
Program Crash Analysis based on Taint analysis

Zhang Puhan1,Wu Jianxiong1,Wang Xin1,Zehui Wu2
1China Information Technology Security Evaluation Center, Beijing,China

2State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, China
zhangph2008@gmail.com,wuzehui2010@foxmail.com

Abstract—Software exception analysis can not only improve
software stability before putting into commercial, but also could
optimize the priority of patch updates subsequently. We propose
a more practical software exception analysis approach based on
taint analysis, from the view that whether an exception of the
software can be exploited by an attacker. It first identifies the
type of exceptions, then do taint analysis on the trace that
between the program entry point to exception point, and
recording taint information of memory set and registers. It
finally gives the result by integrating the above recording and the
subsequent instructions analysis. We implement this approach to
our exception analysis framework ExpTracer, and do the
evaluation with some exploitable/un-exploitable exceptions which
shows that our approach is more accurate in identifying
exceptions compared with current tools.

Keywords—Software engineering; crash analysis; taint
analysis; exception classification

I. INTRODUCTION (HEADING 1)
Current software operators commonly used error-reporting

mechanism for stability maintenance of the released software,
as shown in Figure 1. Software developers receive such a
report which is often a sample or a memory dump when the
software crash and it cannot perform live trace debug. So it is
very necessary how to quickly provide software crash-related
information for software maintenance personnel. For example,
software usually crash to an instruction, and we need to
determine whether the crash is caused by internal logic error of
the program or the external input data. If the cause is an
external input, it is likely to be a serious crash, even an
exploitable vulnerability. At this time we need to know which
fields of the inputs are related to the data which cause this
instruction an error, in order to further supply the judgment
basis whether a crash can be used as vulnerability. Therefore,
the ultimate goal of the software crash analysis is to determine
whether the current software crash could be exploited by
attackers. This paper uses data flow oriented analysis methods
to directly analyze the binary program, and analyze whether the
crash point can be controlled by an attacker to achieve crash
threat classification to provide fix information for software
maintenance personnel.

Current researches on the analysis of software crash
determination mainly focus on buffer overflow and format
string. Two representatives are "! Exploitable" plugin [1, 2] of
Microsoft winDBG, and AEG (Automatic Exploit Generation)
[3]. And the exploitable is used as Windbg plugin, when the

program crash, using load MSECD.dll to load exploitable
plugins, and then use "! Exploitable-v" commands to check the
exploitability analysis results of current crash. Exploitable will
divide the crash into exploitable, may be exploitable, may be
not exploitable and the unknown to measure the degree of
crash exploitability. This plugin is generated after Microsoft's
security personnel analyzed ten million crashes on vista and
found that many crashes have something in common. Although
the path is not reachable which some crashes triggered, the root
cause is the same, so the crashes which appear in one code area
can be classified as a class. When it is implemented in reality,
we classify the crashes by collecting the stack information of
crash points and use implementation of the exceptions to Type
outliers stack by collecting information, and use the primary
hash and secondary hash to commutate stack frame information
of crash point, and then according to the hash value classify
crashes which are caused by the same defect to one category,
and thus determine the exploitability of the crash point. But the
plugin can only give an accurate crash judgment under
windows, for other third-party software and some of the more
complex crashes such as heap overflows, UAF (Use-After-
Free), etc. often give false results.

Fig. 1 Error reporting of software exceptions.

AEG is different from exploitable. It uses symbolic
execution[4, 5] technology to get constraints of execution paths,
and then use the constraint solver, in order to determine the
exploitability of crashes. To be specific, first the target program
source code is compiled into a binary program using the GCC
compiler, and the binary program is to be tested by AEG. Then
use the LLVM compiler to compile target program into byte
code object, and the byte code is to be analyzed by AEG.
Traverse the execution paths in source code level by symbolic
execution technology. When crash occurs, AEG

2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-1-4799-4171-1/14 $31.00 © 2014 IEEE

DOI 10.1109/3PGCIC.2014.100

492

Fig. 2 Work flow of ExpTracer.
collects the path’s constraint expression which reach the crash
point, and solve specific input parameters by which the
program can trigger vulnerability, then analyze the parameters
to judge whether the crash is exploitable. However, because of
the usage of symbolic execution technology, when there is a
cycle occurs, it will lead to "the path explosion" phenomenon.
The analysis efficiency will drop sharply, at the same time false
positives rate raise up. And the tool can only determine the
format string and buffer overflow crashes.

