
CRAXweb: Automatic Web Application Testing and Attack

Generation

Shih-Kun Huang∗†,Han-Lin Lu†, Wai-Meng Leong†,Huan Liu†
∗Information Technology Service Center,†Department of Computer Science

National Chiao Tung University

Hsinchu, Taiwan

{skhuang,luhl,wmliang,hliu}@cs.nctu.edu.tw

Abstract—This paper proposes to test web applications and
generate the feasible exploits automatically, including cross-site
scripting and SQL injection attacks. We test the web applications
with initial random inputs by detecting symbolic queries to SQL
servers or symbolic responses to HTTP servers. After symbolic
outputs detected, we are able to generate attack strings and
reproduce the results, emulating the manual attack behavior. In
contrast with other traditional detection and prevention methods,
we can determine the presence of vulnerabilities and prove the
feasibility of attacks. This automatic generation process is based
on a dynamic software testing method-symbolic execution by
S2E. We have applied this automatic process to several known
vulnerabilities on large-scale open source web applications, and
generated the attack strings successfully. Our method is web
platform independent, covering PHP, JSP, Rails, and Django due
to the supports of the whole system environment of S2E.

Index Terms—Web security; Symbolic execution; Automatic
exploit generation.

I. INTRODUCTION

Web applications are the primary services in the Internet.

However, they also bring about various security issues. Most

of the issues are caused by the input from web pages, such as

user data from the HTML forms and cookies. Practically, some

inputs are validated or sanitized inadequately by developers.

When a user sends an improper input, it results in bugs or

wrong responses. However, malicious users will attempt to

figure out an attack input over the inadequate development.

Those attack input data, i.e. “exploit”, often cause unexpected

loss and damage. Our work is to build a web exploit generator

for automatically figuring out the exploit in order to fix them

in time.

In the web security research, various methods have been

proposed and attempted to solve web security issues. In

contrast with traditional prevention and detection methods,

exploit generation[5, 18] is a more precise way and provides a

better result because it does not generate any false positive and

inaccuracy results. The generated exploit is a strong evidence

to identify the presence of vulnerabilities. The purpose

of generated exploit is not only a harmful input for web

applications, but also a practical sample for developers easier

to recognize the vulnerability. It can also help developers

prioritize the bug fixing process. If a bug is exploitable, it

must have the highest priority to fix.

For the manual exploit generation, researchers require a

strong security background and knowledge to analyze vul-

nerabilities. Moreover, the cost of time is also an important

consideration. Regardless of white-box or black-box testing

used, manual exploit generation is a high cost process[10].

Therefore, it is necessary for an automatic exploit generator

to perform the overall process in order to reduce the cost.

Our objective is to automatically generate the exploit for

common web security issues on real-world web applications

and reproduce the results, emulating the manual attack

behavior. Moreover, this automatic process is based on a

popular dynamic analysis technique in the field of software

testing, and symbolic execution[16, 20]. However, the

overhead of symbolic execution on large-scale application

is too expensive. Our challenge is to automate the exploit

generation process on large-scale web applications.

A. Overview

This paper is organized as follows. Section II and III explain

our method and implementation, respectively. Experimental

results are reported in Section IV. Section V describes and

compares related work. Finally, Section VI concludes our

paper, with future work.

II. METHOD

Our method is based on symbolic execution to automate the

web exploit generation process. Symbolic socket[6],first im-

plemented in KLEE, is used to propagate symbolic execution

through socket between applications. Exploit generation uses

the ability of constraint solving in symbolic execution to solve

the constraints of the objective exploit. Single path concolic

mode is an option to reduce the overhead of path explosion

on large-scale web applications. However, this option has its

own restriction. All details are described in this section.

A. Symbolic Socket

In a real-world scenario, attackers usually craft a malicious

input over vulnerable entry points in web pages, such as GET

parameters in URL, POST data from HTML form and HTTP

cookie, and send a malicious HTTP request through sockets.

For XSS attack, a malicious HTTP response is returned from

a HTTP server. For SQL injection attacks, a malicious query

2013 7th International Conference on Software Security and Reliability

978-0-7695-5021-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SERE.2013.26

208

impacts the database through a DB service port. Symbolic

socket can then be applied in this scenario to assist symbolic

execution over web servers and applications together. This

situation is shown in Figure 1. Symbolic data is prepared

and injected into an HTTP request. If symbolic data can

be propagated to HTTP response or database query during

symbolic execution through socket, it will indicate that the

response or query is vulnerable and can be controlled by the

original symbolic data. Therefore, it is possible to identify

vulnerabilities through symbolic socket.

