: What is the best solver for detecting XMLi
vulnerabilities?

To answer RQ2.1, we compare the success rates of the
four solvers (i.e., RS, HC, SGA, and RGA) for each fitness
function (e.g., Rd and Ed) . As reported in Table 3, the
highest success rate (95.83%) for SBANK is achieved by
RGA with Rd. Similarly, for SSBANK and XMLMao, RGA
with Rd achieved the highest success rates of 27.81% and
100%, respectively. In contrast, the results are mixed when
using Ed as fitness function: for SBANK and XMLMao, the
highest success rate scores are obtained by HC (66.78% and
90.47% respectively), while for SSBANK the best success rate
of 17.78% is obtained by SGA. Finally, RS fares the worst
with a success rate of zero in all experiments and subjects,
as it could not cover a single TO.

To establish the statistical significance of these results, we
use the Friedman’s test [33] to compare the average success
rates (over ten runs) achieved by the different solvers for
all web applications, configuration settings, and TOs. When
using Rd as fitness functions, the Friedman’s test reveals
that the solvers significantly differ from each other in terms
of effectiveness (p-value = 2.58× 10−15). For completeness,
Table 15 provides the ranking obtained by the Friedman’s
test as well as the results of the post-hoc Conover’s pro-
cedure [35] for multiple pairwise comparisons. As we can
observe, the best rank is obtained by RGA, which turns out
to be significantly better than all the other solvers according
to the post-hoc Conover’s procedure. The four solvers are
also significantly different when using Ed as indicated by
the Friedman’s test, yielding a p-value of 8.2× 10−12. How-
ever, as visible in Table 16, RGA is not the best solver with
this fitness function, being ranked third above RS. The two
other solvers, i.e., HC and SGA, are statistically equivalent
according to the Conover’s tests, though HC obtained a
slightly better rank based on Friedman’s test.

Given the mixed results obtained for the two fitness
functions, we compare the best solver with Rd against
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TABLE 17
Ranking produced by the Friedman’s (larger values of Rank indicate

more efficiency) when using Rd. For each solver, we also report
whether it is significantly better than the other solvers according to the

post-hoc procedure.

ID Solver Rank Significantly better than

1 RGA 3.53 (2), (3), (4)
2 HC 2.36 (4)
3 RS 2.28 -
4 SGA 1.82 -

the best solver with Ed to find the best treatment (i.e.,
combination of solvers and fitness functions). To this aim,
we performed the Friedman’s test comparing the average
success rates of RGA with Rd against HC and SGA with
Ed. Results show these three treatments are statistically
different in terms of effectiveness (p-value = 9.17 × 10−11).
The post-hoc Conover procedure confirms the superiority of
RGA with Rd over the other two treatments. Therefore, for
RQ2.1 we conclude that:

RGA combined with the real-coded edit distance as fitness
function is the best solver in terms of effectiveness.

Regarding RQ2.2, we analyze the execution time of the
solvers for each fitness function (i.e., Rd and Ed) separately.
The results of this analysis for the three subjects in Study 1
are reported in Tables 9, 10 and 11. For all three subjects, the
most efficient solver with Rd is always RGA, whose average
running time ranges between 0.94 (for XMLMao) and 7.53
(for SSBANK) minutes. Further, the average execution time
for HC ranges between 1.73 (for XMLMao) and 8.56 (for
SSBANK) minutes, whereas it ranges between 6.56 and
10.49 minutes for SGA. The differences in execution times
are also confirmed by Friedman’s test, which returned a p-
value of 6.26 × 10−6. To better understand for which pairs
of solvers such a significance holds, Table 17 shows the
complete ranking produced by Friedman’s test as well as
the results of the post-hoc Conover’s procedure. The best
rank is achieved by RGA, which significantly outperforms
all the other solvers when using Rd. HC is ranked second
but it is statistically more efficient than SGA only.

When using Ed as fitness function, there is no clear
winner among the four solvers in terms of efficiency for
the three subjects in Study 1. Indeed, HC is the most
efficient solver for XMLMao and SBANK, while SGA is for
SSBANK. From the statistical comparison performed with
the Friedman’s test, we can definitely conclude that the four
solvers are significantly different in terms of execution time.
However, the post-hoc Conover’s procedure revealed that
statistical significance holds only when comparing one pair
of solvers (see Table 18): HC and RS.

