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Abstract. Manual vulnerability discovery and exploit development on
an executable are very challenging tasks for developers. Therefore, the
automation of those tasks is becoming interesting in the field of soft-
ware security. In this paper, we implement an approach of automated
exploit generation for firmware of embedded systems by extending an
existing dynamic analysis framework called Avatar. Embedded systems
occupy a significant portion of the market but lack typical security fea-
tures found on general purpose computers, making them prone to critical
vulnerabilities. We discuss several techniques to automatically discover
vulnerabilities and generate exploits for embedded systems, and eval-
uate our proposed approach by generating exploits for two vulnerable
firmware written for a popular ARM Cortex-M3 microcontroller.

Keywords: Embedded system · Exploit generation · Software
vulnerability

1 Introduction

Embedded systems are small low powered computers that carry out a specific
task. To keep costs down, embedded systems typically omit modern security
features such as Address Space Layout Randomisation (ASLR) or Data Exe-
cution Protection (DEP/W⊕E) [17] which make exploitation of vulnerabilities
significantly easier. Most software on embedded systems is also never updated or
patched [12], so systems remain vulnerable even when vulnerabilities are found
and disclosed. It then becomes important to find vulnerabilities in the develop-
ment stage.

Unlike personal computers, conventional static and dynamic analysis tools
are often ineffective in analysing firmware because non-standard peripherals are
typically used in embedded systems. It takes considerable effort to emulate the
behaviours of a peripheral which greatly slows the analysis of firmware. Hence,
we need an efficient dynamic analysis tool which can automatically detect vul-
nerabilities and generate possible exploits even with specialized peripherals that
the firmware interacts with.
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The aim of this paper is to extend an existing dynamic analysis framework,
namely Avatar [19], to automatically generate exploits on embedded systems.
The tool was originally developed to analyse a wide range of firmware without
source code since most users have no direct access to the source code of firmware
in many embedded systems. Ideally there should be limited human interaction
in the vulnerability discovery and exploit generation process, to make the tool
useful to even less skilled developers. All codes developed in this paper can be
found in [1,2].

The contributions of this paper are as follows:

– We extended a security analysis framework with generic device input commu-
nication and automated exploit generation modules to analyse firmware for
embedded systems;

– We evaluate the feasibility of the proposed framework with two vulnerable
custom firmwares.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 presents the design and implementation of our framework.
Section 4 presents the evaluation of our proposed framework. Then, discussion
is given in Sect. 5, and we conclude our paper in Sect. 6.

2 Related Work

Automated Vulnerability Analysis: The process of automatically discov-
ering security vulnerabilities in a program is referred to generally as automated
vulnerability analysis. Costin et al. [11] implemented a wide scale automated vul-
nerability analysis service for firmware images. Mulliner et al. [15] implemented
a fuzzer which automatically sends randomly crafted SMS messages to mobile
phones. However, their vulnerability detection engine is not intelligent, and is
limited to detecting simple faults which happen to crash mobile phones. An
intelligent fuzzing tool, TaintScope, has been built by Wang et al. [18], which
bolsters fuzzing with dynamic taint analysis and symbolic execution to target
fuzzing towards attacker controlled input. Davidson et al. [13] implemented FIE,
a tool that uses symbolic execution to verify memory safety for the MSP430
microcontroller. Symbolic execution is becoming popular a mechanism to verify
memory safety. Intel [5] has also started analysing the firmware for its processors
using S2E [10].

Source Code Based Automated Exploit Generation: Source code based
automated exploit generation tools can generate exploits with full knowledge of
source code. Exploits generated are typically not very reliable as exploits may
behave differently when applied to program binaries which are compiled and
optimised by different compilers. Avgerinos et al. [3] implemented AEG, the
first end-to-end system for automated exploit generation.