The focus of symbolic socket is just on symbolic data,

sent to and received from a socket. It is unnecessary to

concern about what web server uses or how the source code of

applications is. They are tested like a black-box. Therefore, it

leads to platform-independent and source-independent testing

on web server and applications during symbolic execution.

Fig. 1. Symbolic data propagates from HTTP request to HTTP response and
database query

B. Exploit Generation

If the symbolic data is discovered in HTTP responses

or database queries that are received from HTTP or DB

service ports, it will be an opportunity for exploit generator

to generate the exploit, as depicted in Figure 1.

Whenever the symbolic data is initially discovered

in the HTTP response or database query, an

expected attack script is then constructed, such as

<script>alert(document.cookie)</script> for XSS or ’
or 1=1- - for SQL injection respectively. It is used to execute

the attack on HTML page or database query and be triggered

by submitting the exploit. However, the syntax correctness

of the expected attack script is one of the concerns. It

can be finished by parsing the received HTTP response or

database query with a simple HTML or SQL parser so that

the syntax of the expected attack script is correct and available.

The format of the received symbolic data is another concern.

The symbolic data must be contiguous and the length longer

than or equal to the expected attack script. If the symbolic data

is longer than the expected attack script, blank spaces will be

used to fill the remaining part of the script.

1) Constraint solving: Constraint solving is an ability of

solver in symbolic execution to generate test cases and also

the exploit. By considering a sample function in Figure 2,

what is the value of x if f(x) has to return 100? The answer

can be solved with constraint solving. After the termination

of symbolic execution on f(x), two PCs, X + 10 >0 and X +
10 ≤ 0, are collected for the first path and the second path

respectively. To restrict the return value of f(x), a constraint y
= 100, i.e. X + 10 = 100, is added into each PC and attempts

to solve each PC by solver to obtain the feasible value of x.

Finally, x is solved and equals to 90.

Fig. 2. Constraint solving for a sample function

The same concept can apply on exploit generation for

assuming x as exploit and f(x) as an expected attack script.

By considering an example in Figure 3, what is the exploit if

the symbolic data in HTTP response equals to the expected

attack script? Whenever symbolic data is discovered in the

HTTP response, an expected attack script is constructed as

”><script>alert(document.cookie)</script> by a simple

HTML parser. So the length of the contiguous symbolic data

must be longer than 41. The later process shows in Figure

3. The expected attack script is used to construct additional

constraints character by character and added into collected

constraints. The solver in symbolic execution then attempts to

solve this set of constraints to obtain the possible exploit. A

similar approach can also be applied for the exploit generation

of SQL injection.

On most of the traditional web vulnerability, the exploit

is directly reflected onto HTTP response or database query

without any arithmetic operation or simple mutation. These

vulnerabilities can be easily discovered. The ability of con-

209

Fig. 3. Exploit generation by constraint solving

straint solving can assist exploit generation of the potential

vulnerability that is under some arithmetic operations, encod-

ing operations or simple mutations. Those vulnerabilities are

hard to be discovered in the past, but can be detected by our

system.

Fig. 4. Flow diagram of our automatic process

2) Cooperation with Web Crawler: Web crawler[1] is a

front-end in our web exploit generator. It can figure out all the

possible HTTP requests including GET and POST parameters

in a web application. Those parameters can be replaced with

symbolic data and process symbolic execution through socket.

This situation is explained in Section II-A. To cooperate with

exploit generator, a fully automatic process can be constructed

to generate web exploit. The flow diagram is shown in Figure

4.

C. Single Path Concolic Mode

The weakness of symbolic execution is the path explosion

problem during execution. This leads to the challenge in

this paper for the exploit generation on large-scale web

applications. To reduce the overhead in symbolic execution,

we utilize the advantage in concolic testing that explores one

path at a time. Exploring a particular single path is more

effective than for all paths.

In concolic testing, concrete values are originally

responsible for helping symbolic execution to determine

the direction in branches and paths. All paths are explored

with their own concrete inputs. In single path concolic mode,

only one given concrete input is fed for fixing the exploration

on a particular single path. Whenever symbolic execution

encounters branches that associate with symbolic variables,

the selection of branches references the given concrete input

instead of the original concrete value. The execution does not

fork for another new path.