To find out which treatment among all possible combi-
nations of solvers and fitness functions is the most efficient
(as measured by the average execution time), we performed
Friedman’s test to compare RGA with Rd and HC with Ed,
which are the best treatments for the two fitness functions
(see Tables 17 and Table 18). The resulting p-value of 0.002
and the corresponding Friedman’s ranking indicate that
RGA with Rd is significantly more efficient than HC with
Ed. Thus, addressing RQ2.2, we conclude that:

TABLE 18
Ranking produced by the Friedman’s (larger values of Rank indicate

more efficiency) when using Ed. For each solver, we also report
whether it is significantly better than the other solvers according to the

post-hoc procedure.

ID Solver Rank Significantly better than

1 HC 3.07 (3)
2 SGA 2.78 -
3 RS 2.21 -
4 RGA 1.93 -

TABLE 19
Results on the industrial systems

Config. TO Successes Avg. Iterations

M.2.V.Y Close 0 300k
Meta 0 300k
Replicate 0 300k
Replace 3 23k

R.3.V.Y Close 0 300k
Meta 0 300k
Replicate 0 300k
Replace 2 147k

RGA combined with the real-coded edit distance as fitness
function is the most efficient solver in terms of execution
time.

5.3 RQ3: How does the proposed technique perform on
large and complex industrial systems?

To address RQ3, we carried out experiments on two in-
dustrial systems (recall Section 4), provided by one of our
industrial partners. As the experiments had to be run on a
dedicated machine, only 4 TOs, one solver (the best from
the previous experiments) and 3 repetitions were carried
out. All of these experiments were run after all the other
experiments were completed. In other words, all the tuning
and code optimizations, that were done while experiment-
ing with the other SUTs, were carried out before running the
experiments on the industrial systems. Table 19 shows the
results of these experiments.

In both cases, it was possible to solve at least one TO. The
others are unfeasible, due to the type of input sanitization
carried out by those systems. Note that whether a TO is
feasible or not depends on the actual implementation of the
SUT. We used the actual systems without modifications, i.e.,
we did not inject any artificial security vulnerability to check
if our technique could spot them.

In the case of R, there was no direct mapping from the
JSON fields and the fields in the XML of the TO (e.g., two
of the JSON fields are concatenated in one single field in the
output XML of the TO), making the search more difficult
compared to M . Regarding M , interestingly, one of the
fields that leads to the XML injection does get sanitized.
Given the TO target field:

0 or 1=1

one of the valid inputs to solve that TO was

0 or 1=1<v2



21

95.83

16.07

78.85

66.78 64.20

49.32

27.81

7.56

21.30 17.22
22.22 17.78

RGA_Rd RGA_Ed HC_Rd HC_Ed SGA_Rd SGA_Ed

Treatments

Avg.	Success	Rate	(%) SBANK

SSBANK

Fig. 7. Comparison of the average success rates for SBANK (without
input validation) and SSBANK (with input validation).

as any character including and after the first < is re-
moved as part of the input sanitization.

Our proposed technique was able to produce inputs that
can detect XMLi vulnerabilities in the evaluated industrial
systems.

6 ADDITIONAL ANALYSIS

In this section, we investigate the various co-factors that
may affect the effectiveness of the solvers. For this purpose,
we use the two-way permutation test [48], which is a non-
parametric test to verify whether such co-factors statistically
affect or not the search effectiveness. This test is equivalent
to the two-way Analysis of Variance (ANOVA) test [34].

Input validation: To investigate the effect of input val-
idation, we compare the average SR for SBANK and SS-
BANK, which are two different front-ends for the same real-
world bank card processing system. The difference is that
one front-end uses input validation (i.e., SSBANK) while
the other not (i.e., SBANK). This analysis can be performed
by comparing the results reported in Tables 3 and 5. For
each treatment, the average SR for SBANK is always higher
than the SR scores achieved for SSBANK. The p-value
<0.05 obtained from the two-way permutation test shows
that the co-factor input validation significantly affects the
performance of the solvers. This can also be observed from
the bar chart depicted in Figure 7: for all the solvers, the
average SR of the SBANK is always higher compared to
that of SSBANK. We note that the best treatment in our
study, which is RGA with Rd, could reach a success rate
greater than 20% in the presence of input validation. Though
there exist input validation routines in SSBANK, they are
applied only on one input parameter instead of all three.
Thus, if a front-end web application uses incomplete input
validation, our proposed search-based technique is able to
detect XMLi vulnerabilities in a reasonable amount of time
(i.e., less than 10 minutes on average).