Binary Code Based Automated Exploit Generation: Binary code based
automated exploit generation tools can generate exploits from analysing binary
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program distributions. Exploits are typically reliable since they are generated
specifically for the program binary, but may not necessarily evade memory pro-
tection techniques of host operating systems. Automated exploit generation tools
have been mainly developed for general purpose computers, as none currently
exist for embedded systems. Brumley et al. [7] introduced a method to automat-
ically generate an exploit by analysing a vulnerable binary program P, and the
patched binary program P’. Schwartz et al. [17] built Q, a tool which can auto-
matically build ROP [16] exploits for a given binary program. Dynamic taint
analysis is performed in conjunction with symbolic execution to find vulnerable
program states. If the vulnerability can be exploited by ROP, then gadgets [16]
are located in the binary and a payload generated. A similar framework, Crax, by
Huang et al. [14] uses program crash traces as input. Crash traces can be found
from typical static or dynamic analysis tools such as fuzzers, or from normal
use. Crash traces are then used as execution traces for concolic symbolic exe-
cution within the S2E [10] framework, and if the crash condition is exploitable,
an exploit could be produced. Cha et al. [9] developed Mayhem, a tool which
automatically generates exploits for a given binary program, with no additional
information required. Mayhem was run over all binaries in the Debian Linux
distribution, and over 13,000 bugs were found and 150 exploits generated [4].

3 Proposed Approach: Design and Implementation

We extend the Avatar framework to automatically generate exploits for embed-
ded systems firmware. First, we explain features implemented by the Avatar
framework in detail in Sect. 3.1, then we describe the implementation in Sect. 3.2.

3.1 Avatar Framework

Avatar [19] is an event driven dynamic analysis framework. On a high level,
Avatar is responsible for executing firmware and testing its behaviours based
on the emulation of a target device. The overview of the Avatar architecture is
shown in Fig. 1.

Fig. 1. An overview of the Avatar architecture (adapted from [19])
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Avatar provides a concrete wrapper implementation to use the Selective Sym-
bolic Execution (S2E) [10] framework. S2E is a flexible framework that supports
emulating applications and firmware in QEMU [6] that is a machine emulator
supporting many architectures (e.g., ARM, X86, MIPS and SPARC) while per-
forming symbolic execution with KLEE [8] concurrently. I/O operations can be
intercepted and forwarded to the physical device while signals and interrupts
can be injected into the emulator.

3.2 Implementation

Avatar Configuration. The Avatar configuration file is the core Python script
that controls the operations of the Avatar framework. This file imports all rel-
evant libraries for analysis, and contains configuration parameters required for
S2E.

S2E requires considerable configuration for emulating a target device. Firstly,
the hardware of the target device needs to be specified in order to create a virtual
machine that closely emulates the target processor. Memory ranges also need to
be mapped manually, according to the layout of the target device. This is to
ensure that the addresses contained in the firmware match with those on the
emulator, and memory regions which can be marked as local to the emulator are
so. At a minimum the code and RAM regions should be mapped to the processor.
Avatar will then forward any operations that involve addresses outside of those
regions to the target device. If the code and RAM are not mapped, then all
memory operations will be forwarded to the target device.

Plugins that are loaded directly into S2E must also be configured. The most
notable plugins are the RawMonitor, ModuleExecutionDetector and Annotation.
RawMonitor simply assigns memory regions to modules. ModuleExecutionDe-
tector then keeps track of the program counter in relation to modules, and calls
any plugins which register dependency on particular modules. Annotation allows
the user to call Lua callback functions to exhibit symbolic execution when a par-
ticular address inside of a module is reached.

Custom functions that are too specific to be placed into the framework
are also implemented inside the Avatar configuration file. These include call
monitors, memory and register state transfer functions. Transferring registers
is a specific implementation issue since different ARM processors have different
amounts of registers outside of the mandated 12 general purpose registers. Many
have different names on different processor families, and provide slightly differ-
ent behaviour. For example, standard ARM processors have a Current Program
Status Register (CPSR). This is where conditional flags are stored such as zero,
negative and overflow. However, the Cortex-M3 ARM processor implements this
in the xPSR register, and omits the CPSR register. Meaning that registers need to
be manually defined in the actual register transfer functions in the configuration
file. This also allows for convenient modification of tricky registers and flags,
such as the Thumb bit in the CPSR/xPSR.

The remainder of the Avatar configuration file implements the analysis logic.
This involves setting up the OpenOCD connections and loading them into the
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Fig. 2. Methodology behind automated exploit execution on embedded systems

Avatar framework. Each state of the flowchart shown in Fig. 2 represents one or
a small group of function calls in the Avatar configuration file.