Moreover, branch conditions are originally added into path

constraints for solving a concrete value of the next new path.

In single path concolic mode, branch conditions are not used

because the concrete input is given and fixed. Therefore,

branch conditions can be abandoned and just be collected and

kept in the later backup for the exploit generation process.

This backup mechanism can also optimize the speed of

overall execution.

Figure 5 shows that the difference between symbolic execu-

tion and single path concolic mode. The single path concolic

mode explores only one path with a given concrete input rather

than all paths. The overhead on path explosion is reduced.

Symbolic data can still propagate and be discovered at HTTP

response and database query.

Fig. 5. Single path concolic mode

• Restriction: Actually, single path concolic mode not

only reduces the overhead, but also brings a restricted

condition in exploit generation. If an exploit exists in a

vulnerable web page to trigger XSS and SQL injection,

the path of symbolic execution from exploit to HTTP

response or database query must be the same as the

path for our given concrete input in single path concolic

210

mode. Otherwise, the exploit cannot be solved by

constraint solver with collected constraints by symbolic

execution on the given concrete input. This is a tradeoff

of reducing the overhead, or restores this restriction by

exploring all paths in traditional symbolic execution or

concolic testing.

According to our experimental results, only a part of exploit

cannot be solved in some vulnerable cases because of differ-

ent paths between the given concrete input and the exploit.

It usually occurs at the branch of validating, sanitizing or

exception checking on the input string. Our evaluation results

reveal that single path concolic mode is able to figure our most

of the sanitizing problems. Figure 6 shows that the validation

of special characters leads to the different path and different

collected constraints for BBBBBBBB and <SCRIPT>. The

expected attack script, <SCRIPT>, cannot be solved finally by

a given concrete input, AAAAAAAA. But another input string,

CCCCCCCC, can be solved to reproduce the output string,

BBBBBBBB.

Fig. 6. Different path with the given concrete input and the exploit

III. IMPLEMENTATION

In this section, we explain in detail how our method

is implemented on S2E[8], which is a symbolic execution

platform. The symbolic environment on S2E assists symbolic

propagation through sockets and a handler is built to receive

symbolic data through sockets. After receiving the symbolic

data, it triggers the exploit generator, which is wrapped as

a plugin of S2E. Moreover, single path concolic mode and

other optimizations are also implemented to speed up the

overall process inside S2E. The symbolic environment on S2E

is shown in Figure 7.

A. Symbolic Socket

1) Symbolic Environment on S2E: S2E has an ability to

perform symbolic execution on the whole operating system

rather than applications. This ability comes from the combina-

tion of QEMU[4] and KLEE[6]. KLEE is a symbolic execution

Fig. 7. The symbolic environment on S2E

engine built on top of the LLVM compiler infrastructure[17]. It

implements symbolic execution by interpreting LLVM bitcode.

QEMU is a processor emulator that relies on dynamic binary

translation to translate instructions between two different host

CPU architectures. Whenever a program under test inside

QEMU encounters symbolic data, S2E triggers a new LLVM

back-end to translate instructions into LLVM bitcode and feeds

to KLEE to perform symbolic execution on the whole system.

The constraint solver of KLEE is STP[13].

Symbolic environment represents the existence and prop-

agation of symbolic data in different environments, such as

socket, file, argument, register and standard I/O. Due to

symbolic executions on the whole system in S2E, all sym-

bolic environments are already supported including symbolic

socket. A sample code in Figure 8 demonstrates the use of

symbolic socket between client and server. The branch after

reading mesg in client forks a new execution state because of

the symbolic variable, a, which is affected by the symbolic

variable, buf, through symbolic socket.

Fig. 8. Sample code for symbolic socket between client and server

2) Architecture: The overall architecture for our automatic

exploit generation is based on S2E and shows in Figure 9.

211

In the figure, the arrow represents the symbolic propagation

through symbolic socket and solid block represents the main

implementation part. s2eget and s2e myop are the S2E

instructions.

Fig. 9. Overall architecture for automatic exploit generator

3) Symbolic Response and Query Handler: The concept of

symbolic socket can be developed and applied to HTTP to

perform symbolic execution on web applications and servers.