Number of input parameters: As described in Sec-
tion 4.5, we have three different versions of SBANK and
SSBANK with varying numbers of input parameters. This
allows us to analyze how the success rate is impacted when
increasing the number of input parameters. The results of
this analysis are reported in Table 20, with the average
SR for all the treatments with the same number of input
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TABLE 20
Comparison of the average Success Rates (SR) of the experiments

involving applications with 1, 2 and 3 inputs

App./Solver SBANK SSBANK
1 input 2 inputs 3 inputs 1 input 2 inputs 3 inputs

RGA with Rd 100.00 96.75 90.75 66.67 7.75 9.00
RGA with Ed 29.72 14.50 4.00 21.67 0.50 0.50
SGA with Rd 83.61 57.75 51.25 61.67 3.50 1.50
SGA with Ed 71.94 45.00 31.00 50.83 1.75 0.75
HC with Rd 96.39 81.00 62.50 63.89 0.00 0.00
HC with Ed 88.33 72.50 39.50 51.67 0.00 0.00

Avg/app 78.33 61.25 46.50 52.73 2.25 1.96

parameters and for each application. We can clearly see
that for most of the treatments the larger the number of
input parameters, the smaller the success rates achieved
by the different treatments. For example, for HC with Ed
the success rate is 88.33% with one input parameter and it
dramatically decreases to 72.50% and 39.50% with two and
three input parameters, respectively. This overall pattern is
also observable from the bar chart in Figure 8. The only
exception to this general rule is the combination of RGA
with Rd for which we can observe limited variation in the
average success rate as depicted in Figure 8. Therefore, our
best configuration (i.e., RGA with Rd) is little affected by
increasing the number of input parameters, as opposed to
the other treatments.

The permutation test for the number of input parameters
also reveals a significant interaction between this co-factor
and the SR (p-value<0.05). Hence, we conclude that in-
creasing the number of inputs adversely affects the average
SR of the solvers, i.e., the higher the number of input pa-
rameters, the more difficult is to detect XMLi vulnerabilities.

Initial population: As described in Section 4.3, the initial
set of random tests can be composed by input strings with
Fixed (F) or Variable (V) length. To investigate the effect of
this co-factor, we compare the average SR obtained by each
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TABLE 21
Comparison of the average success rates (SR) when using an initial

population composed by input strings with Fixed (Fix) or Variable (Var)
length

Solver SBANK SSBANK XMLMAO
Fix Var Fix Var Fix Var

RGA with Rd 94.67 97.00 25.39 30.22 100.00 100.00
RGA with Ed 16.13 16.02 6.85 8.26 39.58 40.83
SGA with Rd 55.44 72.96 20.00 24.44 74.58 90.83
SGA with Ed 46.35 52.28 17.04 18.52 70.83 82.08
HC with Rd 81.35 78.57 20.93 21.67 97.50 95.00
HC with Ed 73.50 60.06 19.07 15.37 91.67 89.17

Avg/app 61.24 62.82 18.21 19.75 79.03 82.99

solver, for each application, when using Fixed and Variable
length. The result of this analysis is reported in Table 21,
which shows the average SR achieved for each solver and
application. We can see that the difference between the two
types of setting is limited, i.e., it is on average 1.58% for
SBANK, 1.54% for SSBANK, and 3.96% for XMLMao. These
small differences can be visualized through the bar chart
in Figure 9 and a permutation test further shows they are
not significant (p-value=0.80). Therefore, we conclude that
the length of the input strings in the initial population (or
the initial solution for HC) does not significantly affect the
performance of the solvers.