Generic Device Input Communication. Most frameworks (including
Avatar) have no way to communicate with the target device over its real com-
munication channels. If input is needed to be injected into the target device, a
debugger is typically used to modify the contents of received data to the injected
data. However, the problem is that if exploits are injected into the firmware with
a debugger, there is no way of verifying that the injected exploit is really what is
sent over real communication channels. That is, we need to assure the integrity of
injected data. Take a UART serial port for an example. The data to be injected
to the firmware could contain machine codes that are interpreted as ASCII codes
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for newline and/or carriage return characters. When those data are injected into
the firmware via a debugger, all bytes would be loaded into the firmware exactly
as contained in the data. However, if those data was to be sent over a real UART
serial channel, the UART transmitter would typically interpret the bytes that
map to ASCII carriage return characters to indicate the end of transmission.
This would cause only parts of the data to be copied, not assuring the integrity
of injected data.

To overcome this problem, we developed the Communicator module, which
presents a generic interface of abstract functions for implementing channel ini-
tialisation, connection, disconnection, reading and writing (which can be found
in [1]). The user can simply extend the Communicator class to provide concrete
implementations of abstract functions for a specific channel type, making the
Communicator class suitable for any communication channel mechanism, such
as Ethernet, USB, Bluetooth or serial UART. Since embedded systems receive
input from various sources, many concrete communicators may be active at any
time. All communicators adhere to the same interface, which enables the devel-
oper to quickly and easily switch between different input channels for deploying
exploits. The UML diagram in Fig. 3 shows the functionalities of the Communi-
cator module.

Fig. 3. UML depicting the communicator module

Exploit Generation. We develop the ExploitGenerator module to automate
exploit generation. To extend this module to various exploit kits, the Exploit-
Generator class presents a generic interface which can be integrated with any
exploitation method such as stack buffer overflow, return oriented programming,
use after free and null pointer dereference. Figure 4 shows the functionalities of
the ExploitGenerator module in the UML diagram form.
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Fig. 4. UML depicting the ExploitGenerator module

The ExploitGenerator module revolves around the notion that an exploit is
the concatenation of an input string which places the device into a vulnerable
state, and shellcode which acts upon the vulnerable state. In order to automat-
ically generate inputs which place the device into a vulnerable state, Exploit-
Generator examines path information output from the ArbitaryExecution S2E
plugin. When writing the construct input() function, a developer must take care
to arrange the variables from the path in the correct order that they appear in
inputs, as depending on the exploit method selected, the order that S2E provides
variables from path information may not be correct. Constructing payloads is
a similar matter, as existing shellcode is combined with a referenced address to
the buffer found from vulnerable path information. The user also has the option
to manually override the automatically generated input and payload variables.

To deploy the exploit to the target device, the ExploitGenerator class
sends the exploit down a previously created generic input communication chan-
nel, denoted by a concrete implementation of the Communicator class. Since
all concrete implementations of Communicator adhere to the same interface,
any ExploitGenerator can send constructed exploits down any communication
channel.

For simplicity, in this paper, we only focus on automatically generating
exploits for stack buffer overflow vulnerabilities. BufferOverflowGenerator is
a concrete implementation of ExploitGenerator which implements this feature
(which can be found in [1]). However, the developed framework is not limited
to this type of attacks as it can be flexibly extended with other exploit genera-
tion modules. BufferOverflowGenerator first builds vulnerable input strings by
using vulnerable path information to place the device into a state where it will
read and store a buffer in a viable location. The payload is constructed such
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that existing shellcode is extended by a return address which points to the start
of the vulnerable buffer. BufferOverflowGenerator concatenates the input and
payload to generate an exploit and deploys it to the target device through a
specified communication channel.

4 Evaluation

The embedded system used for evaluation is the Texas Instruments Stellaris
EKS-LM3S1968 Evaluation Kit, developed by Luminary Micro. The evaluation
kit features the LM3S1968 ARM Cortex-M3 embedded microprocessor, which
boasts a maximum frequency of 50 MHz, 256 K of onboard flash memory, and
64 K of SRAM. Device debugging can be performed over USB with the popular
FTDI 2232D chip, which implements USB to serial UART channels, which can
be used to directly access and program the onboard flash memory. JTAG access
is also provided.

The communication channel between the Stellaris board and the Avatar
framework was achieved over a serial UART line, which is popularly used in
real world embedded systems. In order for the host computer to communicate
with the target device, an external USB UART TTY was required. A generic
off-the-shelf adapter was selected to support the CP2102 UART chip.