In addition, Dawn Song et al proposed crash exploitability
judgment technology based on path signature[6].The technology
extracts the signature of the path from program entrance to
vulnerable point to obtain vulnerability type. When make crash
exploitability judgment, first extract signature, and make a
judgment by matching crash types. The method may lead to too
many crash types, and the result depends on the match list of
vulnerabilities, whose practicality is not enough.

 In this paper we sum up the previous experience, and use a
data flow guiding analysis technology based on taint analysis
to judge software crash exploitability, according to the need of
practical program analysis. As shown in Figure 2, the method
identifies the crash type, screens and rejects crashes which are
not exploitable, and then records taint propagation path and
whether memory, register is tainted by analyzing the taint
analysis path from program entrance to crash point. For
instructions which change the control flow, we not only
analyzes the taint situation of the current instruction, but also
analyze whether the EIP register is tainted to give a more
accurate analysis. At the same time the subsequent instructions
are analyzed, to judge exploitability of current crash. We use
binary instrumentation platform PIN to realize the research
ideas -- the ExpTracer prototype system, and select opened
loopholes to compare with Microsoft "! Exploitable". The
results show that the method is more accurate in the
identification of crashes, especially the writing cover type ones.

Contributions

1. We proposed a new dynamic taint analysis based on static
optimization on DBI (Dynamic Binary Instrument) platform,
by which we could effectively improve the efficiency of taint
analysis.

2. We proposed a practical method to analysis instructions in
the subsequent traces by instruction pre-fetch, which could
highly improve the accuracy of crash determination.

3. We have built a crash determination framework named
ExpTracer, and we have shown how this work could provide
basic research foundation for vulnerability model study by
specific case study.

Roadmap

Abnormal classification in the second part introduces
ExpTracer the paper, in the third part introduces ExpTracer
fine-grained stain was optimized by using static analysis
algorithm, the fourth part introduced ExpTracer framework and
function modules, the fifth part gives the results of the
experiment, and analyze the results. The sixth part is the
summary of the thesis, insufficient and future research work.

II. CRASH CLASSIFICATION
Before determining crash availability, in order to reduce the

scope for further determination and improve the efficiency of
system execution, we need first to remove those crashes which
are known not exploitable, then further classify crashes which
are exploitable maybe. In this payer, we divide crashes into the
following types by crash messages generated during system
exception and types of instructions which lead to crashes.

A. NULL Point Deference
A null pointer is the pointer whose memory unit value is

NULL, and crash occurs when using the pointer. Null pointers
usually has two causes: first, because the release version is the
wrong version of programs to initialize pointers, it often reports
"fail to read data, memory address is NULL", but this problem
does not appear in the debug version. These crashes can be
resolved through compatibility check and static compilation.
Two is in the internal procedures the logical processing
incorrect, leading to zero the pointer and read error, which is a
logical error. But the use of this two reason cannot change the
program’s control flow, therefore we determine "read empty
memory" is not exploitable.

B. Direct Jump Instruction
For the situation that crashes come up when executing the

jump instructions (such as JMP, CALL instruction), differently
from using the approach of taint analysis such as TaintCheck[8],
the system first determines whether the destination address is
tainted. If the destination address is tainted, it needs to further
determine whether the EIP register is tainted. Only when
destination address and EIP register are both tainted, can the
system determine the crash is exploitable. If the jump
instruction is not tainted, the system will analyze whether
subsequent instructions contain the ones which may change the
control flow or not.