To cooperate with the web crawler, all of the possible HTTP

requests are crawled from web applications and send to the

guest OS by a built-in S2E instruction, s2eget. Each parameter

in crawled HTTP requests is replaced with symbolic data.

Then, a symbolic request is sent to the web server through

the socket to perform symbolic execution on web applications

and servers together. The flow diagram is shown in Figure 10.

This is the first part from web crawler to symbolic request in

Figure 9.

Fig. 10. From web crawler to symbolic request

Handlers are implemented and listened on port 80 and

3306 on LAMP (Linux, Apache, MySQL, PHP) architecture

by default. During symbolic execution, handlers are ready to

receive symbolic responses and symbolic queries respectively.

The database handler is a modified version of MySQL. A new

S2E instruction, s2e myop, is created and built in handlers for

transferring the received data directly from QEMU at guest OS

to exploit generator at host OS. The received data are analyzed

by exploit generator later. The flow diagram shows in Figure

11. This is the second part from a symbolic response or query

to exploit generator in Figure 9.

Fig. 11. From symbolic response or query to exploit generator

B. Exploit Generation
Whenever the exploit generator is triggered by our

customized S2E instruction, the received data, which is an

HTTP response or database query, is analyzed. To search a

contiguous symbolic data, the process is shown in Algorithm

1. The received data should be judged if it is symbolic or

concrete sequentially. Until a contiguous symbolic data is

located, it has to ensure that the length is long enough to be

involved in the expected attack script, which is constructed

by a simple HTML or SQL parser for the correct syntax.

Thus, concerns that are mentioned in Section II-B must be

satisfied.

Algorithm 1: Searching for contiguous symbolic data

Input: data : received HTTP response or database query

1 symbolic len ← 0

2 for i ← 0 to length(data) do
3 if isByteSymbolic(data + i) then
4 symbolic len ← symbolic len + 1

5 else
6 if symbolic len �= 0 then
7 expect attack ← constructAttack(data, i)

8 if symbolic len ≥ length(expect attack) then
9 symbolic data ← data + i - symbolic len

10 solveExploit(symbolic data,

expect attack)

11 symbolic len ← 0

12 else
13 continue

14 expect attack ← constructAttack(data)

15 if symbolic len ≥ length(expect attack) then
16 symbolic data ← data + i - symbolic len

17 solveExploit(symbolic data, expect attack)

Then, a process in Algorithm 2 is used to solve the exploit.

All constraints, which are collected during symbolic execution,

212

are restored. Extra constraints are constructed and added to

restrict the result, emulating the expected attack script. Finally,

an exploit may be solved as a solution that can reproduce the

expected attack script. If constraints are unsolvable and no

solution obtained, it will report as maybe vulnerable instead

of exploitable. Reason for unsolvable may be the restriction

that mentions in Section II-C or the limitation of constraint

solver [3].

Algorithm 2: Solving the exploit constraints

Input: symblic data : symbolic data, expect attack :

target attack string

Output: exploit : the solved exploit

1 backupConstraints()

2 for i ← 0 to length(expect attack) do
3 tmp ← readMemory(symbolic data + i)

4 constraint ← constructConstraint(tmp, expect attack

+ i)

5 addConstraint(constraint)

6 exploit ← getSymbolicSolution()

1) Simple HTML and SQL parser: Common attack script,

such as <script>alert(document.cookie)</script> for XSS

or ’ or 1=1– for SQL injection, may not work for all cases

of vulnerability due to the wrong syntax. To ensure the

availability of the expected attack script, a simple HTML or

SQL parser is necessary to construct the attack script in the

correct syntax.

By considering an example in Figure 12, a stack is

used to maintain the status of HTML syntax, such as <,

>, ” and ’. Whenever symbolic data discovered at HTTP

response, >and ” are already kept in stack at that time

and popped to complete the expected attack script. So

”><script>alert(document.cookie)</script> should be con-

structed for the expected attack script. The same concept can

apply on the SQL parser.

Fig. 12. Completing the syntax of the expected attack script

C. Single Path Concolic Mode
The implementation of single path concolic mode has two

parts. One is that the selection of branches and paths depend

on a given concrete input. The other one is to keep branch

conditions during symbolic execution and restore them at

the later exploit generation. Before symbolic execution, the

given concrete input is read and constructed as constraints.