The host computer running the Avatar and S2E frameworks has the follow-
ing specifications: a 3.4 GHz Quad-core Intel i7-4770 processor, 16 GB of DDR3
RAM, running the 64-bit Debian 7.8 Linux distribution.

4.1 Vulnerable Firmware

Two vulnerable firmware versions were developed to show the feasibility of our
implementation. Those firmware versions share the common vulnerability but are
significantly different in code size. Each of the firmware versions tested utilise
two different hardware peripherals, a serial UART and the OLED display. Each
of these peripherals must be initialised during initial device setup, even if they
are not explicitly used in later stages of firmware execution. This enables the
driver objects to be linked with the firmware during compilation, enabling access
to those peripherals by any shellcode executed. The firmware developed share
a common vulnerability that can be exploitable on some execution paths of
the firmware. The vulncpy() function introduces a simple stack buffer overflow
vulnerability since it does not perform any length checking of an array passed
as a parameter. The vulncpy() function is called after the firmware receives a
message over the serial UART line, which contains tainted data which is entirely
attacker controlled. In this section, we first briefly describe how those firmware
versions work and discuss the annotations for symbolic execution.

Small. Small simply initialises hardware peripherals, receives a message over
the serial UART line, and immediately passes the message buffer to vulncpy() to
potentially trigger the vulnerability. Small receives the message by first reading
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Fig. 5. Small packet structure and example exploit

in a single byte, and converting the byte from ASCII to an integer. This becomes
the length of the buffer to receive. It then proceeds to read and fill the message
buffer with length bytes received over the serial UART line.

The inputs required to place Small into a vulnerable state is simply a length
value greater than 20, in order to overflow the buffer found in the vulncpy()
function. Since there is only one path through the firmware, this is easily found
with symbolic execution. The message presented in Fig. 5 consists of 20 bytes of
shellcode to fill the buffer in vulncpy(), 4 bytes to overwrite the return address to
the desired value 0xabcd (represented in little-endian form) and a further byte
which overwrites the previous stack frame.

Large. Large recreates an in-vivo example of a real world firmware with a
complex message passing system, which can craft and display messages sent and
received from the Stellaris board. The application contains 5 different views that
the user can directly interact with. The application contains a significant amount
of control flow logic and various nested loops and other tricky components such
as dynamic memory allocation to the heap. The details of Large can be found
in [2].

Large can be placed into a vulnerable state by sending command 1 to print
an attached message to the screen. The message is parsed and vulncpy() is called
before the message is printed to the screen. The message shown in Fig. 6 follows
the same format used in Small firmware.

Fig. 6. Large packet structure and example exploit
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Annotations. Manually disassembling firmware to place annotations is one
of the most time-consuming steps. Consider an excerpt of the Small firmware
shown in Fig. 7.

00000720 <main >:
720: b5f0 push {r4 , r5, r6, r7, lr} ; Context Switch

...
744: f000 fa85 bl c52 <UARTCharGet > ; Read length
748: b2c4 uxtb r4, r0 ; r4 = length message
74a: 3c30 subs r4 , #48 ; Correctly zero length
74c: dd0a ble.n 764 <main+0x44 > ; if < 0 do not read
74e: 466f mov r7, sp ; r7 is buffer location
750: eb04 060d add.w r6, r4, sp ; Allocate length bytes
754: 4628 mov r0 , r5 ; CALL ANNOTATION HERE
756: f000 fa7c bl c52 <UARTCharGet > ; Read 1b of message
75a: 1e64 subs r4 , r4, #1 ; Decrement counter
75c: f807 0b01 strb.w r0, [r7], #1 ; Store 1b in buffer
760: d1f8 bne.n 754 <main+0x34 > ; Loop and read more

Fig. 7. Example of annotations in the Small firmware

Annotations need to be placed at sections of the firmware where variables
or buffers of tainted data are required to be marked symbolic. In the above
example, one variable and one buffer needs to be marked symbolic. The length
variable can be marked as symbolic by setting the register r0 to a symbolic
value since the UART driver library places a received character into register r0,
a common return value register. For the buffer, the variable which points to the
buffers location in memory is stored in register 7, as seen at 0x74e when the
location takes the value of the stack pointer. The buffer is allocated upon the
next instruction 0x750. This adds the buffer length to the current stack pointer,
placing the address of the end of the buffer in register 6. The buffer consists
of the bytes between the addresses of r7 and r6. The idea is to call a Lua
callback function to mark those addresses as symbolic before instruction 0x754
is executed. An instruction annotation is used, which calls the required function
when the program counter reaches the address 0x754.