C. Memory/Register Modify Instruction
When crash instructions are memory / register modification
instructions (such as mov), it needs to determine whether the
source operand is tainted and how many bytes are tainted. At

the same time track where the tainted memory/register is

493

Fig.3 Work Flow of Taint Analysis

used, and whether information leak would occurs. If possible,
crash is exploitable. Then analyze the subsequent instructions
by the static analysis, and checking whether the tainted
memory/register has affected the subsequent jump instructions.
If there is, the control flow is likely to be hijacked, and the
crash is also exploitable.

D. Interrupt Instruction
Usually, in order to protect control flow from being

hijacked, the compiler will insert some interrupt instructions at
compile time (0xCC). So when the process crashes, the crash
point often appears "CC" command. The judgment on this type
of crashes is difficult to realize automation, and usually these
crashes are hard to use, because the control flow is relatively
difficult to be changed. This type of crashes will be determined
as "may be able to exploitable".

III. DATA FLOW DIRECT ANALYSIS METHOD
We adopt data flow analysis to improve the efficiency of

data flow analysis. As a kind of fine-grained taint analysis
based on static optimization, it can not only determine whether
a memory unit/register is contaminated, but also be able to
identify the offsets of taint sources that tainted the target
memory or register, so as to identify the relationship between
user input and software crash point. As shown in table 1, the
first column represents the three order instructions. Among
them, the variable T is used for taint variable, which means T
(eax) ={0,1,2,3} induce that register eax is tainted by the first
four bytes (offset 0,1,2,3) of taint source.

As shown in figure 3, the length of taint source is 8 bytes.
Initially, the memory units referred by esi is tainted by the first
four bytes of taint source, while the other four bytes taint
memory units referred by edi. As you can see that after the first
two mov instructions, eax is tainted by the first four bytes of
taint source, ebx is tainted by the last four bytes. However, the
instruction add will merge the information of eax and ebx both
into eax, making the eax rely on the whole 8 bytes of taint
source. The taint process record is shown in table 1.

But current fine-grained taint analysis methods still adopt
the way that analysis instructions one by one, ignoring the taint
transmission relationship between instructions, which increase

a lot of extra overhead[9, 10, 11]. As shown in figure 3a, the
sequences of instructions complete the assignment between
memory operations. If we analysis this by instruction
instrument one by one, the correspond taint spread relations is
shown in figure 2b. T (eax) indicates that the eax register is
pollution, "< -" represent the spread of taint. On the other hand,
the final goal of the instruction sequence is spread the taint
information of memory units referred by ebx to which referred
by edi, which has nothing to do with eax. But in the actual taint
analysis process, current methods use four taint spread
relationships to represent the process, among these the second
and forth of them are superfluous, the first and third can be
combined.

Table 1 Taint Propagation Record

Instruction T(eax) T(ebx) T(dword
[esi])

T(dword
[edi])

 {} {} {0,1,2,3
} {4,5,6,7}

mov
eax,[esi]

{0,1,2,
3} {} {0,1,2,3

} {4,5,6,7}

mov
ebx,[edi]

{0,1,2,
3}

{4,5,6,
7}

{0,1,2,3
} {4,5,6,7}

add
eax,ebx

{0,1,2,
3,4,5,6,

7}

{4,5,6,
7}

{0,1,2,3
} {4,5,6,7}

On the basis of previous studies, we proposes a fine-grained
taint analysis based on static optimization algorithm. We
extract the semantic information of taint propagation through
static analysis, deleting the instructions which has nothing to
do with taint propagation, and merging the spread of the repeat
order. Furthermore, according to the feedback of static
analysis, the dynamic analysis will complete the specific taint
analysis.

(1) Static Optimization for Dynamic Taint Analysis

A. Intermediate Representation

We design the intermediate representation language of taint
propagation as follows.

In this IR, we have two operators and , the former used
to represent taint information combination, while the latter used

494

to set the length of operator, for example 0x1&eax can get the
last byte of eax, if the default length of operator is 4.