An example is constructed in Figure 13 for a concrete input,

AAAAAAAA. A vector container, concreteConstraints, is used

to store these constraints.

Fig. 13. Concrete input constraints

Whenever a branch is encountered and its branch condition

is evaluated by that solver that is feasible for true and

false, the current path constraints are swapped out and

concreteConstraints are swapped in. Then, solver evaluates

again with concreteConstraints to determine which direction

of the branch should go and is dependent on the given

concrete input. So the branch is fixed and S2E will not fork

for two feasible paths. Moreover, branch conditions here are

also kept in a vector container, backupConstraints, which is

restored at the later exploit generation process.

Single path concolic mode is an option to reduce the

overhead on path explosion, but also with the restriction

mentioned in Section II-C. An option is implemented for

switching between single path concolic mode and the original

symbolic execution at any time conveniently.

• Optimization: For single path concolic mode, the current

path constraints are replaced by concreteConstraints to

restrict and determine the selection of branches. In addi-

tion, concreteConstraints can also be used when requiring

the current path constraints inside S2E, such as constraint

solver evaluation on symbolic data. The overhead on

solver can be reduced because the evaluation on solver

prefers a simple concrete value to a complex symbolic

value.

IV. RESULTS

Two types of experiments have been conducted to show

the feasibility of web testing through the whole system sym-

213

bolic executions. The first one demonstrates that platform-

independent web testing with our method. The second one

is the experimental results of our automatic exploit generator.

Part of the test cases are from Ardilla. We also have test cases

from real-world web applications.

A. Experimental Environment

All experiments were performed on a host hardware includ-

ing a 2.4Ghz CPU with 8 cores, 8GB physical memory and

host OS with Ubuntu 10.10 64-bit desktop edition. The guest

environment that is emulated by Qemu includes 2.83GHz CPU

with a single core, 128MB physical memory and guest OS

with Debian 5.0.7 32-bit for Linux platform and Windows

XP sp2 for windows platform. The software environment is

based on S2E 1.0 and the database handler is based on MySQL

5.5.15.

B. Evaluation for Different Platforms

The first experiment evaluates a test case on different

platforms to prove the feasibility of platform-independent

web testing with our method. The test case is a simple web

application that acquires a GET parameter from URL and

prints it on a web page directly. Different platforms are

based on five popular dynamic web programming languages

including PHP, ASP, JSP, Ruby and Python. Ruby and Python

may cooperate with their own framework together, such as

Rails[14] and Django[11].

The experiment attempts to perform symbolic execution in

single path concolic mode with a given concrete input, which

is a string with fifty A. Hypothetically, a symbolic response is

detected and an exploit of XSS is generated by our automatic

exploit generator. When the symbolic response is detected,

the time spent during the overall execution is marked as

Symbolic response time in Table I. The result in PHP and

Django reveals that it is feasible to generate the exploit in a

short time. The experiment on Rails finished in minutes, but

the exploit constraints cannot be solved because of the default

security prevention mechanism. Moreover, the experiment on

JSP finished, but the link of symbolic data into the script is

broken unexpectedly during the symbolic propagation inside

JVM. Thus, the exploit cannot be solved because of the

insufficient symbolic information. The experiment on ASP

cannot be finished in 12 hours due to the ASP architecture

or the complexity of program structure inside their kernel.

This issue may be due to the ASP platform, influenced by

the symbolic data.

We can also test in alternative way by giving up all

the collected constraints with single path concolic mode to

speed up symbolic execution. Actually, the exploit cannot

be generated finally without collecting constraints but it can

still report as possibly vulnerable for web applications after

discovering the symbolic response. This strategy has the same

effects as dynamic taint analysis. The time spent during the

overall execution is marked as Without constraints in Table I.

TABLE I
EVALUATION FOR DIFFERENT PLATFORMS

C. Evaluation for Exploit Generation

The second experiment reports the exploit generation on

different web applications. All web applications are under

single path concolic mode and a string with fifty A is fed as

the given concrete input.

Web applications in Table II and III are the same test

cases from Ardilla. The criteria in Ardilla for discovering new

exploit are the different vulnerable line of code in PHP. Our

criteria for discovering new exploit are with different paths

between exploits generated. Thus, the comparisons in numbers

of exploit between us and Ardilla may differ. OT is defined

as over fifteen minutes during symbolic execution and exploit

generation in Time for all crawled request.