Alphabet size: Instead of using the complete alphabet
(i.e., all possible ASCII characters), we can restrict its size
by considering only the characters we determine to be used
in the TOs. However, as discussed in Section 4.3, this strat-
egy may be detrimental when there is no straightforward
relationship match between input strings and the gener-
ated XML messages, due to transformations and validation.
Therefore, we want to analyze the impact of this strategy
on the performance of the various treatments. The bar chart
in Figure 10 indicates that the effect of this co-factor on the
average success rate SR is very small. Only for RGA with
Ed and SGA (either with Ed or Rd) we can observe slightly
higher success rates when using the restricted alphabet size.
The permutation test also reveals no significant interaction
(p-value=0.55) between the success rate (i.e., effectiveness)
and the size of the alphabet. With respect to efficiency,
Figure 11 depicts the effect of the size of the alphabet on
average execution time. As we can observe, the efficiency
of RGA with Rd is not affected by this co-factor while all
the other solvers achieved a lower execution rate with a
restricted alphabet. However, the effect is still not significant
according to permutation tests, i.e., p-value=0.20. Therefore,
reducing the size of the alphabet is not recommended
given its low impact on both effectiveness and efficiency
of the various treatments (and RGA with Rd in particular)
combined with the high risk of unintentionally excluding
characters that may lead to XMLi attacks.

7 RELATED WORK

In this section, we survey work related to vulnerability
detection in web applications/services, with particular at-
tention to XML vulnerabilities. We also discuss existing
work that uses search-based approaches for security testing,
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Fig. 9. Comparison of the average success rates (SR) when using an
initial population composed by input strings with Fixed (Fix) or Variable
(Var) length.

including our previous work [11], which we extended in this
paper.

Automated approaches for vulnerability testing: There
is a large research body investigating automated approaches
for the detection of vulnerabilities in web applications/ser-
vices, e.g., [49], [50], [51], [52], [53]. Bau et al. [54] performed
a study to evaluate the effectiveness of the state-of-the-
art in automated vulnerability testing of web applications.
Their results demonstrate that such approaches are only
good at detecting straightforward, historical vulnerabilities
but fail to generate test data to reveal advanced forms of
vulnerabilities. Mainka et al. [49] presented an automated
penetration testing approach and evaluated it on several
web service frameworks. They implemented a tool named
WSAttacker and targeted two web service specific attacks:
WS-Addressing spoofing5 and SOAPAction6. Their work
was further extended by Oliveira et al. [51] with another
tool (WSFAgresser) targeting specific web service attacks. A
common issue with most of these automated approaches is
the large number of false positives, which makes their appli-
cation in practice difficult. Besides, none of these approaches
are dedicated towards the detection of XML injections, the

5. http://www.ws-attacks.org/index.php/WS-Addressing
spoofing

6. http://ws-attacks.org/index.php/SOAPAction spoofing

http://www.ws-attacks.org/index.php/WS-Addressing_spoofing
http://www.ws-attacks.org/index.php/WS-Addressing_spoofing
http://ws-attacks.org/index.php/SOAPAction_spoofing
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objective of this paper.
Testing for XML Injections: Unlike SQL injection and

cross-site scripting vulnerabilities that received much atten-
tion (e.g., [55], [56], [57]), only limited research targets XML
injections. An approach for the detection of XML injection
attacks is presented by Rosa et al. [58]. They proposed a
strategy to first build a knowledge database from the known
attack patterns and then use it for detecting XML injection
attacks, when they occur. This approach is an improvement
over the traditional signature-based detection approaches,
however it focuses on intrusion detection, not on security
testing. In contrast, our work is targeted towards test data
generation to detect XML injection vulnerabilities in web
applications.

A basic testing methodology for XML injections is de-
fined by OWASP [59]. It suggests to first discover the
structure of the XML by inserting meta-characters in the
SUT. The revealed information, if any, combined with XML
data/tags can then be used to manipulate the structure or
business logic of the application or web service. OWASP
also provided a tool named WSFUZZER [9] for SOAP pen-
etration testing with fuzzing features. However, as reported
in [10], the tool could not be used with WSDLs having
complex structure (nested XML elements) and is only useful
in scenarios where the web services are directly accessible
for testing.
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In our previous work [10], we discussed four types of
XML injection attacks and proposed a novel approach for
testing web services against these attacks. Our evaluation
found the approach very effective compared to state-of-the-
art tools. However, it focuses on the back-end web services
that consume XML messages and are directly accessible
for testing. In contrast, our current work targets the front-
ends (web applications) of SOA systems that produce XML
messages for web services or other back-end systems.

In addition, while in [10] we used constraint solving and
input mutation for manipulating XML messages, in this pa-
per we use search-based testing techniques to generate test
inputs for the front-end of the SUT that produces malicious
XML messages. Such inputs can then help detect XMLi
vulnerabilities in web applications that can be exploited
through the front-ends.

Search-based approaches for security testing: Search-
based testing has been widely investigated in literature in
the context of functional testing [60], [61], [62], [63], [64].
However, little attention has been devoted to non-functional
properties of the SUT, such as security testing [65], [66].