B. Non Taint Propagation Instruction elimination

As we know there are many non-taint propagation
instructions during taint analysis, all these instructions could be
eliminate by the following way. Firstly, we split our target into
basic blocks, each block is constructed by many entrance point
and only one exit point. Secondly, we set the input collection as
�I and the output collection as �O. Lastly, we search and delete
instructions that satisfy the express Inst��O.

Fig.4 Taint Propagation Relationship before

Optimization

�

Fig.5 The grammar of intermediate representation

C. Repeat Propagation of Taint Information

 We set basic blocks as a sequence constituted by state1,
state2, state3…staten. The taint express of each statei is
represent by oprandi<=expi. Based on this, we get the algorithm
on repeat propagation of taint express, which is shown in
algorithm 1.

With regard to assembly instructions in figure 6, after the
static optimization, the taint propagation could eventually be
simplified into the four transmission in figure 6c, and can be
instrument before the fifth line, by which we could complete
the whole fine-grained taint analysis process of seven
instructions only by one instrument.

Using the above optimized taint analysis algorithm, we
could effectively shorten the time of taint analysis and
accurately identify the corresponding taint source, which

provide detailed decision basis for crash exploitability
determination.

Algorithm 1 RepeatPropTaint
Input: 1 2... nblock state state state=

Output:
1 2' ... ,kblock state state state k n= <=

begin
1. for i=1 to n do
2. flags=false
3. (exp)i i istate oprand= ⇐

 //get current taint express
 //if the left value of the express outside
4. if ()ioprand OUT DAG∉
5. for k=i+1 to n do //traverse subsequent taint express
6. (exp)k k kstate oprand= ⇐

//

kstate and
istate could be Repeat Propagat

7. if(expi koprand ∈)

8. (exp ')k k kstate oprand= ⇐

9. flags=true //set Flags of Repeat Propagation
10. endif
11. endfor
12. endif
13. if (flags)
 //if have repeat propagated, then delete it
14. delete(block,

istate)
15. endif
16. endfor
end

Fig.6 The Optimization progress of Mov

(2) Crash Instruction Analysis

From crash classification we know that we could not give
an accurate result to “memory/register modification
instructions”. So we need a further step to analysis, and we
category this type into three classes as follows.

495

8 /16 / 32, / / dword/ ptr[] (1)
/ / / [], 8 /16 / 32 (2)

8 /16 / 32, 8 /16 / 32 (3)

mov reg byte word mem Type
mov byte word dword ptr mem reg Type
mov reg reg Type

Fig.7 The combination type of Mov
For instruction mov, it has three types because of non-

directly copy of two memory units on x86 platform. However,
when come to taint analysis, we only need to analyze Type1
and Type2. For Type1, 8 / 16 / 32 / / dword/ ptr[]reg byte word mem⇐

the particular memory unit will be copy to target register, so we
need to record that if the memory unit is readable. And if it is
true, then we need to analyze the length of the tainted memory,
from which we could determine the exploitable of current
crash. For example, if the whole 4 bytes are all tainted, then we
could get the control of a memory space which is as large as
4G, inside which we could insert any dll making our exploit be
success.

For Type2 / / / [] 8 / 16 / 32byte word dword ptr mem reg⇐ ,
the particular register will be copy to target memory units, so
we need to record that if the memory units is writable. And if it
is true, then we need to analyze the taint information of source
operand, from which we could determine the exploitable of
current crash.

IV. CRASH EXPLOITABLE DETERMINATION FRAMEWORK:
EXPTRACER

Crash exploitability determination is ultimately to
determine whether EIP register can be controlled. The most
direct way to determine whether EIP register is polluted is taint
analysis techniques, and another way is to extract crash
patterns through pattern matching method. In this paper, we
complete the base portion ExpTracer, which classify the crash
and then identify contaminate memory/register via taint
analysis according to the different types of crash, based on
which, we can determine whether the crash exploitable.
Subsequently, under this framework we can extract patterns of
different crash respectively, and perform more accurate crash
determination through pattern matching to implement the
extension of the ExpTracer framework.