TABLE II
EVALUATION FOR EXPLOIT GENERATION WITH TEST CASES FROM

ARDILLA

Web applications in Table IV are real-world web applica-

tions. SimpGB is a simple PHP guestbook web application

with vulnerabilities such as XSS, SQL injection and malicious

file execution (MFE). It is a good benchmark for our case

study. DedeCMS is a famous content management system

(CMS). The results of eleven generated exploits for DedeCMS
came from a zero-day vulnerability that was found half a year

214

TABLE III
EVALUATION FOR SQL INJECTIONS

ago. The built-in admin interface from old version Django
are also vulnerable and the exploit of CVE-2008-2302[9]

is generated in our result. The last two cases are Discuz!
and Joomla!. Discuz! is an internet forum software written

in PHP. It is the most popular internet forum program in

China. Joomla! is a free and open source content management

framework for publishing content on internet. Finally, our

automatic exploit generator did not generate or find any exploit

or vulnerability for these two cases.

TABLE IV
EVALUATION FOR EXPLOIT GENERATION

V. RELATED WORK

Symbolic execution is a popular software testing technique.

Some related works have applied this technique in the field

of web security. Table V shows a comparison between them

and our work, CRAXweb. SAFELI[12] was a SQL injection

scanner based on Java web applications in 2008. It provided

a concept for applying symbolic execution to web security

early. Apollo[2] was a project from MIT in 2008. It modified

the Zend interpreter in PHP to support concolic execution for

searching bugs in PHP web applications. MIT later proposed

an improved work called Ardilla[15] in 2009. It combined

concolic testing and dynamic taint analysis to perform as

an exploit generator. Its objective is similar to ours and

we have experimental result for comparisons in the former

section. Kudzu[19] was a symbolic execution framework for

JavaScript in 2010. It used attack grammars to solve the

exploit and finally found out two unknown vulnerabilities.

Rubyx[7] was a symbolic executor for Rails[14] in 2011. It

was a recent work for symbolic execution on web security.

As mention in later Section II-A, platform-independent is

one of the contributions in our work than other related systems.

The feature of mutation in Table V means the ability of

constraint solving that explains in Section II-B1, which is the

other contribution in this paper.

TABLE V
RELATED WORK FOR SYMBOLIC EXECUTION ON WEB APPLICATIONS

VI. CONCLUSION AND FUTURE WORK

In this section, we summarize the contributions and con-

clude our work. Some future work is proposed to explore more

web security issues with similar methods in this paper.

A. Conclusion

This paper implemented an automatic exploit generator for

web security issues on real-world web applications. Symbolic

socket is used as the input for symbolic executions on the web

platforms. In contrast with other related systems, applying

symbolic socket on HTTP is a comprehensive solution and

provides the capability of platform-independent web testing.

Whenever the symbolic information is received from

sockets and propagates into security-concerned operations,

such as SQL queries, a potential exploit can be solved by

constraint solving. This constraint resolving ability leads to

more feasible exploits for potential vulnerability, under some

arithmetic, encoding operations, or complicated mutations.

In order to apply our work on real-world web applications,

single path concolic mode and some optimizations are

proposed and implemented to overcome the challenge on

large-scale applications. The objective of single path concolic

mode is to force the exploration on symbolic execution in

only one path with a given concrete input for reducing the

215

overhead on path explosion.

In our evaluation, nine web applications are evaluated,

include the benchmarks from Ardilla and real-world web

applications for different platforms, such as PHP and Django.

All applications were tested and exploits were generated by

our system. The experimental results reveal the feasibility of

our implementation.

B. Future Work

To develop our automatic exploit generator and become a

more comprehensive solution in web security, future work is

suggested as follows.

1) Other Web Security Issues: Other types of web security

issue are also possible to generate the exploit in the same

method. By considering the exploit generation on RFI and LFI,

vulnerability happens at particular functions, such as require(),
include() in PHP platform. All implementations are in the

same way except the handler, which should be implemented

as a PHP extension and hook require() or include() inside

PHP kernel for triggering the exploit generator and detecting

symbolic data. By hooking different vulnerable functions that

mention in Figure 14, it is possible to generate exploits for

directory traversal attack, command injection or code injection.