Avancini and Ceccato [67] used search-based testing for
cross-site scripting vulnerabilities in web applications. Their
approach uses static analysis to look for potential cross-site
scripting vulnerabilities in PHP code. Then, genetic algo-
rithms and constraint solvers are used to search for input
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values that can trigger the vulnerabilities. This approach
is white-box and targets a different type of vulnerabilities,
i.e., cross-site scripting. Instead, our approach is completely
black-box, i.e., it does not require the source code and it
targets XML injection vulnerabilities.

Thomé et al. [68] proposed a search-based testing ap-
proach to detect SQL injection vulnerabilities in web ap-
plications. Their approach evolves inputs by assessing the
effects on SQL interactions between the web server and
database with the goal of exposing SQL injection vulner-
abilities. Our work is also based on evolving test inputs
but for XML injection instead of SQL. Moreover, Thomé et
al. [68] used a fitness function based on a number of factors
to measure the likelihood of the SQLi attacks. Instead, we
use a fitness function based on the distance between the
SUT’s outputs and test objectives based on attack patterns.

Evolutionary algorithms have been also used to detect
other types of vulnerabilities [69], [70]. Unlike our black-box
approach for XMLi testing, these techniques are white-box
and are focused on buffer overflow detection.

Previous work and current extension: In our previous
work [11], we presented a search-based approach for gener-
ating test inputs exploiting XML injection vulnerabilities in
front-end web applications. We used the standard Genetic
Algorithm along with the string-edit distance to find ma-
licious test inputs. We evaluated our approach on several
web applications including a large industrial application
and we also compared it with random search. We found our
proposed search-based testing approach to be very effective,
as it was able to cover vulnerabilities in all case studies
while the random search could not, in any single case.

The current paper extends our previous work in several
ways. First, we introduced a different fitness function, i.e.,
the Real-coded Edit Distance (Rd), which further improves
the traditional string edit distance (Ed). Second, we inves-
tigated two further optimization algorithms, namely Real-
coded Genetic Algorithm (RGA) and Hill Climbing (HC),
in addition to the standard Genetic Algorithm (SGA) and
random search (RS). Third, we enlarged our empirical
evaluation using an additional industrial application. Last,
we conducted an extensive evaluation by comparing all
possible combinations of solvers (i.e., SGA, RGA, HC
and RS) and fitness functions (i.e., Rd and Ed). Our new
results show that RGA with Rd is significantly superior the
previous approach [11] in terms of both effectiveness and
efficiency.

8 THREATS TO VALIDITY

In this section, we discuss the threats that could potentially
affect the validity of our findings.

Internal validity: In our context, there are three main
threats related to internal validity: (i) the use of randomized
algorithms (ii) the choice of parameter settings for the algo-
rithm and (iii) using execution time to measure efficiency
of different algorithms and fitness functions.

To mitigate the first threat, we repeated each experiment
several times, i.e., 10 times for each subject of Study 1 and
three times for the industrial systems in Study 2, and re-
ported the aggregated results. The use of rigorous statistical
analysis also adds support to our findings [71].

To mitigate the threats arising from the parameter set-
tings, especially for Genetic Algorithms, we used the pa-
rameter values that are recommended in the literature and
also carried out some preliminary experiments before us-
ing them for the complete experiments (as described in
Section 4.5). We also used the same parameter settings
for all solvers. Different parameter settings could have led
to different results, and the best parameters for a specific
algorithm might not be the best for a different one. How-
ever, at least in the context of test data generation, where
tools/algorithms are configured to work on many problem
instances once released to the public, default values from
the literature tend to yield good results on average [44].

Another potential threat is related to the use of execution
time to compare the efficiency of different treatments. To
mitigate this threat, we implemented all algorithms and
fitness functions in the same tool as described in Section 4.6.
Moreover, we used the same search operators (i.e., selection,
crossover and mutation) available in JMetal, across all ex-
periments, which is a well-known optimization framework.
Finally, it is worth noting that the empirical study carried
out in this paper is based on a software tool we developed.
As for any software, although it has been carefully tested,
we cannot guarantee that such tool is bug-free.