A. Type Identification
For a binary program and a sample which can trigger crash

point, we gather information of crash point by simulating
execution and then triggering crash, and identify the type of
crash by the error and command information of crash point
system prompts when triggering crash. For "read empty
memory" crash, because of its control flow cannot be exploited
directly and we give "non-use" judgment result directly; while
for "break" type of crash, because the program itself has a
protection mechanism to control flow, given control flow is
more difficult to hijack, we assume that it is "possible to use."
For other types of crash, they need to be determined by further
taint analysis.

B. Taint Analysis
In this paper, the taint analysis module contains two parts,

static module and dynamic module. The static module is used
to optimize the stain, and the dynamic module takes the results

of static optimized result to conduct concrete implementation.
Static Module will first converter the instruction to an
intermediate representation based on which we complete the
non-pollution instruction directive and the optimization of
duplicate spread of pollution. The optimized result is returned
to the dynamic taint analysis module. Dynamic taint analysis
extracts taint source based on the sample, complete the
instruction stub and record of taint propagation, construct and
analyze real-time updates tainted record sheet, at last taint
analysis results will be submitted to the crash determination
module.

C. Instruction Pre-fetch
Typically instruction at the crash point can not change the

control flow of the program, so it is difficult to achieve exploit.
The exploit point of exploitable crash can be before crash
points and can also be after the crash points. The former
requires specific analysis by backtracking method, and the
latter requires to analyze the instructions after the crash points.
This paper only considers the case in which the exploit point is
after the crash point, and reads the instructions after the crash
point in a coarse-grained way, from which we extract the
instructions which can change control flow of the program,
such as call, jmp, etc. We perform static taint analysis on this
type of Instructions to see the taint condition, and if the
destination address is tainted, we think that it is possible to
exploit. On the one hand because of the uncertainty whether
the path up to that point, on the other whether the EIP
instructions can be tainted.

D. Exploitable Determination
Exploitability determination module uses a different

determination method on different types of instructions,
according to the instruction type of crash points. For the jump
instruction is mainly based on the results of the taint analysis,
to see whether the destination address of the jmp instruction is
tainted, and can be polluted by which bytes of taint sources. If
they can be tainted, and EIP registers can be hijacked, then
you the control flow of the program can be changed to achieve
crash exploit. For memory / register modification instructions,
we need to first determine whether the source operand can be
tainted and if they can, then further trace taint condition of
destination operand. If we detect taint spreads to the
instruction which can change the program control flow, then it
shows that the crash is also exploitable.

V. EVALUATION

A. Experimental Environment
Table 2 Testing environment

Environment Type Configuration and Version

HardWare Processor Intel(R) Core(TM) i5-2300
CPU @ 2.80GHZ

Memory DDR3-4.00GB

Software OS
Windows XP Professional
SP0-SP3, Win2000 SP4

Virtual Machine
DBI Pin v2.11-43611

496

NO. Vulnerability NO. Crash Instruction
Taint

Source
(Byte)

“!exploitable” ExpTracer

1 MS06-040 call ds:_imp_wcscat 128 exploitable Probably
exploitable

2 MS08-067 mov ecx, dword ptr
ss:[ebp+8] 128 exploitable exploitable

3 CVE-2011-2130 movzx eax, word
ptr[eax+1ch] 64 Unknown exploitable

4 CVE-2011-2595 mov ecx, dword ptr
ds:[eax] 128 Unknown exploitable

5 CVE-2013-2551 mov ecx, dword
ptr[eax+14h] 256 Probably

exploitable
Probably

exploitable

6 CVE-2013-0753 movzx eax, word
ptr[ecx+4ah] 128 Unknown exploitable

7 CVE-2011-0609 call dword ptr[ebp+68h] 64 Unknown exploitable

8 CNNVD-201310-
129

mov ecx, dword ptr
ss:[ebp+34h] 256 Probably

exploitable Unknown

9 CNNVD-201309-
301

movzx eax, word
ptr[ecx+34h] 128 Unknown Unknown

Note: respectively from the Microsoft security center, CVE vulnerability database[12] [13] [14] and the national vulnerability database selection has
publicly loophole, corresponding to the number of MS, CVE, CNNVD respectively. To "fly" abnormal crash and exploits the distance to use
point address, abnormal points instructions for use of point; For abnormal is not available, the distance is up; Usually exploits point after the
crash point, but also can appear before, after negative.