However, platform-dependent ways exist because of the PHP

extension and particular functions in PHP kernel.

Fig. 14. Exploit for other web security issues

2) Symbolic execution with Browser: To consider web

security issues in Ajax or HTML5, our present method that

mentions in Section III-A3 is not suitable for them. It is due

to that the issues happen at client-side rather than server-side

and they should be determined at a browser rather than HTTP

response. Thus, symbolic execution with browser is necessary

to figure out those issues. The strategy is similar to Section

VI-B1. Handler including the new S2E instruction, s2e myop,

should be built in browser and triggers the exploit generator

later. The scenario is shown in Figure 15.

VII. ACKNOWLEDGEMENTS

This work is supported in part by NCP, TWISC, National

Science Council(NSC-101-2221-E-009-037-MY2, and NSC

100-2219-E-009-005) and Industrial Technology Research In-

stitute of Taiwan (ITRI FY101 2Q-2).

Fig. 15. Symbolic execution with Browser

REFERENCES

[1] Acunetix, “Acunetix web crawler,” http://www.acunetix.com/.
[2] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,

and M. Ernst, “Finding bugs in dynamic web applications,” in
Proceedings of the 2008 international symposium on Software
testing and analysis. ACM, 2008, pp. 261–272.

[3] C. Barrett, L. De Moura, and A. Stump, “SMT-COMP: Sat-
isfiability modulo theories competition,” in Computer Aided
Verification. Springer, 2005, pp. 503–516.

[4] F. Bellard, “QEMU, a fast and portable dynamic translator.”
USENIX, 2005.

[5] P. Bisht, T. Hinrichs, N. Skrupsky, and V. Venkatakrishnan,
“WAPTEC: whitebox analysis of web applications for parameter
tampering exploit construction,” in Proceedings of the 18th
ACM conference on Computer and communications security.
ACM, 2011, pp. 575–586.

[6] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex sys-
tems programs,” in Proceedings of the 8th USENIX conference
on Operating systems design and implementation. USENIX
Association, 2008, pp. 209–224.

[7] A. Chaudhuri and J. Foster, “Symbolic security analysis of ruby-
on-rails web applications,” in Proceedings of the 17th ACM
conference on Computer and communications security. ACM,
2010, pp. 585–594.

[8] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea, “Se-
lective symbolic execution,” in Workshop on Hot Topics in
Dependable Systems, 2009.

[9] T. M. Corporation, “Common vulnerabilities and exposures,”
http://cve.mitre.org/cve/.

[10] J. DeMott, R. Enbody, and W. Punch, “Towards an automatic
exploit pipeline,” in International Conference for Internet Tech-
nology and Secured Transactions (ICITST). IEEE, 2011, pp.
323–329.

[11] J. Forcier, P. Bissex, and W. Chun, Python web development
with Django. Addison-Wesley Professional, 2008.

[12] X. Fu and K. Qian, “SAFELI: Sql injection scanner using
symbolic execution,” in Proceedings of the 2008 workshop
on Testing, analysis, and verification of web services and
applications. ACM, 2008, pp. 34–39.

[13] V. Ganesh and D. Dill, “A decision procedure for bit-vectors
and arrays,” in Computer Aided Verification. Springer, 2007,
pp. 519–531.

[14] D. Hansson et al., “Ruby on rails,” Website. Projektseite:
http://www. rubyonrails. org, 2009.

[15] A. Kieyzun, P. Guo, K. Jayaraman, and M. Ernst, “Automatic
creation of sql injection and cross-site scripting attacks,” in

216

IEEE 31st International Conference on Software Engineering,
2009. ICSE 2009. Ieee, 2009, pp. 199–209.

[16] J. King, “Symbolic execution and program testing,” Communi-
cations of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[17] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in International
Symposium on Code Generation and Optimization, 2004. CGO
2004. IEEE, 2004, pp. 75–86.

[18] M. Martin and M. Lam, “Automatic generation of xss and
sql injection attacks with goal-directed model checking,” in
Proceedings of the 17th conference on Security symposium.
USENIX Association, 2008, pp. 31–43.

[19] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song, “A symbolic execution framework for javascript,” in
IEEE Symposium on Security and Privacy (S&P).

[20] E. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask),” in
IEEE Symposium on Security and Privacy (S&P). IEEE, 2010,
pp. 317–331.

217