External validity: Threats to external validity concern
the generalization of our findings. The empirical study is
based on a small set of applications. This was due to two
main reasons: First, we conducted a large empirical study
with different solvers and fitness functions, which required
a cluster of computers running for days. Using more sub-
jects would have not been feasible. Second, enterprise sys-
tems are usually not accessible on open-source repositories,
so we were limited by what was provided by our industrial
partners. Furthermore, due to technical constraints, such
systems had to be run on a dedicated machine, and not a
cluster of computers.

Although this presents a threat to the generalization of
our results, we have made sure to evaluate our approach
with different types of applications, i.e., front-end web
applications interacting with the bank-card processing sys-
tem, an open source application and real-world industrial
application with millions of registered users. Further, we
have also evaluated applications with different levels of
complexity, i.e., three versions of SBANK and SSBANK with
varying number of parameters and the presence of input
validation routines. Also, using real industrial systems in
the case study does prove that our technique can be effective
on actual systems used in practice.

Another possible threat is that in our experiments we
considered only problems with up to three input fields.
To the best of our knowledge, we are aware of no reliable
statistics about the average number of input fields in HTML
forms on the web. We hence looked at the case study of our
industrial partners, where such average is 2.3, which is in
line with our own experience as users of web applications.
This value gives us confidence that our empirical study
is not too far off from most real scenarios in practice.
Moreover, all TOs in our empirical study involve up to three
user inputs, as discussed in Section 4.1.

Conclusion validity: Regarding the threats to conclusion
validity, we have carried out the appropriate and well-



25

known statistical tests along with multiple repetitions of
the experiments. In particular, we have used the paramet-
ric Fisher’s exact test, the non-parametric Wilcoxon test,
Friedman’s test and the two-way permutation test to find
whether the outcomes (success rate for effectiveness and
average execution time for efficiency) of the treatments
differ significantly. Besides, we have also used the Odds
Ratio (OR) and Vargha-Delaney (Â12) statistics to measure
the effect size, i.e., the magnitude of the observed difference.
Our conclusions are based on the results of these tests and
statistics.

It should also be noted that being able to carry out a
successful XML injection attack does not necessarily mean
that the receiver of such messages (e.g., a SOAP web service)
will be compromised. This depends on how the receiver
is implemented (e.g., does it have adequate level of input
validation/sanitization routines?). However, in practice, in-
ternal web services (not directly accessible on the internet)
might not be subject to rigorous penetration testing as the
user front-end, and so might be less secure.

9 CONCLUSION

In this paper, we have presented an effective approach for
the automated security testing of web applications based on
metaheuristic search, with a focus on XMLi vulnerabilities.
Web applications often act as front-ends to the web services
of SOA systems and should not be vulnerable to malicious
user inputs leading to the generation of malicious XML
messages targeting these services. However, because of their
complexity, effectively testing for such vulnerabilities within
time and resource constraints is a challenge. In such context,
XMLi vulnerabilities are common and can lead to severe
consequences, such as DoS or data breaches. Therefore,
automated and effective testing to detect and fix XMLi
vulnerabilities is of paramount importance.

Our approach is divided into two steps: (1) the auto-
mated identification of malicious XML messages (our test
objectives, TOs) that, if generated by the SUT and sent to
services, would suggest a vulnerability; (2) The automated
generation of SUT inputs that generate messages matching
such TOs. This paper focuses on item (2), as item (1) was
already addressed in our previous work [10].

To generate effective SUT inputs, we have presented a
search-based approach. Our goal is to be able to lead the
system under test (SUT) into producing malicious XML
messages by effectively searching the user input space (e.g.,
HTML forms). In this paper, we evaluated four different
search algorithms, with two different fitness functions. We
have evaluated and compared them on proprietary and
open source systems and two industrial systems (one being
a very large web application). Our results are promising
as the proposed approach was able to effectively and ef-
ficiently uncover vulnerabilities in all these case studies. In
particular, the Real-coded Genetic Algorithm, using a fitness
function minimizing a real-coded edit distance between TOs
and generated XML messages, clearly showed to be the best
algorithm and appeared to be sufficiently effective, efficient,
and scalable to be used in practice.

The proposed search-based testing approach is not only
limited to XML injection detection, but can be generalized to

the detection of other types of vulnerabilities. For instance,
to apply it to Cross-site scripting or SQL injection vulnera-
bilities, one would only need to modify the TOs according
to the corresponding types of attacks for that vulnerability.
Our future work will extend the current approach to cover
more vulnerabilities.
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