B. Experimental Result
From table2 we could get a direct point that ExpTracer

could identify more crashes of third-part software than
exploitable, especially for crashes that change control flow.
And the table also show that UAF (Use-After-Free)
vulnerabilities could not be determined accurately, because the
POC (Prof Of Conscept) has many memory rewrite
instructions, which leading a complicated logical result. So
ExpTracer recognize this type as “probably exploitable”.
Figure 9 shows that “exploitable” take any unrecognized crash
as “Unknow”, while ExpTracer not, and for crash that occurred
by stack overflow, our method has more accuracy. Figure 10
shows that the overhead of ExpTrace is more high than
“exploitable”, however, because we are offline analysis, and
compared with manual analysis, the time consuming is
acceptable.

Fig.8 Comparing of Recognition Accuracy

From the exception type, divided into two aspects of data
flow analysis research of binary anomaly judgment. Although
able to identify the abnormal availability to identify the type of
more, but it is still a coarse-grained anomaly judgment method,

Fig.9 Comparing of Time Consuming

VI. CONCLUSION
Especially for abnormal for some logical relationship is

relatively complex, still can't accurate judgment result is given.
Especially to "fly" and abnormal points in the case of MOV
instruction cannot path for effective analysis of the abnormal
points later, just by the disassembly, instruction identification
methods, such as not on subsequent path analysis, the flow of
control will be the focus of future research.

ACKNOWLEDGMENT
This work is supported by the National High Technology

Research and Development Program of China (863 Program)
(2012AA012903,2012AA012902),the National Natural
Science Foundation of China (61272493).

REFERENCES
[1] http://blogs.technet.com.
[2] http://msecdbg.codeplex.com/.

497

[3] Avgerinos T, Cha S K, Hao B L T, et al. AEG: Automatic Exploit
Generation[C]//NDSS. 2011, 11: 59-66.

[4] Jee K, Kemerlis V P, Keromytis A D, et al. ShadowReplica: efficient
parallelization of dynamic data flow tracking[C]//Proceedings of the
2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013: 235-246.

[5] Schwartz E J, Avgerinos T, Brumley D. All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask)[C]//Security and Privacy (SP), 2010 IEEE
Symposium on. IEEE, 2010: 317-331.

[6] Abadi M, Budiu M, Erlingsson Ú, et al. Control-flow integrity
principles, implementations, and applications[J]. ACM Transactions on
Information and System Security (TISSEC), 2009, 13(1): 4.

[7] Yamaguchi F, Wressnegger C, Gascon H, et al. Chucky: exposing
missing checks in source code for vulnerability
discovery[C]//Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 2013: 499-510..

[8] J. Newsome, D. Song. Dynamic Taint Analysis for Automatic Detection,
Analysis, and Signature Generation of Exploits on Commodity
Software[C]//Proceedings of Network and Distributed System Security
Symposium(NDSS). USA, 2005.

[9] Wartell R, Mohan V, Hamlen K W, et al. Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary
code[C]//Proceedings of the 2012 ACM conference on Computer and
communications security. ACM, 2012: 157-168.

[10] Jee K, Portokalidis G, Kemerlis V P, et al. A general approach for
efficiently accelerating software-based dynamic data flow tracking on
commodity hardware[J]. Proc. of the 19th NDSS, 2012.

[11] Zeng B, Tan G, Morrisett G. Combining control-flow integrity and static
analysis for efficient and validated data sandboxing[C]//Proceedings of
the 18th ACM conference on Computer and communications security.
ACM, 2011: 29-40.

[12] MS. www.technet.microsoft.com/zh-cn/security/default.
[13] CVE.www.cve.mitre.org
[14] CNNVD. www.cnnvd.org.cn

498