function buffer_symbolic_all (state , plg)
print ("[S2E]: making buffer symbolic\n")
buff = state:readRegister ("r7") -- r7 contains buffer address
length = state:readRegister ("r4") -- r4 contains length
for i = 0,length do

state:writeMemorySymb (" VulnString", buff+i, 1) -- mark symbolic
end
-- Write null byte
state:writeMemory(buff + length , 1, 0)

end

Fig. 8. Annotation callback function marking buffer as symbolic
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The annotation callback function marking buffer as symbolic (see Fig. 8)
takes part inside of S2E, during symbolic execution with KLEE. KLEE reads
the address and length of the buffer from the registers of the emulator, and then
iteratively marks each byte as symbolic. By utilising similar annotations, two
firmware versions were tested with our implementation.

4.2 Exploits Generated

Generating exploits for Small is a straightforward process with the extended
Avatar framework. The vulnerability is triggered if there are more than 20 bytes
copied into the buffer, which means that the first length character must be
greater than 20. Since Small length in as a printable ASCII character, the
length is offset by the character ‘0’, or 0x30. This means that the SMT solver
was tasked to find values greater than 20 which include the offset. Two exploits
are shown in Fig. 9. In both exploits, the length value satisfies the minimum
value of 0x44 (20). Note that the shellcode used is a string of ‘a’ (0x61) characters
acting as placeholders, and the address of the buffer is always the same. If a
debugger is consulted at run time, the buffer is allocated between 0x200000B8
and 0x200000D1, which agrees with the generated exploits.

wolfrevOnruteRedocllehShtgneL
4B 6161616161616161616161616161616161616161 b8000020 61
7F 6161616161616161616161616161616161616161 b8000020 61

Fig. 9. Exploits generated for Small, shown in hexadecimal form

Unfortunately, our implementation failed to automatically generate an
exploit for Large within reasonable time. This is because a significant amount of
execution paths were explored with various input mechanisms (e.g., push but-
tons, UART packets, etc.). Moreover, symbolic execution often generated states
to explore already explored paths, which finally led to state space explosion in
the search field.

5 Discussion

We found that Avatar is not scalable for large complex embedded systems, as
demonstrated in Sect. 4. The action of performing symbolic execution and pass-
ing all memory-mapped I/O peripheral accesses over USB to the target device
is too slow for real systems. For example, firmware for a baseband processor
used in cellular phones is typically several megabytes in size, and utilise many
nested loops and state machines to implement the GSM protocol. Since sym-
bolic execution would likely tend towards state space explosion, time critical
radio peripheral accesses can also fail, and the USB debug channel may exhaust
bandwidth to cope with the interrupts generated.
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Moreover, Avatar has no mechanism to determine what class of vulnerability
has been detected. Avatar simply detects vulnerabilities if a symbolic variable
is used as a control flow jump address (i.e., a symbolic variable is loaded to
the program counter). A method to automatically distinguish between various
vulnerability classes and a feature needs to be implemented in the extended
Avatar which would automatically select the required ExploitGenerator. This
would remove another decision users need to make when setting up the Avatar
configuration file, as it may not be known what class of vulnerability is inside
the firmware under test.

We did not evaluate our framework with real world scenarios. However, as
we described previously, our custom built firmware allow us to comparatively
analyse how our proposed framework can generate exploits for different com-
plexity of firmware. But for our future work, we will investigate the effectiveness
of our proposed framework for various types of real world embedded systems
firmware.

6 Conclusion

Embedded systems often lack capabilities to support security features. Hence, in
embedded systems, finding security flaws is essential in their development stages.
In this paper, we extended the Avatar framework to implement an automated
exploit generation tool for embedded systems. To show the feasibility of the
implemented tool, we used two independent firmware versions that share the
same vulnerability but are significantly different in size.

In our experiments, the small-sized firmware was quickly exploited while we
failed to automatically generate an effective exploit on the large-sized firmware.
This is because a lot of execution paths were inherently generated based on
the symbolic execution technique. To overcome this limitation, we will explore
various heuristics to prioritize the most important execution paths when it is
not feasible to consider all possible execution paths in a target firmware.
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